Research Article
BibTex RIS Cite

Proposing a Five-Phase Framework Based on ISO 23247-1 for Digital Twins in Construction

Year 2025, Volume: 12 Issue: 2, 417 - 444, 30.06.2025
https://doi.org/10.54287/gujsa.1680674

Abstract

The adoption of digital twin technology represents a significant leap forward in the construction industry, driving sustainable and efficient project workflows. Despite its transformative potential, challenges such as data integration, interoperability issues, and the absence of structured frameworks hinder broader adoption. To address these barriers, this study proposes a five-phase framework inspired by ISO 23247-1 principles, offering standardized guidelines to ensure seamless data flow, interoperability, and data-driven decision-making in digital twin applications. To evaluate its practicality, this framework was implemented in Villa EcoSmart—a hypothetical testbed simulating a sustainable residential construction project. The five phases encompass free (foundation and requirements establishment), acquire (data collection), analyze (data processing), utilize (model utilization), and update (continuous refinement). Findings demonstrate improvements in energy efficiency, material usage, and workflow optimization, underscoring the framework’s value in achieving technological innovation and environmental responsibility. Additionally, this study critically assesses the scalability and real-world applicability of digital twin technologies. By bridging the gap between theoretical knowledge and industry practices, the five-phase framework advances sustainable construction methods, aligning technological solutions with ISO standards. These insights aim to guide future implementations and promote the broader adoption of digital twins in construction.

References

  • Aliento, W. (2021). Seven ways to use less concrete and save money on your projects. Jobsite. (Accessed: 01/04/2025) https://www.procore.com/jobsite/seven-ways-to-use-less-concrete-and-save-money-on-your-projects
  • Analytics, A. (2023). Aerial utility inspection: transforming asset management with aerial drone inspections for utilities. Optelos. (Accessed: 01/04/2025) https://optelos.com/transforming-aerial-utilities-inspection/ Atlas, G. W. (2025). Welcome to the global wind atlas. Global Wind Atlas. (Accessed: 01/04/2025) https://globalwindatlas.info/en/
  • Auditors, E. C. of. (2020). Energy efficiency in buildings: greater focus on cost-effectiveness still needed. Publications Office of the European Union Luxembourg. (Accessed: 01/04/2025) https://www.eca.europa.eu/lists/ecadocuments/sr20_11/sr_energy_efficiency_in_buildings_en.pdf#page=3.10
  • B. Heluany, J., Goetzfried, J., Mehlig, B., & Gkioulos, V. (2024). Vulnerability management digital twin for energy systems. Proceedings of the 19th International Conference on Availability, Reliability and Security, 1–11. https://doi.org/10.1145/3664476.3671013
  • Baek, S. H., Lee, K. I., & Kim, S.-M. (2023). Development of real-time monitoring system based on iot technology for curing compound application process during cement concrete pavement construction. Sensors, 23(19), 8187. https://doi.org/10.3390/s23198187
  • Biju, V. G., Schmitt, A.-M., & Engelmann, B. (2024). Assessing the influence of sensor-induced noise on machine-learning-based changeover detection in cnc machines. Sensors, 24(2), 330. https://doi.org/10.3390/s24020330
  • Bong Kim, D., Shao, G., & Jo, G. (2022). A digital twin implementation architecture for wire + arc additive manufacturing based on iso 23247. Manufacturing Letters, 34, 1–5. https://doi.org/10.1016/j.mfglet.2022.08.008
  • Burčiar, F., Važan, P., Juhásová, B., & Juhás, M. (2023). Methodical approach to proactivity using a digital twin of production process. Electronics, 12(15), 3335. https://doi.org/10.3390/electronics12153335
  • Cabral, J. V. A., Álvares, A. J., & Caribé de Carvalho, G. (2024). Digital twin implementation for an additive manufacturing robotic cell based on the iso 23247 standard. IEEE Latin America Transactions, 22(8), 651–658. https://doi.org/10.1109/TLA.2024.10620386
  • Cabral, J. V. A., Gasca, E. A. R., & Alvares, A. J. (2023). Digital twin implementation for machining center based on iso 23247 standard. IEEE Latin America Transactions, 21(5), 628–635. https://doi.org/10.1109/TLA.2023.10130834
  • Caiza, G., & Sanz, R. (2024). An immersive digital twin applied to a manufacturing execution system for the monitoring and control of industry 4.0 processes. Applied Sciences, 14(10), 4125. https://doi.org/10.3390/app14104125
