Research Article
BibTex RIS Cite

Mıknatıslanmış Granül Dolgulu Yataklarda Submikron Parçacıklarının Yakalanması

Year 2020, , 131 - 140, 23.03.2020
https://doi.org/10.29109/gujsc.641444

Abstract

Dış
homojenik manyetik alanda mıknatıslanmış ve teğetleşmiş ferromanyetik kürelerin
oluşturduğu gradyantlı manyetik alanda mikron ve submikron boyutlu
parçacıkların difüzyon separasyonu olayı teorik olarak incelenmiştir.
Mıknatıslanmış kürelerin teğet noktaları etrafında oluşan gradyantlı alanda
submikron boyutlu parçacığa etkiyen manyetik kuvvet ifadesinden gidilerek
difüzyon denkleminin kararlı durumlar için analitik çözümü elde edilmiş ve
parçacıkların bu bölgelerdeki konsantrasyon dağılımı belirlenmiştir. Sistemin
manyetik, hidrodinamik, ısı ve geometrik parametreleri dikkate alınarak
difüzyon olunan parçacıkların kritik boyutlarını değerlendirmek için analitik
formül geliştirilmiştir. Elde edilen sonuçlara göre dış manyetik alanın
artmasıyla parçacıkların kritik boyutlarının azaldığı gözlenmiştir. Bu düşüşün
parçacıkların tek domenli yapısına kadar olabileceği vurgulanmıştır. Analitik
hesaplamalara göre parçacıkların kritik boyutlarının kürelerin boyutlarından
bağımsız olduğu görülmüştür. Ancak ferromanyetik kürelerin oluşturduğu
gradyantlı manyetik alanda oluşan difüzyon olaylarında parçacıkların kritik
boyutlarının matris elemanları olan kürelerin boyutlarından bağımsız olduğu
sonucunun tartışılabilir olduğu söylenmiştir. 

