Research Article
BibTex RIS Cite

Düzlemsel Olmayan Çatlak İlerleme Problemlerinin Üç Boyutlu Analizi

Year 2017, Volume: 5 Issue: 2, 159 - 175, 25.06.2017

Abstract

Enerji, Savunma, Havacılık ve Uzay teknolojileri, ülkeler için kritik öneme sahip olup, bilim ve teknoloji düzeyinin gelişmesinde öncü rol oynayan alanların başında gelmektedir. Ar-Ge ve
yatırım maliyetlerinin yüksek olduğu bu alanlarda, kullanılan ekipmanlar da hem mali açıdan hem de malzeme güvenilirliği açısından büyük önem kazanmaktadır. Malzemelerde oluşabilecek hasarları en aza indirebilmek ve çatlak içeren yapıların emniyetli çalışabilmesini sağlamak için son yıllarda kırılma mekaniği alanında yapılan çalışmalar ağırlık kazanmıştır. Tasarım aşamasından başlayarak hasar/çatlak toleransları ve ömürleri tahmin edilerek iyileştirme çalışmaları gerçekleştirilmektedir.
Bu çalışmada, çatlaklı yapıların mod-I kırılma tokluğunu (K
IC) belirlemede kullanılan standart CT (compact tension) numunesine eğik çatlak yerleştirilerek mod-I dış yüklemesi altında çatlağın üç boyutlu modelleme ve çatlak ilerleme simülasyonları gerçekleştirilmiştir. Kırılma ve çatlak ilerleme analizleri FCPAS (Fracture and Crack Propagation Analysis System) programı ile gerçekleştirilmiştir. Bu çalışma, FCPAS ile üç boyutlu karışık modlu çatlak ilerleme olgusunun modellenmesinin ilk adımını oluşturmaktadır.  

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK)

Project Number

113M407

Thanks

Bu çalışmayı, 113M407 no.lu proje kapsamında finansal olarak destekleyen, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK) teşekkür ederiz.