  • Cillari, G., Fantozzi, F., & Franco, A. (2021). Passive solar solutions for buildings: criteria and guidelines for a synergistic design. Applied Sciences, 11(1), 376. https://doi.org/10.3390/app11010376
  • CSSI. (2025). Monsec: Real-time monitoring of concrete maturity and temperature. Concrete Sensoring for Sustainable Infrastructure (CSSI). (Accessed: 01/04/2025) https://cssi-iot.com/en/monsec-eng/
  • Drobnjakovic, M., Shao, G., Nikolov, A., Kulvatunyou, B., Frechette, S., & Srinivasan, V. (2023). Towards ontologizing a digital twin framework for manufacturing. In IFIP International Conference on Advances in Production Management Systems (pp. 317–329). Springer. https://doi.org/10.1007/978-3-031-43666-6_22
  • Eddyfi. (2025). Construction monitoring: build with confidence and monitor with precise, robust wireless technology. Eddyfi Technologies. (Accessed: 01/04/2025) https://www.senceive.com/sectors/construction-monitoring
  • Farhadi, A., Lee, S. K. H., Hinchy, E. P., O’Dowd, N. P., & McCarthy, C. T. (2022). The development of a digital twin framework for an industrial robotic drilling process. Sensors, 22(19), 7232. https://doi.org/10.3390/s22197232
  • Ferko, E., Bucaioni, A., Pelliccione, P., & Behnam, M. (2023). Analysing interoperability in digital twin software architectures for manufacturing. In European conference on software architecture (pp. 170–188). Springer. https://doi.org/10.1007/978-3-031-42592-9_12
  • Flow, G. (2025). The most common workflow bottlenecks (and how to fix them). Gravity Flow. (Accessed: 01/04/2025) https://gravityflow.io/articles/the-most-common-workflow-bottlenecks-and-how-to-fix-them/
  • Guerra-Zubiaga, D. A., Colani, M., Richards, G., Cavens, K., Block, L., Olliff, G., & Aksu, M. (2024). A novel digital twin model to support intelligent robotic manufacturing system according to industry 4.0 trends. Proceedings of the ASME 2024 International Mechanical Engineering Congress and Exposition. Volume 2: Advanced Manufacturing, 88605, V002T03A077. https://doi.org/10.1115/IMECE2024-145821
  • Hammad, I., & El-Sankary, K. (2019). Practical considerations for accuracy evaluation in sensor-based machine learning and deep learning. Sensors, 19(16), 3491. https://doi.org/10.3390/s19163491
  • Huang, H., Ji, T., & Xu, X. (2024). An adaptable digital twin model for manufacturing. Manufacturing Letters, 41, 1163–1169. https://doi.org/10.1016/j.mfglet.2024.09.142
  • Institute, K. (2025). Innovative strategies for cost savings in construction. Kaizen Institute. (Accessed: 01/04/2025) https://kaizen.com/insights/cost-savings-strategies-construction/
  • Invicom. (2025). Strain gauge application. Invicom Test & Measurement. (Accessed: 01/04/2025) https://invicom.com/applications/strain-gauge-application/
  • ISO/TC184/SC4. (1984). ISO/TC 184/SC 4 industrial data technical sub-committee. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/committee/54158.html
  • ISO/TC184. (1983). ISO/TC 184 automation systems and integration technical committee. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/committee/54110.html
  • ISO23247-1. (2021). ISO 23247-1:2021 automation systems and integration — digital twin framework for manufacturing part 1: overview and general principles. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/75066.html
  • ISO23247-2. (2021). ISO 23247-2:2021 automation systems and integration — digital twin framework for manufacturing part 2: reference architecture. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78743.html
  • ISO23247-3. (2021). ISO 23247-3:2021 automation systems and integration — digital twin framework for manufacturing part 3: digital representation of manufacturing elements. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78744.html
  • ISO23247-4. (2021). ISO 23247-4:2021 automation systems and integration — digital twin framework for manufacturing part 4: information exchange. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78745.html
  • Jacoby, M., Volz, F., Weißenbacher, C., Stojanovic, L., & Usländer, T. (2021). An approach for industrie 4.0-compliant and data-sovereign digital twins. At - Automatisierungstechnik, 69(12), 1051–1061. https://doi.org/10.1515/auto-2021-0074
  • Ji, T., Polzer, J., & Xu, X. (2023). Cognitive digital twin framework for smart manufacturing. 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 1–6. https://doi.org/10.1109/CASE56687.2023.10260436
  • Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterizing the digital twin: a systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002
