Research Article
BibTex RIS Cite

Elektropolimerize 3,5-Diamino-1,2,4-Triazol Film ile Modifiye Edilmiş Altın Elektrot Yüzeyinde Epinefrinin Voltametrik Tayini ve Elektrokimyasal Davranışı

Year 2019, , 985 - 998, 24.12.2019
https://doi.org/10.29109/gujsc.623660

Abstract

Bu
çalışmada, altın elektrot (Au) yüzeyi 3,5-diamino-1,2,4-triazol (35DT) molekülü
ile elektrokimyasal yöntemle modifiye edilmiştir. Epinefrinin (EP) modifiye
elektrot (35DT-Au) yüzeyindeki elektrokimyasal davranışı diferansiyel puls
voltametrisi (DPV) ve dönüşümlü voltametri (CV) teknikleriyle incelenmiştir.
EP'nin yükseltgenme işleminde 35DT-Au modifiye elektrot yüzeyi iyi bir
elektrokatalitik aktivite göstermiştir. EP tayini, 35DT-Au modifiye elektrot
yüzeyinde DPV tekniği kullanılarak gerçekleştirilmiştir. Optimum şartlar
altında, 35DT-Au modifiye elektrot ile EP’ye ait doğrusal çalışma aralığı 0,9-32,31
μM ve 32,31-1050 μM olmak üzere iki farklı derişim aralığı olarak belirlenmiştir.
Bu iki derişim aralığı için gözlenebilme sınırları (LOD) sırasıyla 0,39 ve 12,33
μM olarak bulunmuştur. EP tayini için, 35DT-Au elektrot iyi bir
tekrarlanabilirlik, kararlılık ve hassasiyet göstermiştir. Ayrıca, gerçek
numune olarak ilaç numunei seçilmiş ve ilaçta EP tayini 35DT-Au elektrot ile başarıyla
gerçekleştirilmiştir.

