Research Article
BibTex RIS Cite

İkinci El Otomotiv Sektöründe Kullanılan Şasi Dinamometrelerinin Ölçüm Doğruluklarının Araştırılması

Year 2023, , 673 - 684, 27.09.2023
https://doi.org/10.29109/gujsc.1292602

Abstract

Şasi dinamometreleri motor, güç aktarma organları ve şasi bileşenlerinin test edilmesi amacıyla kullanılmaktadır. Taşıt tipi, boyutları ve ağırlığı gibi temel faktörlerin yanı sıra test cihazı yapısı, yazılımı ve ölçüm yöntemlerine göre sistem üzerinde farklı parametreler incelenebilmektedir. Test sistemi üzerinde kullanılan ekipman ve tasarım yapısına bağlı olarak ölçüm hassasiyeti değişmektedir. Günümüzde ikinci el araç kontrollerinde oto ekspertiz firmaları tarafından yaygın olarak gerçekleştirilen şasi dinamometre testlerinin doğruluğu ve güvenilirliği bir tartışma konusudur. Bu çalışmada, piyasada kullanılan şasi dinamometrelerinin ölçüm doğruluklarının araştırılması için üç farklı taşıt, iki farklı oto ekspertiz firmasında test edilmiştir. Testlerde common rail yakıt enjeksiyonuna sahip, turboşarjlı, Euro 5 emisyon normlarına uygun dizel motora ve manuel vites kutusuna sahip taşıtlar kullanılmıştır. Şasi dinamometrelerinde gerçekleştirilen tüm testlerde belirlenen standart adımlar izlenmiş olup testler basınç ve sıcaklık kaynaklı sapmaların önlenmesi için aynı lokasyondaki firmalarda gerçekleştirilmiştir. Test sonuçlarında taşıtlara ait maksimum güç ve maksimum güç devri, maksimum tork ve maksimum tork devri, ayrıca bu değerlerin fabrika verilerinden sapma miktarları elde edilmiştir. Firmalara ait test sonuçları kendi arasında ve fabrika verileri ile karşılaştırıldığında güç-tork eğrileri, maksimum güç-tork değerleri ve bu değerlerin ortaya çıktığı motor devirlerinde önemli ölçüde sapmalar oluştuğu tespit edilmiştir.

Supporting Institution

Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

17.TEKNOLOJİ.03

Thanks

Bu çalışma Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Birimi (Proje No: 17.TEKNOLOJİ.03) tarafından desteklenmiş olup desteklerinden dolayı teşekkür ederiz.