References

  • [1] V. V. Karmazin,V. I. Karmazin, Magnetic methods of beneficiation. Moscow: Nedra, 1987.
  • [2] J. Svoboda, Magnetic Techniques for the Treatment of Materials. Dordrecht: Kluver Academic, 2004.
  • [3] R. Gerber, R. . Birss, High gradient magnetic separation. New York, Research Studies Press, 1983.
  • [4] Bean C.P. Theory of magnetic filtration. Bull. Am. Phys. Soc. 16, (1971) 350-355.
  • [5] J. H. P. Watson, Magnetic filtration, J. Appl. Phys., 44: 9, (1973) 4209–4213.
  • [6] J. A. Obertteuffer, Magnetic separation: a review of principles, devices and applications IEEE Trans. Magn. 10: 2, (1974), 223-238.
  • [7] F. J. Friedlaender, M. Takayasu, A study of the mechanism of particle build-up on single ferromagnetic wires and spheres. IEEE Trans. Magn. Mag: 18, (1982) 817-819.
  • [8] C. De Latour, Magnetic Separation in. Water Pollution Control, IEEE Trans. Magn., 3: MAG 9, (1973) 314–316.
  • [9] J. Hristov, Magnetic field assisted fluidization - a unified approach. Part 9. Mechanical processing with emphasis on separations, Rev. Chem. Eng., 28:4–6, (2012) 243–308.
  • [10] E. J. Furlani, E. P. Furlani, A model for predicting magnetic targeting of multifunctional particles in the microvasculature, J. Magn. Magn. Mater., 312: 1, (2007) 87–193.
  • [11] X. Zheng, Z. Xue, Y. Wang, G. Zhu, D. Lu, X. Li, Modeling of particle capture in high gradient magnetic separation: A review, 352, (2019) 159-169.
  • [12] C. T. Yavuz, A. Prakash, J. T. Mayo, V.L. Golvin, magnetic separations:From still plants to biotechnology,Chemical Engineering Science, 64: 10, (2009) 2510-2521.
  • [13] F. Friedlaender, M. Takayasu, A study of the mechanisms of particle buildup on single ferromagnetic wires and spheres, IEEE Trans. Magn., 18: 3, (1982) 817–821.[14] R. Gerber Theory of particle capture in axial filters for high gradient magnetic separation, J. Phys, Appl. Phys., 11, (1978) 2119-2129.
  • [15] T. Abbasov, S. Herdem, M. Köksal, Particle capture in axial magnetic filters with power law flow model. J. Phys. D: Appl. Phys. 32, (1999) 1097-1103.
  • [16] X. Zheng, Y. Wang, D. Lu, X. Li, Theoretical and experimental study on elliptic matrices in the transversalhigh gradient magnetic separation, Minerals Engineering, 111, (2017) 68-78.
  • [17] X. Zheng, Y. Wang, D. Lu, X. Li, S. Li, H. Chu, Comparative study on the performance of circular and elliptic cross-sectionmatrices in axial high gradient magnetic separation: Role of the appliedmagnetic induction, Minerals Engineering, 110, (2017) 12-19.
  • [18] Y. Wang, D. Gao, X. Zheng, D. Lu, X. Li, Rapid determination of the magnetization state of elliptic cross-sectionmatrices for high gradient magnetic separation, Powder Technology, 339, (2018) 139-148.
  • [19] Y. Wang, Z. Xue, X. Zheng, D. Lu, X. Li, H. Chu, Study on favorable matrix aspect ratio for maximum particle capture in axial high gradient magnetic separation, Minerals Engineering 135, (2019) 48-54.
  • [20] Z. Kheshti, S. Hassanajili, K. Azodi Ghajar, Study and Optimization of a High-Gradient Magnetic Separator Using Flat and Lattice Plates, IEEE Transactions on Magnetics 55:2, (2019) 1-8.
  • [21] N. Rezlescu, V. Murariu, O. Rotariu, V. Badescu, Capture modelling for an axial high gradient magnetic separation filter with a bounded flow model, Powder Technol., 83, (1995), 259-264.
  • [22] V. Badescu, O. Rotariu, V. Murariu, N. Rezlescu, Magnetic capture modelling for a transversal high gradient filter cell with bounded flow field, Int. J. Appl. Electrom. Mech., 7, (1996) 57-67.
  • [23] M. Takayasu, R. Gerber, F. J. Friedlaender, Magnetic separation of submicron particles, IEEE Trans. Magn., 19:5, (1983) 2112-2114.
  • [24] R. Gerber, Magnetic filtration of ultra-fine particles, IEEE Trans. Magn., MAG-20:5, (1984) 1159-1164.
  • [25] R. Gerber, M. Takayasu, F. J. Friedlaender, Generalization of HGMS theory: The capture of ultra-fine particles, IEEE Trans. Magn. 19: 5, (1983) 2115-2117.
  • [26] D. Fletcher, Fine Particle High Gradient Magnetic Entrapment, IEEE Trans. Magn., 27: 4, (1991) 3655-3677.
  • [27] E. Blums, A. Yu. Chuckrov, Separation processes in polydisperse magnetic fluids, Journal of Magnetism and Magnetic Materials, 122, (1993) 110-114.
  • [28] E. Blums, A. Yu. Chuckrov, Some problems of mass transfer in magnetic colloids, Journal of Magnetism and Magnetic Materials, 85, (1990) 210-215.
  • [29] E. Blums, J. Plavins, A. Chukhrov, High-gradient magnetic separation of magnetic colloids and suspensions, Journal of Magnetism and Magnetic Materials 39, (1983) 147-151.
  • [30] K. Hournkumnuard, M. Natenapit, Diffusive capture of magnetic particles by an assemblage of random cylindrical collectors, Sep. Sci. Technol. 43, (2008) 3448–3460.
  • [31] T. Abbasov, M. Koksal, S. Herdem, Theory of High-Gradient Magnetic Filter Performance, IEEE Transactions On Magnetics, 35:4, (1999) 2128-2132.
  • [32] Polygradient magnetic separators, by Ed. N. F. Measnikov, Moscow: Nedra, 1973.
  • [33] A. Safonyk, A. Bomba, Mathematical modeling process of liquid filtration taking into account reverse influence of process characteristics on medium haracteristics, Int. J. Appl. Math. Res., 4:1 (2015) 1-7
  • [34] C. Magnet, M. Akouala, P. Kuzhir, G. Bossis, A. Zubarev, N. M. Wereley, Closed-loop magnetic separation of nanoparticles on a packed bed of spheres, J. Appl. Phys., 117:17, (2015) 117-119
  • [35] M. F. Haque, S. Arajs, C. Moyer, Experimental studies in magnetic separation of ultrafine hematite, IEEE Trans. Magn., 24:6, (1988) 2413–2415.
  • [36] C. Moyer, M. Natenapit, S. Arajs, Filtration of submicron particles by spheres in HGMS, J. Magn. Magn. Mater., 61:3, (1986) 271–277.
  • [37] Y. I. Akoto, Mathematical modelling of high-gradient magnetic separation devices, IEEE Trans. Magn. 13: 5, (1977), 1486-1489.
  • [38] J. H. P. Watson, Approcximate solutions of the magnetic separator equations. IEEE Trans. Magn. 14: 4, (1978), 240-245.
  • [39] N. Fuchs, Z. Physik, Über die Stabilität und Aufladung der Aerosole, Zeitschrift für Physik, 89, (1934) 736-743.
  • [40] T. Abbasov, K. Ceylan, Filter Performance and Velocity Distribution Relation in Magnetic Filtration of Non-Newtonian Liquids, Separation Science and Technology 33: 7, (1998) 2177-2189.
  • [41] T. Abbasov, A. Sarimeseli Altunbas, Determination of the particle capture radius in magnetic filters with velocity distribution profile in pores, Separation Science and Technology 37: 9, (2002) 2037-2053.
  • [42] T. Abbasov, Elektromanyetik Filtreleme İşlemleri Teori, Uygulama ve Konstrüksiyon, Şeçkin, Ankara, 2002.
Year 2020, , 131 - 140, 23.03.2020
https://doi.org/10.29109/gujsc.641444