Supporting Institution

Gazi Üniversitesi BAP

Project Number

65/2019‐02

References

  • [1] Bahmanzadeh, S., Noroozifar, M., “Fabrication of modified carbon paste electrodes with Ni-doped Lewatit FO36 nano ion exchange resin for simultaneous determination of epinephrine, paracetamol and tryptophan” Journal of Electroanalytical Chemistry, 809: 153-162, (2018).
  • [2] Shen, T., Wang, J.Y., Zhao, B.D., Biochemistry, Higher Education Press, Beijing, 1986.
  • [3] Wang, J., Deo, R. P., Poulin, P., Mangey, M., “Carbon nanotube fiber microelectrodes” Journal of the American Chemical Society, 125(48): 14706-14707, (2003).
  • [4] Clark, M. G., Colquhoun, E. Q., Rattigan, S., Dora, K. A., Eldershaw, T. P., Hall, J. L., Ye, J., “Vascular and endocrine control of muscle metabolism” American Journal of Physiology-Endocrinology And Metabolism, 268(5): E797-E812, (1995).
  • [5] Thivya, P., Wilson, J., “Electron rays irradiated polyaniline anchored over bovine serum albumin for simultaneous detection of epinephrine and uric acid” Microchemical Journal, 145, 883-891, (2019).
  • [6] Thanh, T.D., Balamurugan, J., Tuan, N.T., Jeong, H., Lee, S.H., Kim, N.H., et al. “Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing” Biosens Bioelectron., 89: 750-757, (2017).
  • [7] Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., et al. “Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode” Sensor Actuator B., 221: 1412-1422, (2015).
  • [8] Yang, Z., Hu, G., Chen, X., Zhao, J., Zhao, G. “The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid” Colloids and Surfaces B: Biointerfaces, 54(2): 230-235, (2007).
  • [9] Fotopoulou, M. A., Ioannou, P. C., “Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography” Anal. Chim. Acta, 462: 179-185, (2002).
  • [10] Shelkovnikov, S., Gonick, H. C., “Peroxynitrite but not nitric oxide donors destroys epinephrine: HPLC measurement and rat aorta contractility” Life sci., 75: 2765-2773, (2004).
  • [11] Kim, S. H., Lee, J. W., Yeo, I. H. “Spectroelectrochemical and electrochemical behavior of epinephrine at a gold electrode” Electrochimica acta, 45(18): 2889-2895, (2000).
  • [12] Sorouraddin, M. H., Manzoori, J. L., Kargarzadeh, E., Shabani, A. H., “Spectrophotometric determination of some catecholamine drugs using sodium bismuthate” J. of Phar. Biomed. Anal., 18(4-5): 877-881, (1998).
  • [13] Zhu, M., Huang, X., Li, J., Shen, H., “Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa” Anal. Chim. Acta, 357(3): 261-267, (1997).
  • [14] Cardoso, C. E., Martins, R. O., Telles, C. A., Aucélio, R. Q., “Sequential determination of hydrocortisone and epinephrine in pharmaceutical formulations via photochemically enhanced fluorescence” Microchim. Acta, 146(1): 79-84, (2004).
  • [15] Li, T., Wang, Z., Xie, H., Fu, Z., “Highly sensitive trivalent copper chelate-luminol chemiluminescence system for capillary electrophoresis detection of epinephrine in the urine of smoker” Journal of Chromatography B, 911: 1-5, (2012).
  • [16] Peterson, T. E., Trowbridge, D., “Quantitation of l-epinephrine and determination of the d-/l-epinephrine enantionmer ratio in a pharmaceutical formulation by capillary electrophoresis” Journal of Chromatography A, 603(1-2): 298-301, (1992).
  • [17] Qiu, H., Luo, C., Sun, M., Lu, F., Fan, L., Li, X., “A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers” Carbon, 50(11): 4052-4060, (2012).
  • [18] Michałowski, J., Hałaburda, P., “Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source” Talanta, 55(6): 1165-1171, (2001).
  • [19] Liu, Y., Liu, Z., Shi, Y., “Sensitive determination of epinephrine in pharmaceutical preparation by flow injection coupled with chemiluminescence detection and mechanism study” Luminescence, 26(1): 59-64, (2011).
