Atomik Katman Biriktirme Tekniğine Genel Bakış: Zno, Tio2 Ve Al2o3 Filmlerin Üretimi
Year 2019,
, 649 - 660, 27.09.2019
Hakan Ateş
,
Meryem Polat Gönüllü
Abstract
Gelişmekte
olan teknoloji ile birlikte optoelektronik, enerji çevrimi, nanomedikal
uygulamaları ve katalizör malzemeler gibi pek çok alanda teknolojinin minyatürleşmesi
sebebiyle nano-boyutta malzeme üretiminin gerekliliği önem kazanmıştır. Bu
sebeple son zamanlarda yapılan bilimsel çalışmalar atomik-boyutta ince film
kaplama ve büyütme teknolojilerine odaklanmışlardır. Tam da bu noktada,
atomik-boyutta üstün kaliteli kaplamalar yapmaya imkân sağlayan atomik katman
biriktirme (ALD) ince film üretim tekniği devreye girmektedir. Bu çalışmada,
ALD tekniği hakkında temel bilgi verilmiş, ALD kullanılarak 200 ºC taban sıcaklığında
silisyum yongalar üzerine ZnO, TiO2 ve Al2O3 ince
filmler kaplanmıştır. Homojen yüzeyli ince film kaplamaların yapılabilmesi için
öncelikle deneysel parametreler değiştirilerek farklı tekrarlarda üretimler
gerçekleştirilmiştir ve en uygun deney koşulları belirlenmiştir. Detaylı karakterizasyon
işlemleri en uygun üretim koşulları altında kaplama homojenliği sağlayabilmiş ZnO,
TiO2 ve Al2O3 ince filmler için yapılmıştır.
Üretilen filmlerin homojen bir yapıya sahip olup olmadığını belirlemek için spektroskopik
elipsometri tekniği kullanılarak çeşitli noktalarından kalınlıkları
saptanmıştır. Ayrıca kristal yapıları hakkında bilgi edinmek adına X-ışını
kırınım desenleri incelenmiştir.
Thanks
Bu çalışma, 07/2015-08 ve 07/2016-11 numaralı Gazi Üniversitesi Bilimsel Araştırma Projeleri desteğine ve Okyay Technology R&D tarafından desteklendi.
References
- Kaynaklar (References)
- [1] Lin, Y, S., Cheng, P, H., Huang, K, W., Lin, H, C., Chen, M, J, Atomic layer deposition of sub-10 nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization, Appl, Surf, Sci, 443(421-428), (2018).
- [2] Kim, H., Park, T., Park, S., Leem, M., Ahn, W., Lee, H., Kim, Y, Ultrathin monolithic HfO2 formed by Hf-seeded atomic layer deposition on MoS2: Film characteristics and its transistor application, Thin Solid Films, 673(112–118), (2019).
- [3] Walker, B., Pradhan, A, K., Xiao, B, Low temperature fabrication of high performance ZnO thin film transistors with high-k dielectrics, Solid-State Electron, 111(58-61), (2015).
- [4] Groner, M, D., and George, S, M, (2003). High-k dielectrics grown by atomic layer deposition: Capacitor and gate applications, Interlayer Dielectrics for Semiconductor Technologies, Academic Press (327-348). [5] Jakschik, S., Schroeder, U., Hecht, T., Krueger, D., Dollinger, D., Bergmaier, A., Luhmann, C., Bartha, J,W, Physical characterization of thin ALD–Al2O3 films, Appl, Surf, Sci., 211(1-4) (352-359), (2003).
- [6] Yu, Y., Yang, F., Mao, S., Zhu, S., Jia, Y., Yuan, L., Salmen, M., Sun, B, Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device, Chem, Phys, Lett., 706(477–482), (2018).
- [7] Mroczynski, R., Taube, A., Gierałtowska, S., Guziewicz, E., Godlewski, M, Application of deposited by ALD HfO2 and Al2O3 layers in double-gate dielectric stacks for non-volatile semiconductor memory (NVSM) device, Appl, Surf, Sci., 258(8366–8370), (2012).
- [8] Kameshwar K, Yadavallia, Alexei O, Orlova, Gregory L, Snidera, Jeffrey Elam, Aluminum oxide tunnel barriers for single electron memory devices, Microelectron, J., 36(272–276), (2005),
- [9] Choi, D, W., Park, H., Lim, J, H., Han, T, H., Park, J, S, Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications, Carbon 125(464–471), (2017).
- [10] Heidary,D, S, B., and Randall, C, A, Evaluation of Atomic Layer Deposition coating as gas barrier against hydrogen gas and humidity, Scripta Mater, 107(30–33), (2015).