  • Jung, Y., Lee, H., Jin, Z., Kim, S., & Kim, K. J. (2023). Revamping facility asset management (fam) for smart manufacturing: variables for theory and implementation. Proceedings of International Structural Engineering and Construction, 10(1), FAM08-1. https://doi.org/10.14455/ISEC.2023.10(1).FAM-08
  • Kang, M.-S., Lee, D.-H., Bajestani, M. S., Kim, D. B., & Noh, S. Do. (2024). Edge computing-based digital twin framework based on iso 23247 for enhancing data processing capabilities. Machines, 13(1), 19. https://doi.org/10.3390/machines13010019
  • Kibira, D., Shao, G., Venketesh, R., & Triebe, M. J. (2024). Building a digital twin of a cnc machine tool. 2024 Winter Simulation Conference (WSC), 2915–2926. https://doi.org/10.1109/WSC63780.2024.10838819
  • Kibira, D., Shao, G., & Weiss, B. A. (2021). Buiding a digital twin for robot workcell prognostics and health management. 2021 Winter Simulation Conference (WSC), 1–12. https://doi.org/10.1109/WSC52266.2021.9715501
  • Kumaş, E. (2024). International standards for digital twins. Acta Infologica, 8(2), 0–0. https://doi.org/10.26650/acin.1395045
  • Lidell, A., Ericson, S., & Ng, A. H. C. (2022). The current and future challenges for virtual commissioning and digital twins of production lines. In SPS2022 (pp. 508–519). IOS Press. https://doi.org/10.3233/ATDE220169
  • López De Ipiña, J. M., Aznar, G., Lopez, A., Olite, J., Koivisto, J., Bartolini, G., & Costa, A. (2021). Digital twins applied to the implementation of safe-by-design strategies in nano-processes for the reduction of airborne emission and occupational exposure to nano-forms. Journal of Physics: Conference Series, 1953(1), 012010. https://doi.org/10.1088/1742-6596/1953/1/012010
  • Madubuike, O. C., Anumba, C. J., & Khallaf, R. (2022). A review of digital twin applications in construction. Journal of Information Technology in Construction, 27, 145–172. https://doi.org/10.36680/j.itcon.2022.008
  • Marinkovic, M., Galka, S., & Meißner, S. (2023). Digital twins for internal transport systems: use cases, functions, and system architecture. Proceedings of the 56th Hawaii International Conference on System Sciences, 1195–1204. https://doi.org/10.24251/HICSS.2023.147
  • Minh, T. B., Do, X. P., Nguyen, Q. H., Nguyen, K. H. V., & Phan, T. T. T. (2024). A digital twin implementation framework for a collaborative robot based on iso 23247. In The International Conference on Sustainable Energy Technologies (pp. 747–755). Springer. https://doi.org/10.1007/978-981-97-1868-9_74
  • Noga, M., Juhás, M., & Gulan, M. (2022). Hybrid virtual commissioning of a robotic manipulator with machine vision using a single controller. Sensors, 22(4), 1621. https://doi.org/10.3390/s22041621
  • Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., Avdelidis, N. P., & Maldague, X. P. V. (2021). Drone-based non-destructive inspection of industrial sites: a review and case studies. Drones, 5(4), 106. https://doi.org/10.3390/drones5040106
  • Patton, M. Q. (1980). Qualitative evaluation methods. Sage Publications.
  • Plevris, V., & Papazafeiropoulos, G. (2024). AI in structural health monitoring for infrastructure maintenance and safety. Infrastructures, 9(12), 225. https://doi.org/10.3390/infrastructures9120225
  • Pointerra3D. (2025). Collaborative design: how cloud-based digital twins facilitate coordination and communication among aec stakeholders. Pointerra3D. (Accessed: 01/04/2025) https://www.pointerra.com/blog/collaborative-design-how-cloud-based-digital-twins-facilitate-coordination-and-communication-among-aec-stakeholders/
  • Pratap, A., Vi, T.-K., Lee, Y. W., Sardana, N., Hsiung, P.-A., & Kao, Y.-C. (2024). A dt framework integrating human and artificial intelligence for power consumption prediction in cnc machining. The International Journal of Advanced Manufacturing Technology, 135(1–2), 915–938. https://doi.org/10.1007/s00170-024-14477-9
  • Richter, R., Knospe, F., Trapp, M., & Döllner, J. (2024). Dynamic digital twins: challenges, perspectives and practical implementation from a city’s perspective (T. H. Kolbe, A. Donaubauer, & C. Beil (eds.); pp. 671–691). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43699-4_41
  • Rite, E. (2025). High-resolution environmental monitoring sensors in civil engineering. Encardio Rite. (Accessed: 01/04/2025) https://www.encardio.com/blog/environmental-monitoring-sensors-civil-engineering
  • Rodrigues, A. M., Formiga, K. T. M., & Milograna, J. (2023). Integrated systems for rainwater harvesting and greywater reuse: a systematic review of urban water management strategies. Water Supply, 23(10), 4112–4125. https://doi.org/10.2166/ws.2023.240