  • [20] Bai, J., Shi, H., Zhang, Y., Tian, D., Xu, X., & Kang, W., “Determination of Epinephrine by Flow Injection Analysis Coupled Ag (III) Complex‐Luminol Chemiluminescence Detection” Chinese Journal of Chemistry, 27(4): 745-750, (2009).
  • [21] Zhou, Y., He, M., Huang, C., Dong, S., Zheng, J., “A novel and simple biosensor based on poly (indoleacetic acid) film and its application for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid” Journal of solid state electrochemistry, 16(6): 2203-2210, (2012).
  • [22] Ma, W., Sun, D. M., “The electrochemical properties of dopamine, epinephrine and their simultaneous determination at a poly (L-methionine) modified electrode” Russian Journal of Electrochemistry, 43(12): 1382-1389, (2007).
  • [23] Yao, H., Sun, Y., Lin, X., Tang, Y., Liu, A., Li, G., Zhang, S., “Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly(eriochrome black T) film-modified glassy carbon electrode” Analytical sciences, 23(6): 677-682, (2007).
  • [24] Ghica, M. E., Brett, C. M., “Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes” Analytical Letters, 46(9): 1379-1393, (2013).
  • [25] Zhang, H. M., Zhou, X. L., Hui, R. T., Li, N. Q., Liu, D. P., “Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode” Talanta, 56(6): 1081-1088, (2002).
  • [26] Tomé, L. I., Brett, C. M., “Polymer/Iron Oxide Nanoparticle Modified Glassy Carbon Electrodes for the Enhanced Detection of Epinephrine” Electroanalysis, 31(4): 704-710, (2019).
  • [27] Ren, W., Luo, H., Li, N., “Electrochemical behavior of epinephrine at a glassy carbon electrode modified by electrodeposited films of caffeic acid” Sensors, 6(2): 80-89, (2006).
  • [28] Kuskur, C. M., Kumara, B. E., Jayadevappa, H., Shivakumar, K., “Poly (Eosin Y) Film based Sensor for the Determination of Epinephrine in the Presence of Uric Acid: A Voltammetric Study” Analytical & Bioanalytical Electrochemistry, 10(9): 1120-1133, (2018).
  • [29] Yu, Z. Y., Li, X. C., Wang, X. L., Li, J. J., Cao, K. W., “Studies on the electrochemical behaviors of epinephrine at a poly (l-aspartic acid) modified glassy carbon electrode and its analytical application” Int. J. Electrochem. Sci., 6: 3890-3901, (2011).
  • [30] Manjunatha, J. G., Deraman, M., Basri, N. H., Talib, I. A. “Fabrication of poly (Solid Red A) modified carbon nano tube paste electrode and its application for simultaneous determination of epinephrine, uric acid and ascorbic acid” Arabian journal of chemistry, 11(2): 149-158, (2018).
  • [31] Danyıldız, Z., Uzun, D., Tabanlıgil Calam, T., Hasdemir, E., “A voltammetric sensor based on glassy carbon electrode modified with 1H-1, 2, 4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution” Journal of Electroanalytical Chemistry, 805: 177-183, (2017).
  • [32] Li, H., Sun, D., “Simple and efficient epinephrine sensor based on palladium doped poly (L-arginine) modified electrode” Asian Journal of Chemistry, 27(7): 2539-2544, (2015).
  • [33] Tabanlıgil Calam, T., “Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples” International Journal of Environmental Analytical Chemistry, 99(13): 1298-1312, (2019). https://doi.org/10.1080/03067319.2019.1619716
  • [34] Tabanlıgil Calam, T., Hasdemir, E., “Comparative characterizations of self-assembled monolayers of 1, 6-hexanedithiol and 1-hexanethiol formed on polycrystalline gold electrode” Comptes rendus de l’Académie bulgare des Sciences, 72(3): 316-326, (2019).
  • [35] Tatli, F., Uzun, D., Tabanlıgil Calam, T., Gündüzalp, A. B., Hasdemir, E., “Preparation and characterization of 3‐[(1H‐1, 2, 4‐triazole‐3‐ylimino) methyl] naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid” Surface and Interface Analysis, 51(4): 475-483, (2019).