- [11] Yu, C,C., Tsai, M, Y., Hsiao,C, N, Conductive Gas Barriers Prepared by Using Atomic Layer Deposition Technique, Procedia Engineer, 36(562–570), (2012).
- [12] Seo, S, W., Jung, E, Chae, H., Cho, S, M, Optimization of Al2O3/ZrO2 nanolaminate structure for thin-film encapsulation of OLEDs, Org, Electron, 13(2436–2441), (2012).
- [13] Kim, E., Han, Y., Kim, W., Choi, K, C., Im, H, G., Bae, B, S, Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials”, Org, Electron, 14(1737–1743), (2013).
- [14] Tsai, Y, S., Chittawanij,A., Juang, F, S., Lin, P, C., Hong, L, A., Tsai, F, Y., Tseng, M, H., Wang, C, C., Chen, C, C., Lin, K, L., Chen, S, H., Flexible fluorescent white organic light emitting diodes with ALD encapsulation, J, Phys, Chem Solids, 83(135–139), (2015).
- [15] Zhanga, Y., Meia, Z., Wanga, T., Huo, W., Cuia, S., Liang, H., Du, X, Flexible transparent high-voltage diodes for energy management in wearable electronics, Nano Energy, 40(289–299), (2017).
- [16] Cheng, N., Shaob, Y., Liub, J., Sun, X, Electrocatalysts by atomic layer deposition for fuel cell applications, Nano Energy, 29(220–242), (2016).
- [17] Lim, D, K, Liu, J., Pandey, S, A., Paik, H., Chisholm, C, R., Hupp, J, T., Haile, S, M, Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells, Electrochim, Acta, 288(12–19), (2018).
- [18] Liu, Y, R., Hsueh, Y, C., Perng, T, P, Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell, Int, J, Hydrogen Energy, 42(10175 – 10183), (2017).
- [19] Kosiel, K., Koba, M., Masiewicz, M., Śmietana, M, Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique, Opt, Laser Technol, 102(13–221), (2018).
- [20] Lupan, O., Postica, V., Ababii , N., Reimer, T., Shree, S., Hoppe, M., Polonskyi, O., Sontea, V., Chemnitz, S., Faupel, F., Adelung, R, Ultra-thin TiO2 films by atomic layer deposition and surface functionalization with Au nanodots for sensing applications, Mater, Sci, Semicond, Process 87(44–53), (2018).
- [21] Melo, L., Burton, G., Kubik, P., Wild, P, Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition, Sens, Actuators, B, 236(537–545), (2016).
- [22] Alnuaimi, A., Almansouri, I., Saadat, I., Nayfeh, A, High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition, Sol, Energy, 164(174–179), (2018).
- [23] Choi, E, Y., Kim, J., Lim, S., Han, E., Ho-Baillie, A, W., Park, N, Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation, Sol, Energy Mater, Sol, Cells 188(37–45), (2018).
- [24] Zardetto, V., Di Giacomo, F, , Lucarelli, G., Kessels, W,M,M., Brown, T,M., Creatore, M, Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells, Sol, Energy, 150(447–453), (2017).
- [25] Frankenstein, H., Leng, C, Z., Losego, M, D., Frey, G, L, Atomic layer deposition of ZnO electron transporting layers directly onto the active layer of organic solar cells, Org, Electron, 64(37–46), (2019).
- [26] Graniel, O., Weber, M., Balme, S., Mielea, P., Bechelany,M, Atomic layer deposition for biosensing applications, Biosens, Bioelectron, 122(147–159), (2018).
- [27] Skoog, S, A., Elam J, W., Narayan, R, J, Atomic layer deposition: medical and biological applications, Int, Mater, Rev, 58(2) (113-129), (2013).
- [28] Narayan, R, J., Adiga, S, P., Pellin, M, J., Curtiss, L, A., Hryn, A, J., Stafslien, S., Chisholm, B., Shih, C, C., Shih, C, M., Lin, S, J., Su, Jin, C., Zhang, J., Monteiro-Riviere, N, A., Elam, J, W, Atomic layer deposition-based functionalization of materials for medical and environmental health applications, Phil, Trans, R, Soc, A 368(2033–2064), (2010).
- [29] Morales, J, M, H, Evaluating biocompatible barrier films as encapsulants of medical micro devices, Doctoral dissertation, Université Grenoble Alpes, (2015).
- [30] Wang, C, C., Chou, P, H., Yu, Y, H., Kei,C, C., Deposition of Ni nanoparticles on black TiO2 nanowire arrays for photoelectrochemical water splitting by atomic layer deposition, Electrochim, Acta, 284(211 – 219), (2018).