  • Rosova, A., Behun, M., Khouri, S., Cehlar, M., Ferencz, V., & Sofranko, M. (2022). Case study: the simulation modeling to improve the efficiency and performance of production process. Wireless Networks, 28(2), 863–872. https://doi.org/10.1007/s11276-020-02341-z
  • Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., & Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.org/10.1017/dce.2020.16
  • Schwandt, T. A. (1996). Qualitative data analysis: An expanded sourcebook. Evaluation and Program Planning, 19(1), 106–107. https://doi.org/10.1016/0149-7189(96)88232-2
  • Semeraro, C., Lezoche, M., Panetto, H., & Dassisti, M. (2021). Digital twin paradigm: a systematic literature review. Computers in Industry, 130, 103469. https://doi.org/10.1016/j.compind.2021.103469
  • Shao, G. (2021). Use case scenarios for digital twin implementation based on iso 23247. In National institute of standards: Gaithersburg, MD, USA. https://doi.org/10.6028/NIST.AMS.400-2
  • Shao, G. (2024). Manufacturing digital twin standards. Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 370–377. https://doi.org/10.1145/3652620.3688250
  • Shao, G., Frechette, S., & Srinivasan, V. (2023). An analysis of the new iso 23247 series of standards on digital twin framework for manufacturing. Volume 2: Manufacturing Equipment and Automation; Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability, 87240, V002T07A001. https://doi.org/10.1115/MSEC2023-101127
  • Shao, G., Hightower, J., & Schindel, W. (2023). Credibility consideration for digital twins in manufacturing. Manufacturing Letters, 35, 24–28. https://doi.org/10.1016/j.mfglet.2022.11.009
  • Sivák, P., Delyová, I., & Bocko, J. (2023). Comparison of stress concentration factors obtained by different methods. Applied Sciences, 13(24), 13328. https://doi.org/10.3390/app132413328
  • Song, J., & Le Gall, F. (2023). Digital twin standards, open source, and best practices. In The Digital Twin (pp. 497–530). Springer International Publishing. https://doi.org/10.1007/978-3-031-21343-4_18
  • Spaney, P., Becker, S., Ströbel, R., Fleischer, J., Zenhari, S., Möhring, H.-C., Splettstößer, A.-K., & Wortmann, A. (2023). A model-driven digital twin for manufacturing process adaptation. 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), 465–469. https://doi.org/10.1109/MODELS-C59198.2023.00081
  • Tao, F., Xiao, B., Qi, Q., Cheng, J., & Ji, P. (2022). Digital twin modeling. Journal of Manufacturing Systems, 64, 372–389. https://doi.org/10.1016/j.jmsy.2022.06.015
  • Tinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health monitoring to enable predictive maintenance. In E. Lughofer & M. Sayed-Mouchaweh (Eds.), Predictive Maintenance in Dynamic Systems (pp. 313–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-05645-2_11
  • Twinview. (2023). Digital twins and bim: a synergy for improved stakeholder management. Twinview. (Accessed: 01/04/2025) https://www.twinview.com/insights/digital-twins-and-bim-a-synergy-for-improved-stakeholder-management
  • VanDerHorn, E., & Mahadevan, S. (2021). Digital twin: generalization, characterization and implementation. Decision Support Systems, 145, 113524. https://doi.org/10.1016/j.dss.2021.113524
  • Vanlanduit, S., Sorgente, M., Zadeh, A. R., Güemes, A., & Faisal, N. (2021). Strain monitoring. In M. G. R. Sause & E. Jasiūnienė (Eds.), Structural Health Monitoring Damage Detection Systems for Aerospace (pp. 219–241). Springer International Publishing. https://doi.org/10.1007/978-3-030-72192-3_8
  • VP, A. (2025). Importance of real-time data integration in digital twins. Toobler. (Accessed: 01/04/2025) https://www.toobler.com/blog/real-time-integration-in-digital-twins
  • Wagg, D. J., Worden, K., Barthorpe, R. J., & Gardner, P. (2020). Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 6(3), 30901. https://doi.org/10.1115/1.4046739
  • Wallner, B., Zwölfer, B., Trautner, T., & Bleicher, F. (2023). Digital twin development and operation of a flexible manufacturing cell using iso 23247. Procedia CIRP, 120, 1149–1154. https://doi.org/10.1016/j.procir.2023.09.140
  • Wang, K., Wang, Y., Li, Y., Fan, X., Xiao, S., & Hu, L. (2022). A review of the technology standards for enabling digital twin. Digital Twin, 2(1), 4. https://doi.org/10.12688/digitaltwin.17549.2
  • Wickberg, P., Fattouh, A., Afshar, S., & Bohlin, M. (2023). Adopting a digital twin framework for autonomous machine operation at construction sites. 2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI), 1–6. https://doi.org/10.1109/CVCI59596.2023.10397254