  • [36] Tabanlıgil Calam, T., Uzun, D., “Rapid and Selective Determination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropolymerized with 3‐amino‐1,2,4‐triazole‐5‐thiol” Electroanalysis, (2019). https://doi.org/10.1002/elan.201900328.
  • [37] Tabanlıgil Calam, T., Hasdemir, E., “Application of 1, 6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe (II) using square wave voltammetry” Gazi University Journal of Science, 31(1): 53-64, (2018).
  • [38] Ghazizadeh, A. J., Afkhami, A., Bagheri, H., “Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure” Microchim. Acta, 185(6): 296-306, (2018).
  • [39] Aghaei, R., Mazloum-Ardakani, M., Abdollahi-Alibeik, M., Moaddeli, A., “Electrochemical sensor based on multi-walled carbon nanotubes and 4-(((4-mercaptophenyl) imino) methyl) benzene-1, 2-diol for simultaneous determination of epinephrine in the presence of acetaminophen” Trends in Pharmaceutical Sciences, 4(3): 139-148, (2018).
  • [40] Tabanlıgil Calam, T., “Electrochemical oxidative determination and electrochemical behavior of 4-nitrophenol based on an Au electrode modified with electro-polymerized 3,5-diamino-1,2,4-triazole film” Electroanalysis, DOI: 10.1002/elan.201900450.
  • [41] He, D., Zhang, P., Li, S., Luo, H., “A novel free-standing CVD graphene platform electrode modified with AuPt hybrid nanoparticles and L-cysteine for the selective determination of epinephrine” Journal of Electroanalytical Chemistry, 823: 678-687, (2018).
  • [42] Shankar, S. S., & Swamy, B. K., “Detection of epinephrine in presence of serotonin and ascorbic acid by TTAB modified carbon paste electrode: a voltammetric study” Int. J. Electrochem. Sci., 9(3): 1321-1339, (2014).
  • [43] Li, H., Wang, X., “Simultaneous Determination of Epinephrine and Uric Acid at Poly(Guanine) Modified Glassy Carbon Electrode” Electrochemistry, 83(6): 434-439, (2015).
  • [44] Apetrei, I. M., Apetrei, C., “Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine” International Journal of Nanomedicine, 8: 4391-4398, (2013).
  • [45] M. Mazloum-Ardakani, A. Dehghani-Firouzabadi, N. Rajabzade, M. A. Sheikh-Mohseni, A. Benvidi, M. Abdollahi-Alibeik, “MCM/ZrO 2 nanoparticles modified electrode for simultaneous and selective voltammetric determination of epinephrine and acetaminophen” Journal of the Iranian Chemical Society, 10: 1-5, (2013). [46] Jahanbakhshi, M., “Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid” Materials Science and Engineering: C, 70: 544-551, (2017).
  • [47] Babaei, A., Afrasiabi, M., Azimi, G., “Nanomolar simultaneous determination of epinephrine and acetaminophen on a glassy carbon electrode coated with a novel Mg–Al layered double hydroxide–nickel hydroxide nanoparticles–multi-walled carbon nanotubes composite” Analytical Methods, 7(6): 2469-2478, (2015).
  • [48] Huang, J., Xu, W., Gong, Y., Weng, S., Lin, X., “Selective and reliable electrochemical sensor based on polythionine/AuNPs composites for epinephrine detection in serum” International Journal of Electrochemical Science, 11(10): 8193-8203, (2016).
  • [49] Mekassa, B., Tessema, M., Chandravanshi, B. S., Baker, P. G., Muya, F. N., “Sensitive electrochemical determination of epinephrine at poly (L-aspartic acid)/electro-chemically reduced graphene oxide modified electrode by square wave voltammetry in pharmaceutics” Journal of Electroanalytical Chemistry, 807: 145-153, (2017).
  • [50] Tohidinia, M., Noroozifar, M., “Investigation of Carbon Allotropes for Simultaneous Determination of Ascorbic Acid, Epinephrine, Uric Acid, Nitrite and Xanthine” International Journal of Electrochemical Science, 13(3): 2310-2328, (2018).
  • [51] Samadzadeh, A., Sheikhshoaie, I., Karimi-Maleh, H., “Simultaneous determination of epinephrine and tyrosine using a glassy carbon electrode amplified with ZnO-Pt/CNTs nanocomposite” Current Analytical Chemistry, 15(2): 166-171, (2019).