- [31] Tang-Kong, R., Winter, R., Brock, R., Tracy, J., Eizenberg, M., Dauskardt, R, H., McIntyre, P, C, The Role of Catalyst Adhesion in ALD-TiO2 Protection of Water Splitting Silicon Anodes, ACS Appl, Mater, Interfaces, 10 (37103−37109), (2018).
- [32] Moehl, T., Suh, J., Sévery, L., Wick-Joliat, R., & Tilley, S, D, Investigation of (Leaky) ALD TiO2 Protection Layers for Water-Splitting Photoelectrodes, ACS Appl, Mater, Interfaces, 9(43614−43622), (2017).
- [33] Pickrahn, K, L., Gorlin, Y., Seitz, L, C., Garg, A., Nordlund, D., Jaramillo, T, F., & Bent, S, F, Applications of ALD MnO to electrochemical water splitting, Phys, Chem, Chem, Phys, 17(14003-14011), (2015).
- [34] Zhu, H., Niu, X., Wan, M., & Mai, Y, A study of ZnO:Al thin films reactively sputtered under the control of target voltage for application in Cu(In,Ga)Se2 thin film solar cells, Vacuum 161(297–305), (2019).
- [35] Efkere, H,I., Tataroglu, A., Cetin, S,S., Topaloglu, N., Gonullu, M, P., Ates, H., The effect of thickness on the optical, structural and electrical properties of ZnO thin film deposited on n-type Si, J, Mol, Struct, 1165(376-380), (2018).
- [36] Shen, H., Wei, B., Zhang, D., Qi, Z., Wang, Z, Magnetron sputtered NbN thin film electrodes for supercapacitors, Mater, Lett, 229(17–20), (2018).
- [37] Popp, A., and Pettenkofer, C., Epitaxial growth of CuGaSe2 thin-films by MBE—Influence of the Cu/Ga ratio, Appl, Surf,Sci, 416(815–823), (2017).
- [38] Shrotriya, V., Zaman, M, B., Poolla, R, Low cost sprayed CuIn(SxSe1-x)2 thin films for photovoltaic applications, Mater, Lett, 236(428–431), (2019).
- [39] Menga, L., Yanga, X., Chai, H., Lv, Z., Yang, T, Sol-gel derived Zn1-xMgxO:Al transparent conductive thin film and its application to thin film solar cells, Thin Solid Films 672(186–191 ), (2019).
- [40] Yildirim, S, Sol-Gel Döner Kaplama Yöntemiyle Oluşturulmuş Ta2O5 İnce Film Kondansatörün Düşük Sıcaklık Bölgesi Dielektrik Özellikleri ve AC İletkenlik Davranış, GU J Sci, Part C, 6(4) (851-861), (2018).
- [41] Astinchap, B., and Laelabadi, K, G, effects of substrate temperature and precursor amount on optical properties and microstructure of CVD deposited amorphous TiO2 thin films, J, Phys, Chem, Solids, 129(217–226), (2019).
- [42] Kaushik, V, K., Mukherjee, C., Ganguli, T., Sen, P,K, Electrical and optical characteristics of aerosol assisted CVD grown ZnO based thin film diode and transistor, J,Alloys Compd, 696(727-735), (2017).
- [43] Kotilainen, M., Krumpolec, R., Franta, D., Souček, P., Homola, T., Cameron, D, C., Vuoristo, P, Hafnium oxide thin films as a barrier against copper diffusion in solar absorbers, Sol, Energy Mater, Sol, Cells, 166(140–146), (2017).
- [44] Boyadjieva, S,I., Georgieva, V., Yordanov, R., Raicheva, Z., I,M, Szilágy, Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors, Appl, Surf, Sci, 387(1230–1235), (2016).
- [45] DeCoster, M, E., Meyer, K, E., Piercy, B, D., Gaskins, J, T., Donovan, B, F., Giri, A., Strnad, N, A., Potrepka, D, M., Wilson, A, A., Losego, M, D., Hopkins, P, E, Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films, Thin Solid Films, 650(71–77), (2018).
- [46] George, S, M, Atomic Layer Deposition: An Overview, Chem, Rev, 110(111–131), (2010).
- [47] Puurunen, R, L, A Short History of Atomic Layer Deposition: Tuomo Suntola’s Atomic Layer Epitaxy, Chem, Vap, Deposition 20(332–344), (2014).
- [48] Prakash, J., Swart, H, C., Zhanga G., Sun, S, Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering, J, Mater, Chem, C, 7(1447-1471), (2019).
- [49]Lu, W., Liang, L., Sun, X., Sun, X., Wu, C., Hou, L., Sun, J., Yuan, C, Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries, Nanomater, 7(10) (325), (2017).
- [50] Johnson, R, W., Hultqvist, A., & Bent, S, F, A brief review of atomic layer deposition: from fundamentals to applications, Mater, Today, 17(5) (236-246), (2014).