References

  • [1] Zhang X., & Zhou Z. (2020). Research on development of vehicle chassis dynamometer. Journal of Physics: Conference Series, 1626, 012150.
  • [2] Casadei S., & Maggioni A. (2016). Performance testing of a locomotive engine aftertreatment pre-prototype in a passenger cars chassis dynamometer laboratory. Transportation Research Procedia, 14, 605-614.
  • [3] Altay H., & Livatyalı H. (2022). Elektrikli araçlar için bir şasi dinamometresi tasarımı. Makine Tasarım ve İmalat Dergisi, 20(2), 17-28.
  • [4] Bielaczyc P., Woodburn J., & Szczotka A. (2016). Exhaust emissions of gaseous and solid pollutants measured over the NEDC, FTP-75 and WLTC chassis dynamometer driving cycles. SAE Technical Paper, doi:10.4271/2016-01-1008.
  • [5] Lohse-Busch H., Stutenberg K., Duoba M., Liu X., Elgowainy A., Wang M., Wallner T., Richard B., & Christenson M. (2020). Automotive fuel cell stack and system efficiency and fuel comsumption based on vehicle testing on a chassis dynamometer at minus 18°C to positive 35°C temperatures. International Journal of Hydrogen Energy, 45(1), 861-872.
  • [6] Lairenlakpam R., Kumar P., & Thakre G. (2020). Experimental investigation of electric vehicle performance and energy consumption on chassis dynamometer using drive cycle analysis. SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy, 1(1), 23-38.
  • [7] Jouanne A., Adegbohun J., Collin R., Stephens M., Thayil B., Li C., Agamoh E., & Yokochi A. (2020). Electric vehicle (EV) chassis dynamometer testing. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 897-904.
  • [8] Wager G., McHenry M.P., Whale J., & Braunl T. (2014). Testing energy efficiency and driving range of electric vehicles in relation to gear selection. Renewable Energy, 62, 303-312.
  • [9] Yang Z., Deng B., Deng M., & Huang S. (2018). An overview of chassis dynamometer in the testing of vehicle emission. MATEC Web of Conferences, 175, 02015.
  • [10] Bayram H. (2016). Şasi dinamometreli klimatik oda test simülatöründe araç modeli oluşturma ve doğrulama süreci. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 21(2), 451-464.
  • [11] French M., & Stark A. (2000). Chassis dynamometers. Experimental Techniques, 45-46.
  • [12] Dardiotis C., Fontaras G., Marotta A., Martini G., & Manfredi U. (2015). Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel, 140, 531-540.
  • [13] Van Mierlo J., Magetto G. Van de Burgwal E., & Gense R. (2004). Driving style and traffic measures-influence on vehicle emissions and fuel consumption. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(1), 43-50.
  • [14] Doruk Ö.T. (2020). Güvenli liman mı yoksa spekülatif bir limon mu? Covid-19 döneminde Türkiye’de ikinci el otomotiv piyasası ve belirsizlik ilişkisi üzerine bir inceleme. Gaziantep University Journal of Social Sciences, 19, COVID-19 Special Issue, 274-287.
  • [15] Lourenço M.A.M., Eckert J.J., Silva F.L., Santiciolli F.M., & Silva L.C.A. (2022). Vehicle and twin-roller chassis dynamometer model considering slip tire interactions. Mechanics Based Design of Structures and Machines, doi:10.1080/15397734.2022.2038199.
  • [16] Eckert J.J., Bertoti E., Costa E.S., Santiciolli F., Yamashita R., Silva L., & Dedini F.G. (2017). Experimental evaluation of rotational inertia and tire rolling resistance for a twin roller chassis dynamometer. SAE Technical Paper, doi:10.4271/2017-36-0212.
  • [17] Silva L.C.A, Dedini F.G., Correa F.C., Eckert J.J., & Becker M. (2016). Measurement of wheelchair contact force with a low cost bench test. Medical Engineering & Physics, 38(2), 163-170.
  • [18] Duoba M., Ng H., & Larsen R. (2000). In-situ mapping and analysis of the Toyota Prius HEV engine. SAE Technical Paper, doi:10.4271/2000-01-3096.
  • [19] Bohn T., & Duoba M. (2005). Implementation of a non-intrusive in-vehicle engine torque sensor for benchmarking the Toyota Prius. SAE Technical Paper, doi:10.4271/2005-01-1046.
  • [20] Ha K., Kong J., & Kim W. (2007). Development of an engine torquemeter for in-vehicle application and parametric study on fuel consumption contribution. SAE Technical Paper, doi:10.4271/2007-01-0964.
  • [21] Deping Z., & Yimin M. (2013). A method for measuring power loss distribution of mini-car driveline. Information Technology Journal, 12(14), 2980-2984.
  • [22] Irimescu A., Mihon L., & Pãdure G. (2011). Automotive transmission efficiency measurement using a chassis dynamometer. International Journal of Automotive Technology, 12(4), 555-559.
  • [23] Moskalik A., Dekraker P., Kargul J., & Barba D. (2015). Vehicle component benchmarking using a chassis dynamometer. SAE International Journal of Materials and Manufacturing, 8(3), 869-879.
  • [24] Pelkmans L., & Debal P. (2006). Comparison of on-road emissions with emissions measured on chassis dynamometer test cycles. Transportation Research Part D: Transport and Environment, 11(4), 233-241.