  • Xia, B., Zheng, G., Zhou, H., Yu, X., Zhao, J., & Diao, Y. (2024). Stability analysis and optimization of concrete column-supported embankments in soft soil. Acta Geotechnica, 19(5), 2515–2531. https://doi.org/10.1007/s11440-024-02302-2
  • Yoo, S. K., Sun, K. J., & Kim, S. H. (2024). Digital twin standardization: trends and future prospects. Electronics and Telecommunications Trends, 39(3), 79–86. https://doi.org/10.22648/ETRI.2024.J.390308

Year 2025, Volume: 12 Issue: 2, 417 - 444, 30.06.2025
https://doi.org/10.54287/gujsa.1680674

Abstract

References

  • Aliento, W. (2021). Seven ways to use less concrete and save money on your projects. Jobsite. (Accessed: 01/04/2025) https://www.procore.com/jobsite/seven-ways-to-use-less-concrete-and-save-money-on-your-projects
  • Analytics, A. (2023). Aerial utility inspection: transforming asset management with aerial drone inspections for utilities. Optelos. (Accessed: 01/04/2025) https://optelos.com/transforming-aerial-utilities-inspection/ Atlas, G. W. (2025). Welcome to the global wind atlas. Global Wind Atlas. (Accessed: 01/04/2025) https://globalwindatlas.info/en/
  • Auditors, E. C. of. (2020). Energy efficiency in buildings: greater focus on cost-effectiveness still needed. Publications Office of the European Union Luxembourg. (Accessed: 01/04/2025) https://www.eca.europa.eu/lists/ecadocuments/sr20_11/sr_energy_efficiency_in_buildings_en.pdf#page=3.10
  • B. Heluany, J., Goetzfried, J., Mehlig, B., & Gkioulos, V. (2024). Vulnerability management digital twin for energy systems. Proceedings of the 19th International Conference on Availability, Reliability and Security, 1–11. https://doi.org/10.1145/3664476.3671013
  • Baek, S. H., Lee, K. I., & Kim, S.-M. (2023). Development of real-time monitoring system based on iot technology for curing compound application process during cement concrete pavement construction. Sensors, 23(19), 8187. https://doi.org/10.3390/s23198187
  • Biju, V. G., Schmitt, A.-M., & Engelmann, B. (2024). Assessing the influence of sensor-induced noise on machine-learning-based changeover detection in cnc machines. Sensors, 24(2), 330. https://doi.org/10.3390/s24020330
  • Bong Kim, D., Shao, G., & Jo, G. (2022). A digital twin implementation architecture for wire + arc additive manufacturing based on iso 23247. Manufacturing Letters, 34, 1–5. https://doi.org/10.1016/j.mfglet.2022.08.008
  • Burčiar, F., Važan, P., Juhásová, B., & Juhás, M. (2023). Methodical approach to proactivity using a digital twin of production process. Electronics, 12(15), 3335. https://doi.org/10.3390/electronics12153335
  • Cabral, J. V. A., Álvares, A. J., & Caribé de Carvalho, G. (2024). Digital twin implementation for an additive manufacturing robotic cell based on the iso 23247 standard. IEEE Latin America Transactions, 22(8), 651–658. https://doi.org/10.1109/TLA.2024.10620386
  • Cabral, J. V. A., Gasca, E. A. R., & Alvares, A. J. (2023). Digital twin implementation for machining center based on iso 23247 standard. IEEE Latin America Transactions, 21(5), 628–635. https://doi.org/10.1109/TLA.2023.10130834
  • Caiza, G., & Sanz, R. (2024). An immersive digital twin applied to a manufacturing execution system for the monitoring and control of industry 4.0 processes. Applied Sciences, 14(10), 4125. https://doi.org/10.3390/app14104125
  • Cillari, G., Fantozzi, F., & Franco, A. (2021). Passive solar solutions for buildings: criteria and guidelines for a synergistic design. Applied Sciences, 11(1), 376. https://doi.org/10.3390/app11010376
  • CSSI. (2025). Monsec: Real-time monitoring of concrete maturity and temperature. Concrete Sensoring for Sustainable Infrastructure (CSSI). (Accessed: 01/04/2025) https://cssi-iot.com/en/monsec-eng/
  • Drobnjakovic, M., Shao, G., Nikolov, A., Kulvatunyou, B., Frechette, S., & Srinivasan, V. (2023). Towards ontologizing a digital twin framework for manufacturing. In IFIP International Conference on Advances in Production Management Systems (pp. 317–329). Springer. https://doi.org/10.1007/978-3-031-43666-6_22
  • Eddyfi. (2025). Construction monitoring: build with confidence and monitor with precise, robust wireless technology. Eddyfi Technologies. (Accessed: 01/04/2025) https://www.senceive.com/sectors/construction-monitoring
  • Farhadi, A., Lee, S. K. H., Hinchy, E. P., O’Dowd, N. P., & McCarthy, C. T. (2022). The development of a digital twin framework for an industrial robotic drilling process. Sensors, 22(19), 7232. https://doi.org/10.3390/s22197232