- [51] Kim, H., & Maeng, W, J, Applications of atomic layer deposition to nanofabrication and emerging nanodevices, Thin Solid Films 517(2563–2580), (2009).
- [52] Ponraj, J, S., Attolini, G., Bosi, M, Review on Atomic Layer Deposition and Applications of Oxide Thin Films, Crit, Rev,s Solid State Mater, Sci, 38(3) (203-233), (2013).
- [53] Knoops, H, C, M., Potts, S, E., Bol, A, A., & Kessels, W, M, M, (2015), Atomic layer deposition, In T, Kuech (Ed,), Handbook of crystal growth: thin films and epitaxy (second edition) Elsevier, 1101,1134.
- [54] Suntola, T, Atomic Layer Epitaxy, In Handbook of Crystal Growth, Vol, 3, Part B: Growth Mechanisms and Dynamics; Hurle, D, T, J., Ed,; Elsevier: Amsterdam, 1994; Chapter 14.
- [55] Warner, E, J., Cramer, C, J., Gladfelter, W, L, Atomic layer deposition of zinc oxide: Understanding the reactions of ozone with diethylzinc, J, Vac, Sci, Technol., A, 31(4) (041504), (2013).
- [56] Ritala, M., Leskelä, M., Johansson, L, S., Niinistö, L, Atomic force microscopy study of titanium dioxide thin films grown by atomic layer epitaxy, Thin Solid Films, 228(1-2) (32-35) (1993).
- [57] Lakomaa, E, L., Haukka, S., Suntola, T, Atomic layer growth of TiO2 on silica, Appll,Surf, Sci, 60 (742-748), (1992).
- [58] Ritala, M., Leskelä, M., Nykänen, E., Soininen, P., & Niinistö, L, Growth of titanium dioxide thin films by atomic layer epitaxy, Thin Solid Films, 225(1-2) (288-295), (1993).
- [59] Haukka, S., Lakomaa, E, L., & Suntola, T, Analytical and chemical techniques in the study of surface species in atomic layer epitaxy, Thin Solid Films, 225(1-2) (280-283), (1993).
- [60] George, S, M., Ott, A, W., Klaus, J, W, Surface chemistry for atomic layer growth, The J, Phys,Chem, 100(31) (13121-13131), (1996).
- [61] Ott, A, W., Klaus, J, W., Johnson, J, M., George, S, M, Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry, Thin Solid Films 292(1-2) (135-144), (1997).
- [62] Dillon, A, C., Ott, A, W., Way, J, D., & George, S, M, Surface chemistry of Al2O3 deposition using Al (CH3)3 and H2O in a binary reaction sequence, Surf, Sci, 322(1-3) (230-242), (1995).
- [63] Knez, M., Nielsch, K., Niinistö, L, Synthesis and surface engineering of complex nanostructures by atomic layer deposition, Adv,Mater,19(21) (3425-3438), (2007).
- [64] Singh, T., Lehnen, T., Leuning, T., Sahu, D., Mathur, S., Thickness dependence of optoelectronic properties in ALD grown ZnO thin films, Appl. Surf. Sci. 289, 27-32, (2014).
- [65] Musil, J., Blažek, J., Zeman, P., Prokšová, Š., Šašek, M., Čerstvý, R, Thermal stability of alumina thin films containing γ-Al2O3 phase prepared by reactive magnetron sputtering, Appl, Surf, Sci, 257(3), 1058-1062, (2010).
- [66] Dhonge, B, P., Mathews, T., Sundari, S, T., Kamruddin, M., Dash, S., Tyagi, A, K, Combustion chemical vapour deposition of Al2O3 films: Effect of temperature on structure, morphology and adhesion, Surf, Coat, Tech, 205(7), 1838-1842, (2010).
- [67] Kumar, P., Wiedmann, M, K., Winter, C, H., Avrutsky, I, Optical properties of Al2O3 thin films grown by atomic layer deposition, Appl, Opt, 48(28), 5407-5412, (2009).
- [68] Barbos, C., Blanc-Pelissier, D., Fave, A., Blanquet, E., Crisci, A., Fourmond, E., Albertini, D., Sabac, A, Ayadi, K., Girard P.,Lemiti, M, Characterization of Al2O3 thin films prepared by thermal ALD, Energy Procedia, 77, 558-564, (2015).
- [69] Afanas’ Ev, V, V., Stesmans, A., Mrstik, B, J., Zhao, C, Impact of annealing-induced compaction on electronic properties of atomic-layer-deposited Al2O3, Appl, Phys,Lett, 81(9), 1678-1680, (2002).