  • [25] Zhen F., Clark N.N., Bedick C.R., Gautam M., Wayne W.S., Thompson G.J., & Lyons W. (2009).
  • Development of a heavy heavy-duty diesel engine schedule for representative measurement of emissions. Journal of the Air & Waste Management Association, 59(8), 950-959.
  • [26] Biswas S., Verma V., Schauer J.J., Cassee F.R., Cho A.K., & Sioutas C. (2009). Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environmental Science and Technology, 43(10), 3905-3912.
  • [27] Andersson J., May J., Favre C., Bosteels D., Vries S., Heaney M., Keenan M., & Mansell J. (2014). On-road and chassis dynamometer evaluations of emissions from two Euro 6 diesel vehicles. SAE International Journal of Fuels and Lubricants, 7(3), 919-934.
  • [28] Chen L., Wang Z., Liu S., & Qu L. (2018). Using a chassis dynamometer to determine the influencing factors for the emissions of Euro VI vehicles. Transportation Research Part D: Transport and Environment, 65, 564-573.
  • [29] Örs İ., Tarakçıoğlu N., & Ciniviz M. (2009). Yakıt olarak benzin-etanol karışımlarının taşıt performansı ve egzoz emisyonlarına etkisi. Politeknik Dergisi, 12(1), 13-19.
  • [30] Kaya T., Kutlar O.A., & Taşkıran Ö.O. (2020). Investigation of the effects of biodiesel obtained from canola on performance, emissions and combustion characteristics under the NEDC and steady state loads. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3), 1437-1453.
  • [31] Shiau C.S.N., Kaushal N., Hendrickson C.T., Peterson S.B., Whitacre J.F., & Michalek J.J. (2010). Optimal plug-in hybrid electric vehicle design and allocation for minimum life cycle cost, petroleum consumption, and greenhouse gas emissions. Journal of Mechanical Design, 132, 091013.
  • [32] Kim N., & Rousseau A. (2016). Parameter estimation for a lithium-ion battery from chassis dynamometer tests. IEEE Transactions on Vehicular Technology, 65, 4393-4400.
  • [33] Song K., Li F., Hu X., He L., Niu W., Lu S., & Zhang T. (2018). Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm. Journal of Power Sources, 389, 230-239.
  • [34] Mayyas A.R., Kumar S., Pisu P., Rios J., & Jethani P. (2017). Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach. Applied Energy, 204, 287-302.
  • [35] Chen J., Liu C., Zhang X., Zhang Y., & Li J. (2021). An approach for indoor prediction of the pass-by noise of a vehicle based on the time-domain equivalent source method. Mechanical Systems and Signal Processing, 146, 107037.
  • [36] Kim Y.D., Jeong J., Park J., Yang I., Park T., Muhamad P., Choi D., & Oh J. (2013). Optimization of the lower arm of a vehicle suspension system for road noise reduction by sensitivity analysis. Mechanism and Machine Theory, 69, 278-302.
  • [37] Chasapidis L., Grigoratos T., Zygogianni A., Tsakis A., & Konstandopoulos A.G. (2018). Study of brake wear particle emissions of a minivan on a chassis dynamometer. Emission Control Science and Technology, 4, 271-278.
  • [38] Mathissen M., Grigoratos T., Lahde T., & Vogt R. (2019). Brake wear particle emissions of a passenger car measured on a chassis dynamometer. Atmosphere, 10(9), 556.
  • [39] Soica A., Budala A., Monescu V., Sommer S., & Owczarzak W. (2020). Method of estimating the rolling resistance coefficient of vehicle tyre using the roller dynamometer. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(13), 3194-3204.
  • [40] Martyr A., & Plint M. (2012). Chassis or rolling-road dynamometers. Oxford: Butterworth-Heinemann, Chapter 17, In Engine testing, 4th ed., 451-482.
  • [41] Pexa M., Mader D., Cedık J., Peterka B., Müller M., Valasek P., & Hloch S. (2019). Experimental verification of small diameter rollers utilization in construction of roller test stand in evaluation of energy loss due to rolling resistance. Measurement, 152, 107287.
  • [42] Ejsmont J., & Owczarzak W. (2019). Engineering method of tire rolling resistance evaluation, Measurement, 145, 144-149.
  • [43] Bayrakçeken H., Girgin Z., Aysal F.E., & Babagiray M. (2021). The experimental investigation and nonlinear regression analysis of the effect of tire inflation pressure on pitch force. International Journal of Automotive Science and Technology, 5(1), 1-7.
  • [44] Bayrakçeken H., Türkbay T., Aysal F. E., & Yavuz H. (2020). Panik frenleme davranışının yarım taşıt test cihazında incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4), 730-740.
  • [45] Jimenez D., Hernandez S., Fraile-Ardanuy J., Serrano J., Fernandez R., & Alvarez F. (2018). Modelling the effect of driving events on electrical vehicles energy consumption using inertial sensors in smartphones. Energies, 11(2), 412.
  • [46] T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Meteroloji Genel Müdürlüğü, Hava Durumu Verileri, https://www.mgm.gov.tr/