The Voltammetric Determination of Epinephrine on an Au Electrode Modified with Electropolymerized 3,5-Diamino-1,2,4- Triazole Film

Year 2019, , 985 - 998, 24.12.2019
https://doi.org/10.29109/gujsc.623660

Abstract

A gold electrode (Au) was modified with 3,5-diamino-1,2,4-triazole (35DT). The electrochemical behavior of epinephrine (EP) was evaluated on the modified electrode (35DT-Au) by the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques. For the oxidation of EP, the 35DT-Au modified electrode surface showed an good electrocatalytic activity. The modified electrode was used to determine EP by using DPV technique. Under the optimum conditions, the calibration curve for EP was obtained in the ranges of 0.9 to 32.31 μM and 32.31 to 1050 μM and the detection limits (LOD) was found as 0.39 and 12.33 μM, respectively. For the oxidation process of EP, the 35DT-Au modified electrode exhibited a good repeatability, reproducibility, stability and sensitivity. Finally, the determination of EP in commercial injectable adrenaline samples were successfully applied.

Project Number

65/2019‐02

References

  • [1] Bahmanzadeh, S., Noroozifar, M., “Fabrication of modified carbon paste electrodes with Ni-doped Lewatit FO36 nano ion exchange resin for simultaneous determination of epinephrine, paracetamol and tryptophan” Journal of Electroanalytical Chemistry, 809: 153-162, (2018).
  • [2] Shen, T., Wang, J.Y., Zhao, B.D., Biochemistry, Higher Education Press, Beijing, 1986.
  • [3] Wang, J., Deo, R. P., Poulin, P., Mangey, M., “Carbon nanotube fiber microelectrodes” Journal of the American Chemical Society, 125(48): 14706-14707, (2003).
  • [4] Clark, M. G., Colquhoun, E. Q., Rattigan, S., Dora, K. A., Eldershaw, T. P., Hall, J. L., Ye, J., “Vascular and endocrine control of muscle metabolism” American Journal of Physiology-Endocrinology And Metabolism, 268(5): E797-E812, (1995).
  • [5] Thivya, P., Wilson, J., “Electron rays irradiated polyaniline anchored over bovine serum albumin for simultaneous detection of epinephrine and uric acid” Microchemical Journal, 145, 883-891, (2019).
  • [6] Thanh, T.D., Balamurugan, J., Tuan, N.T., Jeong, H., Lee, S.H., Kim, N.H., et al. “Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing” Biosens Bioelectron., 89: 750-757, (2017).
  • [7] Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., et al. “Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode” Sensor Actuator B., 221: 1412-1422, (2015).
  • [8] Yang, Z., Hu, G., Chen, X., Zhao, J., Zhao, G. “The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid” Colloids and Surfaces B: Biointerfaces, 54(2): 230-235, (2007).
  • [9] Fotopoulou, M. A., Ioannou, P. C., “Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography” Anal. Chim. Acta, 462: 179-185, (2002).
  • [10] Shelkovnikov, S., Gonick, H. C., “Peroxynitrite but not nitric oxide donors destroys epinephrine: HPLC measurement and rat aorta contractility” Life sci., 75: 2765-2773, (2004).
  • [11] Kim, S. H., Lee, J. W., Yeo, I. H. “Spectroelectrochemical and electrochemical behavior of epinephrine at a gold electrode” Electrochimica acta, 45(18): 2889-2895, (2000).
  • [12] Sorouraddin, M. H., Manzoori, J. L., Kargarzadeh, E., Shabani, A. H., “Spectrophotometric determination of some catecholamine drugs using sodium bismuthate” J. of Phar. Biomed. Anal., 18(4-5): 877-881, (1998).
  • [13] Zhu, M., Huang, X., Li, J., Shen, H., “Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa” Anal. Chim. Acta, 357(3): 261-267, (1997).
  • [14] Cardoso, C. E., Martins, R. O., Telles, C. A., Aucélio, R. Q., “Sequential determination of hydrocortisone and epinephrine in pharmaceutical formulations via photochemically enhanced fluorescence” Microchim. Acta, 146(1): 79-84, (2004).
  • [15] Li, T., Wang, Z., Xie, H., Fu, Z., “Highly sensitive trivalent copper chelate-luminol chemiluminescence system for capillary electrophoresis detection of epinephrine in the urine of smoker” Journal of Chromatography B, 911: 1-5, (2012).
  • [16] Peterson, T. E., Trowbridge, D., “Quantitation of l-epinephrine and determination of the d-/l-epinephrine enantionmer ratio in a pharmaceutical formulation by capillary electrophoresis” Journal of Chromatography A, 603(1-2): 298-301, (1992).