- [70] Aarik, L., Arroval, T., Rammula, R., Mändar, H., Sammelselg, V., Aarik, J, Atomic layer deposition of TiO2 from TiCl4 and O3, Thin Solid Films,542, 100-107, (2013).
- [71] Pore, V., Kivelä, T., Ritala, M., Leskelä, M, Atomic layer deposition of photocatalytic TiO2 thin films from TiF4 and H2O, Dalton Trans,(45), 6467-6474, (2008).
- [72] Albadri, M. A., Characterization of Al2O3 surface passivation of silicon solar cells, Thin Solid Films, 562, 451-455, (2014).
- [73] Boyadjiev, S. I., Georgieva, V., Yordanov, R., Raicheva, Z., Szilágyi, I.M., Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors, Appl. Surf. Sci, 1230-1235, (2016).
- [74] Justh, N., Firkala, T., László, K., Lábár,J., Szilágyi, I. M., PhotocatalyticC60-amorphousTiO2compositespreparedbyatomiclayerdeposition, Appl. Surf. Sci, 419, 497-502, (2017).
Year 2019,
, 649 - 660, 27.09.2019
Hakan Ateş
,
Meryem Polat Gönüllü
References
- Kaynaklar (References)
- [1] Lin, Y, S., Cheng, P, H., Huang, K, W., Lin, H, C., Chen, M, J, Atomic layer deposition of sub-10 nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization, Appl, Surf, Sci, 443(421-428), (2018).
- [2] Kim, H., Park, T., Park, S., Leem, M., Ahn, W., Lee, H., Kim, Y, Ultrathin monolithic HfO2 formed by Hf-seeded atomic layer deposition on MoS2: Film characteristics and its transistor application, Thin Solid Films, 673(112–118), (2019).
- [3] Walker, B., Pradhan, A, K., Xiao, B, Low temperature fabrication of high performance ZnO thin film transistors with high-k dielectrics, Solid-State Electron, 111(58-61), (2015).
- [4] Groner, M, D., and George, S, M, (2003). High-k dielectrics grown by atomic layer deposition: Capacitor and gate applications, Interlayer Dielectrics for Semiconductor Technologies, Academic Press (327-348). [5] Jakschik, S., Schroeder, U., Hecht, T., Krueger, D., Dollinger, D., Bergmaier, A., Luhmann, C., Bartha, J,W, Physical characterization of thin ALD–Al2O3 films, Appl, Surf, Sci., 211(1-4) (352-359), (2003).
- [6] Yu, Y., Yang, F., Mao, S., Zhu, S., Jia, Y., Yuan, L., Salmen, M., Sun, B, Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device, Chem, Phys, Lett., 706(477–482), (2018).
- [7] Mroczynski, R., Taube, A., Gierałtowska, S., Guziewicz, E., Godlewski, M, Application of deposited by ALD HfO2 and Al2O3 layers in double-gate dielectric stacks for non-volatile semiconductor memory (NVSM) device, Appl, Surf, Sci., 258(8366–8370), (2012).
- [8] Kameshwar K, Yadavallia, Alexei O, Orlova, Gregory L, Snidera, Jeffrey Elam, Aluminum oxide tunnel barriers for single electron memory devices, Microelectron, J., 36(272–276), (2005),
- [9] Choi, D, W., Park, H., Lim, J, H., Han, T, H., Park, J, S, Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications, Carbon 125(464–471), (2017).
- [10] Heidary,D, S, B., and Randall, C, A, Evaluation of Atomic Layer Deposition coating as gas barrier against hydrogen gas and humidity, Scripta Mater, 107(30–33), (2015).
- [11] Yu, C,C., Tsai, M, Y., Hsiao,C, N, Conductive Gas Barriers Prepared by Using Atomic Layer Deposition Technique, Procedia Engineer, 36(562–570), (2012).
- [12] Seo, S, W., Jung, E, Chae, H., Cho, S, M, Optimization of Al2O3/ZrO2 nanolaminate structure for thin-film encapsulation of OLEDs, Org, Electron, 13(2436–2441), (2012).
- [13] Kim, E., Han, Y., Kim, W., Choi, K, C., Im, H, G., Bae, B, S, Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials”, Org, Electron, 14(1737–1743), (2013).
- [14] Tsai, Y, S., Chittawanij,A., Juang, F, S., Lin, P, C., Hong, L, A., Tsai, F, Y., Tseng, M, H., Wang, C, C., Chen, C, C., Lin, K, L., Chen, S, H., Flexible fluorescent white organic light emitting diodes with ALD encapsulation, J, Phys, Chem Solids, 83(135–139), (2015).