Investigation of Measurement Accuracy of Chassis Dynamometers Used in Used Automotive Sector

Year 2023, , 673 - 684, 27.09.2023
https://doi.org/10.29109/gujsc.1292602

Abstract

Chassis dynamometers are used to test engine, powertrain and chassis components. In addition to basic factors such as vehicle type, dimensions and weight, different parameters can be examined on the system depending on the test device structure, software and measurement methods. Measurement accuracy varies depending on the equipment and design structure used on the test system. Today, the accuracy and reliability of chassis dynamometer tests, which are commonly performed by auto expertise companies in used vehicle controls, are a matter of debate. In this study, three different vehicles were tested in two different auto expertise companies to investigate the measurement accuracy of chassis dynamometers used in the market. Vehicles with common rail fuel injection, turbocharged, diesel engine conforming to Euro 5 emission norms and manual gearbox were used in the tests. Standard steps were followed in all tests performed on chassis dynamometers, and tests were carried out in companies located in the same location to prevent deviations due to pressure and temperature. In the test results, the maximum power and maximum power engine speed, maximum torque and maximum torque engine speed of the vehicles, as well as the deviations of these values from the factory data were obtained. When the test results of the companies are compared among themselves and with the factory data, it has been determined that there are serious deviations in the power-torque curves, maximum power-torque values and engine speeds where these values occur.