  • Ferko, E., Bucaioni, A., Pelliccione, P., & Behnam, M. (2023). Analysing interoperability in digital twin software architectures for manufacturing. In European conference on software architecture (pp. 170–188). Springer. https://doi.org/10.1007/978-3-031-42592-9_12
  • Flow, G. (2025). The most common workflow bottlenecks (and how to fix them). Gravity Flow. (Accessed: 01/04/2025) https://gravityflow.io/articles/the-most-common-workflow-bottlenecks-and-how-to-fix-them/
  • Guerra-Zubiaga, D. A., Colani, M., Richards, G., Cavens, K., Block, L., Olliff, G., & Aksu, M. (2024). A novel digital twin model to support intelligent robotic manufacturing system according to industry 4.0 trends. Proceedings of the ASME 2024 International Mechanical Engineering Congress and Exposition. Volume 2: Advanced Manufacturing, 88605, V002T03A077. https://doi.org/10.1115/IMECE2024-145821
  • Hammad, I., & El-Sankary, K. (2019). Practical considerations for accuracy evaluation in sensor-based machine learning and deep learning. Sensors, 19(16), 3491. https://doi.org/10.3390/s19163491
  • Huang, H., Ji, T., & Xu, X. (2024). An adaptable digital twin model for manufacturing. Manufacturing Letters, 41, 1163–1169. https://doi.org/10.1016/j.mfglet.2024.09.142
  • Institute, K. (2025). Innovative strategies for cost savings in construction. Kaizen Institute. (Accessed: 01/04/2025) https://kaizen.com/insights/cost-savings-strategies-construction/
  • Invicom. (2025). Strain gauge application. Invicom Test & Measurement. (Accessed: 01/04/2025) https://invicom.com/applications/strain-gauge-application/
  • ISO/TC184/SC4. (1984). ISO/TC 184/SC 4 industrial data technical sub-committee. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/committee/54158.html
  • ISO/TC184. (1983). ISO/TC 184 automation systems and integration technical committee. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/committee/54110.html
  • ISO23247-1. (2021). ISO 23247-1:2021 automation systems and integration — digital twin framework for manufacturing part 1: overview and general principles. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/75066.html
  • ISO23247-2. (2021). ISO 23247-2:2021 automation systems and integration — digital twin framework for manufacturing part 2: reference architecture. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78743.html
  • ISO23247-3. (2021). ISO 23247-3:2021 automation systems and integration — digital twin framework for manufacturing part 3: digital representation of manufacturing elements. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78744.html
  • ISO23247-4. (2021). ISO 23247-4:2021 automation systems and integration — digital twin framework for manufacturing part 4: information exchange. ISO - International Organization for Standardization. (Accessed: 01/04/2025) https://www.iso.org/standard/78745.html
  • Jacoby, M., Volz, F., Weißenbacher, C., Stojanovic, L., & Usländer, T. (2021). An approach for industrie 4.0-compliant and data-sovereign digital twins. At - Automatisierungstechnik, 69(12), 1051–1061. https://doi.org/10.1515/auto-2021-0074
  • Ji, T., Polzer, J., & Xu, X. (2023). Cognitive digital twin framework for smart manufacturing. 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 1–6. https://doi.org/10.1109/CASE56687.2023.10260436
  • Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterizing the digital twin: a systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002
  • Jung, Y., Lee, H., Jin, Z., Kim, S., & Kim, K. J. (2023). Revamping facility asset management (fam) for smart manufacturing: variables for theory and implementation. Proceedings of International Structural Engineering and Construction, 10(1), FAM08-1. https://doi.org/10.14455/ISEC.2023.10(1).FAM-08
  • Kang, M.-S., Lee, D.-H., Bajestani, M. S., Kim, D. B., & Noh, S. Do. (2024). Edge computing-based digital twin framework based on iso 23247 for enhancing data processing capabilities. Machines, 13(1), 19. https://doi.org/10.3390/machines13010019
  • Kibira, D., Shao, G., Venketesh, R., & Triebe, M. J. (2024). Building a digital twin of a cnc machine tool. 2024 Winter Simulation Conference (WSC), 2915–2926. https://doi.org/10.1109/WSC63780.2024.10838819
  • Kibira, D., Shao, G., & Weiss, B. A. (2021). Buiding a digital twin for robot workcell prognostics and health management. 2021 Winter Simulation Conference (WSC), 1–12. https://doi.org/10.1109/WSC52266.2021.9715501
  • Kumaş, E. (2024). International standards for digital twins. Acta Infologica, 8(2), 0–0. https://doi.org/10.26650/acin.1395045