- [15] Zhanga, Y., Meia, Z., Wanga, T., Huo, W., Cuia, S., Liang, H., Du, X, Flexible transparent high-voltage diodes for energy management in wearable electronics, Nano Energy, 40(289–299), (2017).
- [16] Cheng, N., Shaob, Y., Liub, J., Sun, X, Electrocatalysts by atomic layer deposition for fuel cell applications, Nano Energy, 29(220–242), (2016).
- [17] Lim, D, K, Liu, J., Pandey, S, A., Paik, H., Chisholm, C, R., Hupp, J, T., Haile, S, M, Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells, Electrochim, Acta, 288(12–19), (2018).
- [18] Liu, Y, R., Hsueh, Y, C., Perng, T, P, Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell, Int, J, Hydrogen Energy, 42(10175 – 10183), (2017).
- [19] Kosiel, K., Koba, M., Masiewicz, M., Śmietana, M, Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique, Opt, Laser Technol, 102(13–221), (2018).
- [20] Lupan, O., Postica, V., Ababii , N., Reimer, T., Shree, S., Hoppe, M., Polonskyi, O., Sontea, V., Chemnitz, S., Faupel, F., Adelung, R, Ultra-thin TiO2 films by atomic layer deposition and surface functionalization with Au nanodots for sensing applications, Mater, Sci, Semicond, Process 87(44–53), (2018).
- [21] Melo, L., Burton, G., Kubik, P., Wild, P, Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition, Sens, Actuators, B, 236(537–545), (2016).
- [22] Alnuaimi, A., Almansouri, I., Saadat, I., Nayfeh, A, High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition, Sol, Energy, 164(174–179), (2018).
- [23] Choi, E, Y., Kim, J., Lim, S., Han, E., Ho-Baillie, A, W., Park, N, Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation, Sol, Energy Mater, Sol, Cells 188(37–45), (2018).
- [24] Zardetto, V., Di Giacomo, F, , Lucarelli, G., Kessels, W,M,M., Brown, T,M., Creatore, M, Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells, Sol, Energy, 150(447–453), (2017).
- [25] Frankenstein, H., Leng, C, Z., Losego, M, D., Frey, G, L, Atomic layer deposition of ZnO electron transporting layers directly onto the active layer of organic solar cells, Org, Electron, 64(37–46), (2019).
- [26] Graniel, O., Weber, M., Balme, S., Mielea, P., Bechelany,M, Atomic layer deposition for biosensing applications, Biosens, Bioelectron, 122(147–159), (2018).
- [27] Skoog, S, A., Elam J, W., Narayan, R, J, Atomic layer deposition: medical and biological applications, Int, Mater, Rev, 58(2) (113-129), (2013).
- [28] Narayan, R, J., Adiga, S, P., Pellin, M, J., Curtiss, L, A., Hryn, A, J., Stafslien, S., Chisholm, B., Shih, C, C., Shih, C, M., Lin, S, J., Su, Jin, C., Zhang, J., Monteiro-Riviere, N, A., Elam, J, W, Atomic layer deposition-based functionalization of materials for medical and environmental health applications, Phil, Trans, R, Soc, A 368(2033–2064), (2010).
- [29] Morales, J, M, H, Evaluating biocompatible barrier films as encapsulants of medical micro devices, Doctoral dissertation, Université Grenoble Alpes, (2015).
- [30] Wang, C, C., Chou, P, H., Yu, Y, H., Kei,C, C., Deposition of Ni nanoparticles on black TiO2 nanowire arrays for photoelectrochemical water splitting by atomic layer deposition, Electrochim, Acta, 284(211 – 219), (2018).
- [31] Tang-Kong, R., Winter, R., Brock, R., Tracy, J., Eizenberg, M., Dauskardt, R, H., McIntyre, P, C, The Role of Catalyst Adhesion in ALD-TiO2 Protection of Water Splitting Silicon Anodes, ACS Appl, Mater, Interfaces, 10 (37103−37109), (2018).
- [32] Moehl, T., Suh, J., Sévery, L., Wick-Joliat, R., & Tilley, S, D, Investigation of (Leaky) ALD TiO2 Protection Layers for Water-Splitting Photoelectrodes, ACS Appl, Mater, Interfaces, 9(43614−43622), (2017).
- [33] Pickrahn, K, L., Gorlin, Y., Seitz, L, C., Garg, A., Nordlund, D., Jaramillo, T, F., & Bent, S, F, Applications of ALD MnO to electrochemical water splitting, Phys, Chem, Chem, Phys, 17(14003-14011), (2015).
- [34] Zhu, H., Niu, X., Wan, M., & Mai, Y, A study of ZnO:Al thin films reactively sputtered under the control of target voltage for application in Cu(In,Ga)Se2 thin film solar cells, Vacuum 161(297–305), (2019).