Project Number

17.TEKNOLOJİ.03

References

  • [1] Zhang X., & Zhou Z. (2020). Research on development of vehicle chassis dynamometer. Journal of Physics: Conference Series, 1626, 012150.
  • [2] Casadei S., & Maggioni A. (2016). Performance testing of a locomotive engine aftertreatment pre-prototype in a passenger cars chassis dynamometer laboratory. Transportation Research Procedia, 14, 605-614.
  • [3] Altay H., & Livatyalı H. (2022). Elektrikli araçlar için bir şasi dinamometresi tasarımı. Makine Tasarım ve İmalat Dergisi, 20(2), 17-28.
  • [4] Bielaczyc P., Woodburn J., & Szczotka A. (2016). Exhaust emissions of gaseous and solid pollutants measured over the NEDC, FTP-75 and WLTC chassis dynamometer driving cycles. SAE Technical Paper, doi:10.4271/2016-01-1008.
  • [5] Lohse-Busch H., Stutenberg K., Duoba M., Liu X., Elgowainy A., Wang M., Wallner T., Richard B., & Christenson M. (2020). Automotive fuel cell stack and system efficiency and fuel comsumption based on vehicle testing on a chassis dynamometer at minus 18°C to positive 35°C temperatures. International Journal of Hydrogen Energy, 45(1), 861-872.
  • [6] Lairenlakpam R., Kumar P., & Thakre G. (2020). Experimental investigation of electric vehicle performance and energy consumption on chassis dynamometer using drive cycle analysis. SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy, 1(1), 23-38.
  • [7] Jouanne A., Adegbohun J., Collin R., Stephens M., Thayil B., Li C., Agamoh E., & Yokochi A. (2020). Electric vehicle (EV) chassis dynamometer testing. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 897-904.
  • [8] Wager G., McHenry M.P., Whale J., & Braunl T. (2014). Testing energy efficiency and driving range of electric vehicles in relation to gear selection. Renewable Energy, 62, 303-312.
  • [9] Yang Z., Deng B., Deng M., & Huang S. (2018). An overview of chassis dynamometer in the testing of vehicle emission. MATEC Web of Conferences, 175, 02015.
  • [10] Bayram H. (2016). Şasi dinamometreli klimatik oda test simülatöründe araç modeli oluşturma ve doğrulama süreci. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 21(2), 451-464.
  • [11] French M., & Stark A. (2000). Chassis dynamometers. Experimental Techniques, 45-46.
  • [12] Dardiotis C., Fontaras G., Marotta A., Martini G., & Manfredi U. (2015). Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel, 140, 531-540.
  • [13] Van Mierlo J., Magetto G. Van de Burgwal E., & Gense R. (2004). Driving style and traffic measures-influence on vehicle emissions and fuel consumption. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(1), 43-50.
  • [14] Doruk Ö.T. (2020). Güvenli liman mı yoksa spekülatif bir limon mu? Covid-19 döneminde Türkiye’de ikinci el otomotiv piyasası ve belirsizlik ilişkisi üzerine bir inceleme. Gaziantep University Journal of Social Sciences, 19, COVID-19 Special Issue, 274-287.
  • [15] Lourenço M.A.M., Eckert J.J., Silva F.L., Santiciolli F.M., & Silva L.C.A. (2022). Vehicle and twin-roller chassis dynamometer model considering slip tire interactions. Mechanics Based Design of Structures and Machines, doi:10.1080/15397734.2022.2038199.
  • [16] Eckert J.J., Bertoti E., Costa E.S., Santiciolli F., Yamashita R., Silva L., & Dedini F.G. (2017). Experimental evaluation of rotational inertia and tire rolling resistance for a twin roller chassis dynamometer. SAE Technical Paper, doi:10.4271/2017-36-0212.
  • [17] Silva L.C.A, Dedini F.G., Correa F.C., Eckert J.J., & Becker M. (2016). Measurement of wheelchair contact force with a low cost bench test. Medical Engineering & Physics, 38(2), 163-170.
  • [18] Duoba M., Ng H., & Larsen R. (2000). In-situ mapping and analysis of the Toyota Prius HEV engine. SAE Technical Paper, doi:10.4271/2000-01-3096.
  • [19] Bohn T., & Duoba M. (2005). Implementation of a non-intrusive in-vehicle engine torque sensor for benchmarking the Toyota Prius. SAE Technical Paper, doi:10.4271/2005-01-1046.
  • [20] Ha K., Kong J., & Kim W. (2007). Development of an engine torquemeter for in-vehicle application and parametric study on fuel consumption contribution. SAE Technical Paper, doi:10.4271/2007-01-0964.
  • [21] Deping Z., & Yimin M. (2013). A method for measuring power loss distribution of mini-car driveline. Information Technology Journal, 12(14), 2980-2984.
  • [22] Irimescu A., Mihon L., & Pãdure G. (2011). Automotive transmission efficiency measurement using a chassis dynamometer. International Journal of Automotive Technology, 12(4), 555-559.
  • [23] Moskalik A., Dekraker P., Kargul J., & Barba D. (2015). Vehicle component benchmarking using a chassis dynamometer. SAE International Journal of Materials and Manufacturing, 8(3), 869-879.
  • [24] Pelkmans L., & Debal P. (2006). Comparison of on-road emissions with emissions measured on chassis dynamometer test cycles. Transportation Research Part D: Transport and Environment, 11(4), 233-241.
  • [25] Zhen F., Clark N.N., Bedick C.R., Gautam M., Wayne W.S., Thompson G.J., & Lyons W. (2009).
  • Development of a heavy heavy-duty diesel engine schedule for representative measurement of emissions. Journal of the Air & Waste Management Association, 59(8), 950-959.