  • Lidell, A., Ericson, S., & Ng, A. H. C. (2022). The current and future challenges for virtual commissioning and digital twins of production lines. In SPS2022 (pp. 508–519). IOS Press. https://doi.org/10.3233/ATDE220169
  • López De Ipiña, J. M., Aznar, G., Lopez, A., Olite, J., Koivisto, J., Bartolini, G., & Costa, A. (2021). Digital twins applied to the implementation of safe-by-design strategies in nano-processes for the reduction of airborne emission and occupational exposure to nano-forms. Journal of Physics: Conference Series, 1953(1), 012010. https://doi.org/10.1088/1742-6596/1953/1/012010
  • Madubuike, O. C., Anumba, C. J., & Khallaf, R. (2022). A review of digital twin applications in construction. Journal of Information Technology in Construction, 27, 145–172. https://doi.org/10.36680/j.itcon.2022.008
  • Marinkovic, M., Galka, S., & Meißner, S. (2023). Digital twins for internal transport systems: use cases, functions, and system architecture. Proceedings of the 56th Hawaii International Conference on System Sciences, 1195–1204. https://doi.org/10.24251/HICSS.2023.147
  • Minh, T. B., Do, X. P., Nguyen, Q. H., Nguyen, K. H. V., & Phan, T. T. T. (2024). A digital twin implementation framework for a collaborative robot based on iso 23247. In The International Conference on Sustainable Energy Technologies (pp. 747–755). Springer. https://doi.org/10.1007/978-981-97-1868-9_74
  • Noga, M., Juhás, M., & Gulan, M. (2022). Hybrid virtual commissioning of a robotic manipulator with machine vision using a single controller. Sensors, 22(4), 1621. https://doi.org/10.3390/s22041621
  • Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., Avdelidis, N. P., & Maldague, X. P. V. (2021). Drone-based non-destructive inspection of industrial sites: a review and case studies. Drones, 5(4), 106. https://doi.org/10.3390/drones5040106
  • Patton, M. Q. (1980). Qualitative evaluation methods. Sage Publications.
  • Plevris, V., & Papazafeiropoulos, G. (2024). AI in structural health monitoring for infrastructure maintenance and safety. Infrastructures, 9(12), 225. https://doi.org/10.3390/infrastructures9120225
  • Pointerra3D. (2025). Collaborative design: how cloud-based digital twins facilitate coordination and communication among aec stakeholders. Pointerra3D. (Accessed: 01/04/2025) https://www.pointerra.com/blog/collaborative-design-how-cloud-based-digital-twins-facilitate-coordination-and-communication-among-aec-stakeholders/
  • Pratap, A., Vi, T.-K., Lee, Y. W., Sardana, N., Hsiung, P.-A., & Kao, Y.-C. (2024). A dt framework integrating human and artificial intelligence for power consumption prediction in cnc machining. The International Journal of Advanced Manufacturing Technology, 135(1–2), 915–938. https://doi.org/10.1007/s00170-024-14477-9
  • Richter, R., Knospe, F., Trapp, M., & Döllner, J. (2024). Dynamic digital twins: challenges, perspectives and practical implementation from a city’s perspective (T. H. Kolbe, A. Donaubauer, & C. Beil (eds.); pp. 671–691). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43699-4_41
  • Rite, E. (2025). High-resolution environmental monitoring sensors in civil engineering. Encardio Rite. (Accessed: 01/04/2025) https://www.encardio.com/blog/environmental-monitoring-sensors-civil-engineering
  • Rodrigues, A. M., Formiga, K. T. M., & Milograna, J. (2023). Integrated systems for rainwater harvesting and greywater reuse: a systematic review of urban water management strategies. Water Supply, 23(10), 4112–4125. https://doi.org/10.2166/ws.2023.240
  • Rosova, A., Behun, M., Khouri, S., Cehlar, M., Ferencz, V., & Sofranko, M. (2022). Case study: the simulation modeling to improve the efficiency and performance of production process. Wireless Networks, 28(2), 863–872. https://doi.org/10.1007/s11276-020-02341-z
  • Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., & Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.org/10.1017/dce.2020.16
  • Schwandt, T. A. (1996). Qualitative data analysis: An expanded sourcebook. Evaluation and Program Planning, 19(1), 106–107. https://doi.org/10.1016/0149-7189(96)88232-2
  • Semeraro, C., Lezoche, M., Panetto, H., & Dassisti, M. (2021). Digital twin paradigm: a systematic literature review. Computers in Industry, 130, 103469. https://doi.org/10.1016/j.compind.2021.103469
  • Shao, G. (2021). Use case scenarios for digital twin implementation based on iso 23247. In National institute of standards: Gaithersburg, MD, USA. https://doi.org/10.6028/NIST.AMS.400-2