- [35] Efkere, H,I., Tataroglu, A., Cetin, S,S., Topaloglu, N., Gonullu, M, P., Ates, H., The effect of thickness on the optical, structural and electrical properties of ZnO thin film deposited on n-type Si, J, Mol, Struct, 1165(376-380), (2018).
- [36] Shen, H., Wei, B., Zhang, D., Qi, Z., Wang, Z, Magnetron sputtered NbN thin film electrodes for supercapacitors, Mater, Lett, 229(17–20), (2018).
- [37] Popp, A., and Pettenkofer, C., Epitaxial growth of CuGaSe2 thin-films by MBE—Influence of the Cu/Ga ratio, Appl, Surf,Sci, 416(815–823), (2017).
- [38] Shrotriya, V., Zaman, M, B., Poolla, R, Low cost sprayed CuIn(SxSe1-x)2 thin films for photovoltaic applications, Mater, Lett, 236(428–431), (2019).
- [39] Menga, L., Yanga, X., Chai, H., Lv, Z., Yang, T, Sol-gel derived Zn1-xMgxO:Al transparent conductive thin film and its application to thin film solar cells, Thin Solid Films 672(186–191 ), (2019).
- [40] Yildirim, S, Sol-Gel Döner Kaplama Yöntemiyle Oluşturulmuş Ta2O5 İnce Film Kondansatörün Düşük Sıcaklık Bölgesi Dielektrik Özellikleri ve AC İletkenlik Davranış, GU J Sci, Part C, 6(4) (851-861), (2018).
- [41] Astinchap, B., and Laelabadi, K, G, effects of substrate temperature and precursor amount on optical properties and microstructure of CVD deposited amorphous TiO2 thin films, J, Phys, Chem, Solids, 129(217–226), (2019).
- [42] Kaushik, V, K., Mukherjee, C., Ganguli, T., Sen, P,K, Electrical and optical characteristics of aerosol assisted CVD grown ZnO based thin film diode and transistor, J,Alloys Compd, 696(727-735), (2017).
- [43] Kotilainen, M., Krumpolec, R., Franta, D., Souček, P., Homola, T., Cameron, D, C., Vuoristo, P, Hafnium oxide thin films as a barrier against copper diffusion in solar absorbers, Sol, Energy Mater, Sol, Cells, 166(140–146), (2017).
- [44] Boyadjieva, S,I., Georgieva, V., Yordanov, R., Raicheva, Z., I,M, Szilágy, Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors, Appl, Surf, Sci, 387(1230–1235), (2016).
- [45] DeCoster, M, E., Meyer, K, E., Piercy, B, D., Gaskins, J, T., Donovan, B, F., Giri, A., Strnad, N, A., Potrepka, D, M., Wilson, A, A., Losego, M, D., Hopkins, P, E, Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films, Thin Solid Films, 650(71–77), (2018).
- [46] George, S, M, Atomic Layer Deposition: An Overview, Chem, Rev, 110(111–131), (2010).
- [47] Puurunen, R, L, A Short History of Atomic Layer Deposition: Tuomo Suntola’s Atomic Layer Epitaxy, Chem, Vap, Deposition 20(332–344), (2014).
- [48] Prakash, J., Swart, H, C., Zhanga G., Sun, S, Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering, J, Mater, Chem, C, 7(1447-1471), (2019).
- [49]Lu, W., Liang, L., Sun, X., Sun, X., Wu, C., Hou, L., Sun, J., Yuan, C, Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries, Nanomater, 7(10) (325), (2017).
- [50] Johnson, R, W., Hultqvist, A., & Bent, S, F, A brief review of atomic layer deposition: from fundamentals to applications, Mater, Today, 17(5) (236-246), (2014).
- [51] Kim, H., & Maeng, W, J, Applications of atomic layer deposition to nanofabrication and emerging nanodevices, Thin Solid Films 517(2563–2580), (2009).
- [52] Ponraj, J, S., Attolini, G., Bosi, M, Review on Atomic Layer Deposition and Applications of Oxide Thin Films, Crit, Rev,s Solid State Mater, Sci, 38(3) (203-233), (2013).
- [53] Knoops, H, C, M., Potts, S, E., Bol, A, A., & Kessels, W, M, M, (2015), Atomic layer deposition, In T, Kuech (Ed,), Handbook of crystal growth: thin films and epitaxy (second edition) Elsevier, 1101,1134.
- [54] Suntola, T, Atomic Layer Epitaxy, In Handbook of Crystal Growth, Vol, 3, Part B: Growth Mechanisms and Dynamics; Hurle, D, T, J., Ed,; Elsevier: Amsterdam, 1994; Chapter 14.