  • [26] Biswas S., Verma V., Schauer J.J., Cassee F.R., Cho A.K., & Sioutas C. (2009). Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environmental Science and Technology, 43(10), 3905-3912.
  • [27] Andersson J., May J., Favre C., Bosteels D., Vries S., Heaney M., Keenan M., & Mansell J. (2014). On-road and chassis dynamometer evaluations of emissions from two Euro 6 diesel vehicles. SAE International Journal of Fuels and Lubricants, 7(3), 919-934.
  • [28] Chen L., Wang Z., Liu S., & Qu L. (2018). Using a chassis dynamometer to determine the influencing factors for the emissions of Euro VI vehicles. Transportation Research Part D: Transport and Environment, 65, 564-573.
  • [29] Örs İ., Tarakçıoğlu N., & Ciniviz M. (2009). Yakıt olarak benzin-etanol karışımlarının taşıt performansı ve egzoz emisyonlarına etkisi. Politeknik Dergisi, 12(1), 13-19.
  • [30] Kaya T., Kutlar O.A., & Taşkıran Ö.O. (2020). Investigation of the effects of biodiesel obtained from canola on performance, emissions and combustion characteristics under the NEDC and steady state loads. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3), 1437-1453.
  • [31] Shiau C.S.N., Kaushal N., Hendrickson C.T., Peterson S.B., Whitacre J.F., & Michalek J.J. (2010). Optimal plug-in hybrid electric vehicle design and allocation for minimum life cycle cost, petroleum consumption, and greenhouse gas emissions. Journal of Mechanical Design, 132, 091013.
  • [32] Kim N., & Rousseau A. (2016). Parameter estimation for a lithium-ion battery from chassis dynamometer tests. IEEE Transactions on Vehicular Technology, 65, 4393-4400.
  • [33] Song K., Li F., Hu X., He L., Niu W., Lu S., & Zhang T. (2018). Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm. Journal of Power Sources, 389, 230-239.
  • [34] Mayyas A.R., Kumar S., Pisu P., Rios J., & Jethani P. (2017). Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach. Applied Energy, 204, 287-302.
  • [35] Chen J., Liu C., Zhang X., Zhang Y., & Li J. (2021). An approach for indoor prediction of the pass-by noise of a vehicle based on the time-domain equivalent source method. Mechanical Systems and Signal Processing, 146, 107037.
  • [36] Kim Y.D., Jeong J., Park J., Yang I., Park T., Muhamad P., Choi D., & Oh J. (2013). Optimization of the lower arm of a vehicle suspension system for road noise reduction by sensitivity analysis. Mechanism and Machine Theory, 69, 278-302.
  • [37] Chasapidis L., Grigoratos T., Zygogianni A., Tsakis A., & Konstandopoulos A.G. (2018). Study of brake wear particle emissions of a minivan on a chassis dynamometer. Emission Control Science and Technology, 4, 271-278.
  • [38] Mathissen M., Grigoratos T., Lahde T., & Vogt R. (2019). Brake wear particle emissions of a passenger car measured on a chassis dynamometer. Atmosphere, 10(9), 556.
  • [39] Soica A., Budala A., Monescu V., Sommer S., & Owczarzak W. (2020). Method of estimating the rolling resistance coefficient of vehicle tyre using the roller dynamometer. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(13), 3194-3204.
  • [40] Martyr A., & Plint M. (2012). Chassis or rolling-road dynamometers. Oxford: Butterworth-Heinemann, Chapter 17, In Engine testing, 4th ed., 451-482.
  • [41] Pexa M., Mader D., Cedık J., Peterka B., Müller M., Valasek P., & Hloch S. (2019). Experimental verification of small diameter rollers utilization in construction of roller test stand in evaluation of energy loss due to rolling resistance. Measurement, 152, 107287.
  • [42] Ejsmont J., & Owczarzak W. (2019). Engineering method of tire rolling resistance evaluation, Measurement, 145, 144-149.
  • [43] Bayrakçeken H., Girgin Z., Aysal F.E., & Babagiray M. (2021). The experimental investigation and nonlinear regression analysis of the effect of tire inflation pressure on pitch force. International Journal of Automotive Science and Technology, 5(1), 1-7.
  • [44] Bayrakçeken H., Türkbay T., Aysal F. E., & Yavuz H. (2020). Panik frenleme davranışının yarım taşıt test cihazında incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4), 730-740.
  • [45] Jimenez D., Hernandez S., Fraile-Ardanuy J., Serrano J., Fernandez R., & Alvarez F. (2018). Modelling the effect of driving events on electrical vehicles energy consumption using inertial sensors in smartphones. Energies, 11(2), 412.
  • [46] T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Meteroloji Genel Müdürlüğü, Hava Durumu Verileri, https://www.mgm.gov.tr/
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

İbrahim Yavuz 0000-0002-4480-2342

Turan Alp Arslan 0000-0003-3259-4854

Hüseyin Bayrakçeken 0000-0002-1572-4859

İbrahim Mutlu 0000-0001-5563-1000

Faruk Emre Aysal 0000-0002-9514-1425

Project Number 17.TEKNOLOJİ.03
Early Pub Date July 18, 2023
Publication Date September 27, 2023
Submission Date May 4, 2023
Published in Issue Year 2023

Cite

APA Yavuz, İ., Arslan, T. A., Bayrakçeken, H., Mutlu, İ., et al. (2023). İkinci El Otomotiv Sektöründe Kullanılan Şasi Dinamometrelerinin Ölçüm Doğruluklarının Araştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(3), 673-684. https://doi.org/10.29109/gujsc.1292602

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526