  • [17] Qiu, H., Luo, C., Sun, M., Lu, F., Fan, L., Li, X., “A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers” Carbon, 50(11): 4052-4060, (2012).
  • [18] Michałowski, J., Hałaburda, P., “Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source” Talanta, 55(6): 1165-1171, (2001).
  • [19] Liu, Y., Liu, Z., Shi, Y., “Sensitive determination of epinephrine in pharmaceutical preparation by flow injection coupled with chemiluminescence detection and mechanism study” Luminescence, 26(1): 59-64, (2011).
  • [20] Bai, J., Shi, H., Zhang, Y., Tian, D., Xu, X., & Kang, W., “Determination of Epinephrine by Flow Injection Analysis Coupled Ag (III) Complex‐Luminol Chemiluminescence Detection” Chinese Journal of Chemistry, 27(4): 745-750, (2009).
  • [21] Zhou, Y., He, M., Huang, C., Dong, S., Zheng, J., “A novel and simple biosensor based on poly (indoleacetic acid) film and its application for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid” Journal of solid state electrochemistry, 16(6): 2203-2210, (2012).
  • [22] Ma, W., Sun, D. M., “The electrochemical properties of dopamine, epinephrine and their simultaneous determination at a poly (L-methionine) modified electrode” Russian Journal of Electrochemistry, 43(12): 1382-1389, (2007).
  • [23] Yao, H., Sun, Y., Lin, X., Tang, Y., Liu, A., Li, G., Zhang, S., “Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly(eriochrome black T) film-modified glassy carbon electrode” Analytical sciences, 23(6): 677-682, (2007).
  • [24] Ghica, M. E., Brett, C. M., “Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes” Analytical Letters, 46(9): 1379-1393, (2013).
  • [25] Zhang, H. M., Zhou, X. L., Hui, R. T., Li, N. Q., Liu, D. P., “Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode” Talanta, 56(6): 1081-1088, (2002).
  • [26] Tomé, L. I., Brett, C. M., “Polymer/Iron Oxide Nanoparticle Modified Glassy Carbon Electrodes for the Enhanced Detection of Epinephrine” Electroanalysis, 31(4): 704-710, (2019).
  • [27] Ren, W., Luo, H., Li, N., “Electrochemical behavior of epinephrine at a glassy carbon electrode modified by electrodeposited films of caffeic acid” Sensors, 6(2): 80-89, (2006).
  • [28] Kuskur, C. M., Kumara, B. E., Jayadevappa, H., Shivakumar, K., “Poly (Eosin Y) Film based Sensor for the Determination of Epinephrine in the Presence of Uric Acid: A Voltammetric Study” Analytical & Bioanalytical Electrochemistry, 10(9): 1120-1133, (2018).
  • [29] Yu, Z. Y., Li, X. C., Wang, X. L., Li, J. J., Cao, K. W., “Studies on the electrochemical behaviors of epinephrine at a poly (l-aspartic acid) modified glassy carbon electrode and its analytical application” Int. J. Electrochem. Sci., 6: 3890-3901, (2011).
  • [30] Manjunatha, J. G., Deraman, M., Basri, N. H., Talib, I. A. “Fabrication of poly (Solid Red A) modified carbon nano tube paste electrode and its application for simultaneous determination of epinephrine, uric acid and ascorbic acid” Arabian journal of chemistry, 11(2): 149-158, (2018).
  • [31] Danyıldız, Z., Uzun, D., Tabanlıgil Calam, T., Hasdemir, E., “A voltammetric sensor based on glassy carbon electrode modified with 1H-1, 2, 4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution” Journal of Electroanalytical Chemistry, 805: 177-183, (2017).
  • [32] Li, H., Sun, D., “Simple and efficient epinephrine sensor based on palladium doped poly (L-arginine) modified electrode” Asian Journal of Chemistry, 27(7): 2539-2544, (2015).
  • [33] Tabanlıgil Calam, T., “Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples” International Journal of Environmental Analytical Chemistry, 99(13): 1298-1312, (2019). https://doi.org/10.1080/03067319.2019.1619716
  • [34] Tabanlıgil Calam, T., Hasdemir, E., “Comparative characterizations of self-assembled monolayers of 1, 6-hexanedithiol and 1-hexanethiol formed on polycrystalline gold electrode” Comptes rendus de l’Académie bulgare des Sciences, 72(3): 316-326, (2019).
  • [35] Tatli, F., Uzun, D., Tabanlıgil Calam, T., Gündüzalp, A. B., Hasdemir, E., “Preparation and characterization of 3‐[(1H‐1, 2, 4‐triazole‐3‐ylimino) methyl] naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid” Surface and Interface Analysis, 51(4): 475-483, (2019).
  • [36] Tabanlıgil Calam, T., Uzun, D., “Rapid and Selective Determination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropolymerized with 3‐amino‐1,2,4‐triazole‐5‐thiol” Electroanalysis, (2019). https://doi.org/10.1002/elan.201900328.