  • Shao, G. (2024). Manufacturing digital twin standards. Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 370–377. https://doi.org/10.1145/3652620.3688250
  • Shao, G., Frechette, S., & Srinivasan, V. (2023). An analysis of the new iso 23247 series of standards on digital twin framework for manufacturing. Volume 2: Manufacturing Equipment and Automation; Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability, 87240, V002T07A001. https://doi.org/10.1115/MSEC2023-101127
  • Shao, G., Hightower, J., & Schindel, W. (2023). Credibility consideration for digital twins in manufacturing. Manufacturing Letters, 35, 24–28. https://doi.org/10.1016/j.mfglet.2022.11.009
  • Sivák, P., Delyová, I., & Bocko, J. (2023). Comparison of stress concentration factors obtained by different methods. Applied Sciences, 13(24), 13328. https://doi.org/10.3390/app132413328
  • Song, J., & Le Gall, F. (2023). Digital twin standards, open source, and best practices. In The Digital Twin (pp. 497–530). Springer International Publishing. https://doi.org/10.1007/978-3-031-21343-4_18
  • Spaney, P., Becker, S., Ströbel, R., Fleischer, J., Zenhari, S., Möhring, H.-C., Splettstößer, A.-K., & Wortmann, A. (2023). A model-driven digital twin for manufacturing process adaptation. 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), 465–469. https://doi.org/10.1109/MODELS-C59198.2023.00081
  • Tao, F., Xiao, B., Qi, Q., Cheng, J., & Ji, P. (2022). Digital twin modeling. Journal of Manufacturing Systems, 64, 372–389. https://doi.org/10.1016/j.jmsy.2022.06.015
  • Tinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health monitoring to enable predictive maintenance. In E. Lughofer & M. Sayed-Mouchaweh (Eds.), Predictive Maintenance in Dynamic Systems (pp. 313–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-05645-2_11
  • Twinview. (2023). Digital twins and bim: a synergy for improved stakeholder management. Twinview. (Accessed: 01/04/2025) https://www.twinview.com/insights/digital-twins-and-bim-a-synergy-for-improved-stakeholder-management
  • VanDerHorn, E., & Mahadevan, S. (2021). Digital twin: generalization, characterization and implementation. Decision Support Systems, 145, 113524. https://doi.org/10.1016/j.dss.2021.113524
  • Vanlanduit, S., Sorgente, M., Zadeh, A. R., Güemes, A., & Faisal, N. (2021). Strain monitoring. In M. G. R. Sause & E. Jasiūnienė (Eds.), Structural Health Monitoring Damage Detection Systems for Aerospace (pp. 219–241). Springer International Publishing. https://doi.org/10.1007/978-3-030-72192-3_8
  • VP, A. (2025). Importance of real-time data integration in digital twins. Toobler. (Accessed: 01/04/2025) https://www.toobler.com/blog/real-time-integration-in-digital-twins
  • Wagg, D. J., Worden, K., Barthorpe, R. J., & Gardner, P. (2020). Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 6(3), 30901. https://doi.org/10.1115/1.4046739
  • Wallner, B., Zwölfer, B., Trautner, T., & Bleicher, F. (2023). Digital twin development and operation of a flexible manufacturing cell using iso 23247. Procedia CIRP, 120, 1149–1154. https://doi.org/10.1016/j.procir.2023.09.140
  • Wang, K., Wang, Y., Li, Y., Fan, X., Xiao, S., & Hu, L. (2022). A review of the technology standards for enabling digital twin. Digital Twin, 2(1), 4. https://doi.org/10.12688/digitaltwin.17549.2
  • Wickberg, P., Fattouh, A., Afshar, S., & Bohlin, M. (2023). Adopting a digital twin framework for autonomous machine operation at construction sites. 2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI), 1–6. https://doi.org/10.1109/CVCI59596.2023.10397254
  • Xia, B., Zheng, G., Zhou, H., Yu, X., Zhao, J., & Diao, Y. (2024). Stability analysis and optimization of concrete column-supported embankments in soft soil. Acta Geotechnica, 19(5), 2515–2531. https://doi.org/10.1007/s11440-024-02302-2
  • Yoo, S. K., Sun, K. J., & Kim, S. H. (2024). Digital twin standardization: trends and future prospects. Electronics and Telecommunications Trends, 39(3), 79–86. https://doi.org/10.22648/ETRI.2024.J.390308
There are 74 citations in total.

Details

Primary Language English
Subjects Civil Construction Engineering, Architectural Engineering
Journal Section Civil Engineering
Authors

Murat Aydın 0000-0002-3928-2936

Early Pub Date June 10, 2025
Publication Date June 30, 2025
Submission Date April 21, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Aydın, M. (2025). Proposing a Five-Phase Framework Based on ISO 23247-1 for Digital Twins in Construction. Gazi University Journal of Science Part A: Engineering and Innovation, 12(2), 417-444. https://doi.org/10.54287/gujsa.1680674