- [55] Warner, E, J., Cramer, C, J., Gladfelter, W, L, Atomic layer deposition of zinc oxide: Understanding the reactions of ozone with diethylzinc, J, Vac, Sci, Technol., A, 31(4) (041504), (2013).
- [56] Ritala, M., Leskelä, M., Johansson, L, S., Niinistö, L, Atomic force microscopy study of titanium dioxide thin films grown by atomic layer epitaxy, Thin Solid Films, 228(1-2) (32-35) (1993).
- [57] Lakomaa, E, L., Haukka, S., Suntola, T, Atomic layer growth of TiO2 on silica, Appll,Surf, Sci, 60 (742-748), (1992).
- [58] Ritala, M., Leskelä, M., Nykänen, E., Soininen, P., & Niinistö, L, Growth of titanium dioxide thin films by atomic layer epitaxy, Thin Solid Films, 225(1-2) (288-295), (1993).
- [59] Haukka, S., Lakomaa, E, L., & Suntola, T, Analytical and chemical techniques in the study of surface species in atomic layer epitaxy, Thin Solid Films, 225(1-2) (280-283), (1993).
- [60] George, S, M., Ott, A, W., Klaus, J, W, Surface chemistry for atomic layer growth, The J, Phys,Chem, 100(31) (13121-13131), (1996).
- [61] Ott, A, W., Klaus, J, W., Johnson, J, M., George, S, M, Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry, Thin Solid Films 292(1-2) (135-144), (1997).
- [62] Dillon, A, C., Ott, A, W., Way, J, D., & George, S, M, Surface chemistry of Al2O3 deposition using Al (CH3)3 and H2O in a binary reaction sequence, Surf, Sci, 322(1-3) (230-242), (1995).
- [63] Knez, M., Nielsch, K., Niinistö, L, Synthesis and surface engineering of complex nanostructures by atomic layer deposition, Adv,Mater,19(21) (3425-3438), (2007).
- [64] Singh, T., Lehnen, T., Leuning, T., Sahu, D., Mathur, S., Thickness dependence of optoelectronic properties in ALD grown ZnO thin films, Appl. Surf. Sci. 289, 27-32, (2014).
- [65] Musil, J., Blažek, J., Zeman, P., Prokšová, Š., Šašek, M., Čerstvý, R, Thermal stability of alumina thin films containing γ-Al2O3 phase prepared by reactive magnetron sputtering, Appl, Surf, Sci, 257(3), 1058-1062, (2010).
- [66] Dhonge, B, P., Mathews, T., Sundari, S, T., Kamruddin, M., Dash, S., Tyagi, A, K, Combustion chemical vapour deposition of Al2O3 films: Effect of temperature on structure, morphology and adhesion, Surf, Coat, Tech, 205(7), 1838-1842, (2010).
- [67] Kumar, P., Wiedmann, M, K., Winter, C, H., Avrutsky, I, Optical properties of Al2O3 thin films grown by atomic layer deposition, Appl, Opt, 48(28), 5407-5412, (2009).
- [68] Barbos, C., Blanc-Pelissier, D., Fave, A., Blanquet, E., Crisci, A., Fourmond, E., Albertini, D., Sabac, A, Ayadi, K., Girard P.,Lemiti, M, Characterization of Al2O3 thin films prepared by thermal ALD, Energy Procedia, 77, 558-564, (2015).
- [69] Afanas’ Ev, V, V., Stesmans, A., Mrstik, B, J., Zhao, C, Impact of annealing-induced compaction on electronic properties of atomic-layer-deposited Al2O3, Appl, Phys,Lett, 81(9), 1678-1680, (2002).
- [70] Aarik, L., Arroval, T., Rammula, R., Mändar, H., Sammelselg, V., Aarik, J, Atomic layer deposition of TiO2 from TiCl4 and O3, Thin Solid Films,542, 100-107, (2013).
- [71] Pore, V., Kivelä, T., Ritala, M., Leskelä, M, Atomic layer deposition of photocatalytic TiO2 thin films from TiF4 and H2O, Dalton Trans,(45), 6467-6474, (2008).
- [72] Albadri, M. A., Characterization of Al2O3 surface passivation of silicon solar cells, Thin Solid Films, 562, 451-455, (2014).
- [73] Boyadjiev, S. I., Georgieva, V., Yordanov, R., Raicheva, Z., Szilágyi, I.M., Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors, Appl. Surf. Sci, 1230-1235, (2016).
- [74] Justh, N., Firkala, T., László, K., Lábár,J., Szilágyi, I. M., PhotocatalyticC60-amorphousTiO2compositespreparedbyatomiclayerdeposition, Appl. Surf. Sci, 419, 497-502, (2017).