  • [37] Tabanlıgil Calam, T., Hasdemir, E., “Application of 1, 6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe (II) using square wave voltammetry” Gazi University Journal of Science, 31(1): 53-64, (2018).
  • [38] Ghazizadeh, A. J., Afkhami, A., Bagheri, H., “Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure” Microchim. Acta, 185(6): 296-306, (2018).
  • [39] Aghaei, R., Mazloum-Ardakani, M., Abdollahi-Alibeik, M., Moaddeli, A., “Electrochemical sensor based on multi-walled carbon nanotubes and 4-(((4-mercaptophenyl) imino) methyl) benzene-1, 2-diol for simultaneous determination of epinephrine in the presence of acetaminophen” Trends in Pharmaceutical Sciences, 4(3): 139-148, (2018).
  • [40] Tabanlıgil Calam, T., “Electrochemical oxidative determination and electrochemical behavior of 4-nitrophenol based on an Au electrode modified with electro-polymerized 3,5-diamino-1,2,4-triazole film” Electroanalysis, DOI: 10.1002/elan.201900450.
  • [41] He, D., Zhang, P., Li, S., Luo, H., “A novel free-standing CVD graphene platform electrode modified with AuPt hybrid nanoparticles and L-cysteine for the selective determination of epinephrine” Journal of Electroanalytical Chemistry, 823: 678-687, (2018).
  • [42] Shankar, S. S., & Swamy, B. K., “Detection of epinephrine in presence of serotonin and ascorbic acid by TTAB modified carbon paste electrode: a voltammetric study” Int. J. Electrochem. Sci., 9(3): 1321-1339, (2014).
  • [43] Li, H., Wang, X., “Simultaneous Determination of Epinephrine and Uric Acid at Poly(Guanine) Modified Glassy Carbon Electrode” Electrochemistry, 83(6): 434-439, (2015).
  • [44] Apetrei, I. M., Apetrei, C., “Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine” International Journal of Nanomedicine, 8: 4391-4398, (2013).
  • [45] M. Mazloum-Ardakani, A. Dehghani-Firouzabadi, N. Rajabzade, M. A. Sheikh-Mohseni, A. Benvidi, M. Abdollahi-Alibeik, “MCM/ZrO 2 nanoparticles modified electrode for simultaneous and selective voltammetric determination of epinephrine and acetaminophen” Journal of the Iranian Chemical Society, 10: 1-5, (2013). [46] Jahanbakhshi, M., “Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid” Materials Science and Engineering: C, 70: 544-551, (2017).
  • [47] Babaei, A., Afrasiabi, M., Azimi, G., “Nanomolar simultaneous determination of epinephrine and acetaminophen on a glassy carbon electrode coated with a novel Mg–Al layered double hydroxide–nickel hydroxide nanoparticles–multi-walled carbon nanotubes composite” Analytical Methods, 7(6): 2469-2478, (2015).
  • [48] Huang, J., Xu, W., Gong, Y., Weng, S., Lin, X., “Selective and reliable electrochemical sensor based on polythionine/AuNPs composites for epinephrine detection in serum” International Journal of Electrochemical Science, 11(10): 8193-8203, (2016).
  • [49] Mekassa, B., Tessema, M., Chandravanshi, B. S., Baker, P. G., Muya, F. N., “Sensitive electrochemical determination of epinephrine at poly (L-aspartic acid)/electro-chemically reduced graphene oxide modified electrode by square wave voltammetry in pharmaceutics” Journal of Electroanalytical Chemistry, 807: 145-153, (2017).
  • [50] Tohidinia, M., Noroozifar, M., “Investigation of Carbon Allotropes for Simultaneous Determination of Ascorbic Acid, Epinephrine, Uric Acid, Nitrite and Xanthine” International Journal of Electrochemical Science, 13(3): 2310-2328, (2018).
  • [51] Samadzadeh, A., Sheikhshoaie, I., Karimi-Maleh, H., “Simultaneous determination of epinephrine and tyrosine using a glassy carbon electrode amplified with ZnO-Pt/CNTs nanocomposite” Current Analytical Chemistry, 15(2): 166-171, (2019).
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Tuğba Tabanlıgil Calam 0000-0002-3712-7713

Project Number 65/2019‐02
Publication Date December 24, 2019
Submission Date September 24, 2019
Published in Issue Year 2019

Cite

APA Tabanlıgil Calam, T. (2019). Elektropolimerize 3,5-Diamino-1,2,4-Triazol Film ile Modifiye Edilmiş Altın Elektrot Yüzeyinde Epinefrinin Voltametrik Tayini ve Elektrokimyasal Davranışı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(4), 985-998. https://doi.org/10.29109/gujsc.623660

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526