Abstract

References

  • [1] V. V. Karmazin,V. I. Karmazin, Magnetic methods of beneficiation. Moscow: Nedra, 1987.
  • [2] J. Svoboda, Magnetic Techniques for the Treatment of Materials. Dordrecht: Kluver Academic, 2004.
  • [3] R. Gerber, R. . Birss, High gradient magnetic separation. New York, Research Studies Press, 1983.
  • [4] Bean C.P. Theory of magnetic filtration. Bull. Am. Phys. Soc. 16, (1971) 350-355.
  • [5] J. H. P. Watson, Magnetic filtration, J. Appl. Phys., 44: 9, (1973) 4209–4213.
  • [6] J. A. Obertteuffer, Magnetic separation: a review of principles, devices and applications IEEE Trans. Magn. 10: 2, (1974), 223-238.
  • [7] F. J. Friedlaender, M. Takayasu, A study of the mechanism of particle build-up on single ferromagnetic wires and spheres. IEEE Trans. Magn. Mag: 18, (1982) 817-819.
  • [8] C. De Latour, Magnetic Separation in. Water Pollution Control, IEEE Trans. Magn., 3: MAG 9, (1973) 314–316.
  • [9] J. Hristov, Magnetic field assisted fluidization - a unified approach. Part 9. Mechanical processing with emphasis on separations, Rev. Chem. Eng., 28:4–6, (2012) 243–308.
  • [10] E. J. Furlani, E. P. Furlani, A model for predicting magnetic targeting of multifunctional particles in the microvasculature, J. Magn. Magn. Mater., 312: 1, (2007) 87–193.
  • [11] X. Zheng, Z. Xue, Y. Wang, G. Zhu, D. Lu, X. Li, Modeling of particle capture in high gradient magnetic separation: A review, 352, (2019) 159-169.
  • [12] C. T. Yavuz, A. Prakash, J. T. Mayo, V.L. Golvin, magnetic separations:From still plants to biotechnology,Chemical Engineering Science, 64: 10, (2009) 2510-2521.
  • [13] F. Friedlaender, M. Takayasu, A study of the mechanisms of particle buildup on single ferromagnetic wires and spheres, IEEE Trans. Magn., 18: 3, (1982) 817–821.[14] R. Gerber Theory of particle capture in axial filters for high gradient magnetic separation, J. Phys, Appl. Phys., 11, (1978) 2119-2129.
  • [15] T. Abbasov, S. Herdem, M. Köksal, Particle capture in axial magnetic filters with power law flow model. J. Phys. D: Appl. Phys. 32, (1999) 1097-1103.
  • [16] X. Zheng, Y. Wang, D. Lu, X. Li, Theoretical and experimental study on elliptic matrices in the transversalhigh gradient magnetic separation, Minerals Engineering, 111, (2017) 68-78.
  • [17] X. Zheng, Y. Wang, D. Lu, X. Li, S. Li, H. Chu, Comparative study on the performance of circular and elliptic cross-sectionmatrices in axial high gradient magnetic separation: Role of the appliedmagnetic induction, Minerals Engineering, 110, (2017) 12-19.
  • [18] Y. Wang, D. Gao, X. Zheng, D. Lu, X. Li, Rapid determination of the magnetization state of elliptic cross-sectionmatrices for high gradient magnetic separation, Powder Technology, 339, (2018) 139-148.
  • [19] Y. Wang, Z. Xue, X. Zheng, D. Lu, X. Li, H. Chu, Study on favorable matrix aspect ratio for maximum particle capture in axial high gradient magnetic separation, Minerals Engineering 135, (2019) 48-54.
  • [20] Z. Kheshti, S. Hassanajili, K. Azodi Ghajar, Study and Optimization of a High-Gradient Magnetic Separator Using Flat and Lattice Plates, IEEE Transactions on Magnetics 55:2, (2019) 1-8.
  • [21] N. Rezlescu, V. Murariu, O. Rotariu, V. Badescu, Capture modelling for an axial high gradient magnetic separation filter with a bounded flow model, Powder Technol., 83, (1995), 259-264.
  • [22] V. Badescu, O. Rotariu, V. Murariu, N. Rezlescu, Magnetic capture modelling for a transversal high gradient filter cell with bounded flow field, Int. J. Appl. Electrom. Mech., 7, (1996) 57-67.
  • [23] M. Takayasu, R. Gerber, F. J. Friedlaender, Magnetic separation of submicron particles, IEEE Trans. Magn., 19:5, (1983) 2112-2114.
  • [24] R. Gerber, Magnetic filtration of ultra-fine particles, IEEE Trans. Magn., MAG-20:5, (1984) 1159-1164.
  • [25] R. Gerber, M. Takayasu, F. J. Friedlaender, Generalization of HGMS theory: The capture of ultra-fine particles, IEEE Trans. Magn. 19: 5, (1983) 2115-2117.
  • [26] D. Fletcher, Fine Particle High Gradient Magnetic Entrapment, IEEE Trans. Magn., 27: 4, (1991) 3655-3677.
  • [27] E. Blums, A. Yu. Chuckrov, Separation processes in polydisperse magnetic fluids, Journal of Magnetism and Magnetic Materials, 122, (1993) 110-114.
  • [28] E. Blums, A. Yu. Chuckrov, Some problems of mass transfer in magnetic colloids, Journal of Magnetism and Magnetic Materials, 85, (1990) 210-215.
  • [29] E. Blums, J. Plavins, A. Chukhrov, High-gradient magnetic separation of magnetic colloids and suspensions, Journal of Magnetism and Magnetic Materials 39, (1983) 147-151.
  • [30] K. Hournkumnuard, M. Natenapit, Diffusive capture of magnetic particles by an assemblage of random cylindrical collectors, Sep. Sci. Technol. 43, (2008) 3448–3460.
  • [31] T. Abbasov, M. Koksal, S. Herdem, Theory of High-Gradient Magnetic Filter Performance, IEEE Transactions On Magnetics, 35:4, (1999) 2128-2132.
  • [32] Polygradient magnetic separators, by Ed. N. F. Measnikov, Moscow: Nedra, 1973.
  • [33] A. Safonyk, A. Bomba, Mathematical modeling process of liquid filtration taking into account reverse influence of process characteristics on medium haracteristics, Int. J. Appl. Math. Res., 4:1 (2015) 1-7
  • [34] C. Magnet, M. Akouala, P. Kuzhir, G. Bossis, A. Zubarev, N. M. Wereley, Closed-loop magnetic separation of nanoparticles on a packed bed of spheres, J. Appl. Phys., 117:17, (2015) 117-119
  • [35] M. F. Haque, S. Arajs, C. Moyer, Experimental studies in magnetic separation of ultrafine hematite, IEEE Trans. Magn., 24:6, (1988) 2413–2415.
  • [36] C. Moyer, M. Natenapit, S. Arajs, Filtration of submicron particles by spheres in HGMS, J. Magn. Magn. Mater., 61:3, (1986) 271–277.
  • [37] Y. I. Akoto, Mathematical modelling of high-gradient magnetic separation devices, IEEE Trans. Magn. 13: 5, (1977), 1486-1489.
  • [38] J. H. P. Watson, Approcximate solutions of the magnetic separator equations. IEEE Trans. Magn. 14: 4, (1978), 240-245.
  • [39] N. Fuchs, Z. Physik, Über die Stabilität und Aufladung der Aerosole, Zeitschrift für Physik, 89, (1934) 736-743.
  • [40] T. Abbasov, K. Ceylan, Filter Performance and Velocity Distribution Relation in Magnetic Filtration of Non-Newtonian Liquids, Separation Science and Technology 33: 7, (1998) 2177-2189.
  • [41] T. Abbasov, A. Sarimeseli Altunbas, Determination of the particle capture radius in magnetic filters with velocity distribution profile in pores, Separation Science and Technology 37: 9, (2002) 2037-2053.
  • [42] T. Abbasov, Elektromanyetik Filtreleme İşlemleri Teori, Uygulama ve Konstrüksiyon, Şeçkin, Ankara, 2002.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Teoman Karadağ 0000-0002-7682-7771

Publication Date March 23, 2020
Submission Date November 1, 2019
Published in Issue Year 2020

Cite

APA Karadağ, T. (2020). Mıknatıslanmış Granül Dolgulu Yataklarda Submikron Parçacıklarının Yakalanması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(1), 131-140. https://doi.org/10.29109/gujsc.641444

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526