References

  • M. Haile, T. K. Chen, F. Sediles,M. Shiao, D. Le, Estimating crack growth in rotorcraft structures subjected to mission load spectrum, International Journal of Fatigue, 43:142–149, 2012.
  • R. Jones, D. Tamboli, Implications of the lead crack philosophy and the role of short cracks in combat aircraft, Engineering Failure Analysis, 9:149–166, 2013.
  • L. Molent, S. A. Barter, A comparison of crack growth behaviour in several full-scale airframe fatigue tests, International Journal of Fatigue, 29:1090–1099, 2007.
  • W. Zhuang, S. Barter, L. Molent, Flight-by-flight fatigue crack growth life assessment, International Journal of Fatigue, 29:1647–1657, 2007.
  • R. K. Yee, K. S. Sidhu, Innovative laser heating methodology study for crack growth retardation in aircraft structures, International Journal of Fatigue, 27:245–253, 2005.
  • R. Jones, S. Pitt, D. Peng, The generalised Frost–Dugdale approach to modelling fatigue crack growth, Engineering Failure Analysis, 15:1130–1149, 2008.
  • L. Molent, S. A. Barter, R. J. H. Wanhill, The lead crack fatigue lifing framework, International Journal of Fatigue, 33:323–331, 2011.
  • W. Zhuang, L. Molent, Analytical study of fatigue crack growth in AA7050 notched specimens under spectrum loading, Engineering Fracture Mechanics, 77:1884–1895, 2010.
  • I. Salam, A. Tauqir, A. Q. Khan, Creep-fatigue failure of an aero engine turbine blades, Engineering Failure Analysis, 9:335–347, 2002.
  • L. Molent, S. A. Barter, The lead fatigue crack concept for aircraft structural integrity, Procedia Engineering, 2:363–377, 2010.
  • J. M. Larsen, B.D. Worth, C. G. Annis, F. K. Haake, An assessment of the role of near-threshold crack growth in high-cycle fatigue life prediction of aerospace titanium alloys under turbine engine spectra, International Journal of Fracture, 80:237-255, 1996.
  • T. Nicholas, J. R. Zuiker, On the use of the Goodman diagram for high cycle fatigue design, International Journal of Fracture, 80:219-235, 1996.
  • B. A. Cowles, High cycle fatigue in aircraft gas turbines-an industry perspective, International Journal of Fracture, 80:147-163, 1996.
  • Y. Mi, M. H. Aliabadi, Three-dimensional crack growth simulation using BEM, Comput. Struct., 52(5):871-8, 1994.
  • W. T. Riddell, A. R. Ingraffea, P. A. Wawrzynek, Experimental observations and numerical predictions of three-dimensional fatigue crack propagation, Eng. Fract. Mech., 58(4):293-310, 1997.
  • B. J. Carter, P. A. Wawrzynek, A. R. Ingraffea, Automated 3-D crack growth simulation, Int. J. Numer. Methods Eng., 47:229-53, 2000.
  • K. W. Barlow, R. Chandra, Fatigue crack propagation simulation in an aircraft engine fan blade attachment, Int. J. Fatigue, 27:1661-8, 2005.
  • J. Hou, M. Goldstraw, S. Maan, M. Knop, An evaluation of 3D crack growth using ZENCRACK, DSTO-TR-1158, Defense Science and Technology Organization, 2001.
  • Zentech, Zencrack, 3D fracture mechanics simulation, UK: Zentech Int. Ltd., 2008.
  • M. Schollmann, M. Fan, H. A. Richard, Development of a new software for adaptive crack growth simulations in 3D structures, Eng. Fract. Mech., 70:249–68, 2003.
  • BEASY™, Fatigue and crack growth software, <http://www.beasy.com>.
  • S. Bordas, B. Moran, Enriched finite elements and level sets for damage tolerance assessment of complex structures, Eng. Fract. Mech., 73:1176–1201, 2006.
  • M. Moes, A. Gravouil, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model, Int. J. Numer. Methods Eng., 53:2549–2568, 2002.
  • J. Oliver, A. E. Huespe, P. J. Sanchez, A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM, Comput. Methods Appl. Mech. Eng., 195:4732–4752, 2006.
  • J. Rannou, A. Gravouil, M. C. Baietto-Dubourg, A local multigrid X-FEM strategy for 3-D crack propagation, Int. J. Numer. Methods En., 77:581–600, 2009.
  • M. Duflot, The extended finite element method in thermoelastic fracture mechanics, Int. J. Numer. Methods Eng., 74:827–847, 2008.
  • T. H. Hyde, N. A. Warrior, Mixed-mode stress intensity factors for inclined cracks in round bars, J. Strain. Anal., 28:257–262, 1993.
  • W. Lan, X. Deng, M. A. Sutton, Three-dimensional finite element simulations of mixed-mode stable tearing crack growth experiments, Eng. Fract. Mech., 74:2498–2517, 2007.
  • H. Zhang, H. Toda, P. C. Qu,Y. Sakaguchi, M. Kobayashi, K. Uesugi, Y. Suzuki, Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography, Acta Mater., 57:3287–3300, 2009.
  • J. Rannou, N. Limodin, J. Rethore, A. Gravouil, W. Ludwig, M. C. Baietto-Dubourg, J. Y. Buffiere, A. Combescure, F. Hild, S. Roux, Three dimensional experimental and numerical multiscale analysis of a fatigue crack, Comput. Methods Appl. Mech. Eng., 199:1307–1325, 2010.
  • A. O. Ayhan, Mixed-mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates, Eng. Fract. Mech., 71:1059–1079, 2004.
  • A. O. Ayhan, Mixed-mode stress intensity factors for deflected and inclined corner cracks in finitethickness plates, Int. J. Fract., 29:305–317, 2007a.
  • A. O. Ayhan, A. C. Kaya, H. F. Nied, Analysis of three-dimensional interface cracks using enriched finite elements, Int. J. Fract., 142:255–276, 2006.
  • A.O. Ayhan, Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements, Int. J. Solids Struct., 44:8579–8599, 2007b.
  • A. O. Ayhan, Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements, Int. J. Solids Struct., 46:796–810, 2009.
  • A. O. Ayhan, H. F. Nied, FRAC3D-Finite element based software for 3-D and generalized plane strain fracture analysis, SRC Technical Report, 1998.
  • A. O. Ayhan, H. F. Nied, Stress intensity factors for three-dimensional surface cracks using enriched elements, Int J Numer Method Engng., 54:899-921, 2002.
  • B. R. Davis, P. A. Wawrzynek, B. J. Carter, A. R. Ingraffea, 3-D simulation of arbitrary crack growth using an energy-based formulation-Part II: Non-planar growth, Engineering Fracture Mechanics, 154:111–127, 2016.
  • A. O. Ayhan, Simulation of three-dimensional fatigue crack propagation using enriched finite elements, Computers & Structures, 89:801-812, 2011.
  • M. Uslu, O. Demir, A. O. Ayhan, Surface cracks in finite thickness plates under thermal and displacement-controlled loads – Part 1: Stress intensity factors, Engineering Fracture Mechanics, 115:284–295, 2014.
  • A. O. Ayhan, Finite element analysis of nonlinear deformation mechanisms in semiconductor packages, Ph.D. dissertation, Lehigh University, 1999.
  • M. Uslu, O. Demir, A. O. Ayhan, Surface cracks in finite thickness plates under thermal and displacement-controlled loads – Part 2: Crack propagation, Engineering Fracture Mechanics, 115:255–269, 2014.
  • P. C. Paris, M. P. Gomez, W. E. Anderson, A rational analytic theory of fatigue, Trend Engng., 13:9–14, 1961.
  • F. Erdogan, G. C. Sih, On the crack extension of plates under plane loading and transverse shear, J. Bas. Engng., 85:519-527, 1963.
  • ANSYS, Academic Research Version 12.0, Ansys Inc., Canonsburg, PA, USA, 2009.
  • DataFit 9 Tutorials, Oakdale Engineering, Oakdale, PA 15071.
  • H. E. Misak, V. Y. Perel, V. Sabelkin, S. Mall, Crack growth behavior of 7075-T6 under biaxial tension–tension fatigue, International Journal of Fatigue, 55158–165, 2013.
  • M. Kikuchi, Y. Wada, C. Ohdama, Effect of KIII on fatigue crack growth behavior, Journal of Engineering Materials and Technology, 134(4), 041009, 2012.
Year 2017, Volume: 5 Issue: 2, 159 - 175, 25.06.2017

Abstract

Project Number

113M407

References

  • M. Haile, T. K. Chen, F. Sediles,M. Shiao, D. Le, Estimating crack growth in rotorcraft structures subjected to mission load spectrum, International Journal of Fatigue, 43:142–149, 2012.
  • R. Jones, D. Tamboli, Implications of the lead crack philosophy and the role of short cracks in combat aircraft, Engineering Failure Analysis, 9:149–166, 2013.
  • L. Molent, S. A. Barter, A comparison of crack growth behaviour in several full-scale airframe fatigue tests, International Journal of Fatigue, 29:1090–1099, 2007.
  • W. Zhuang, S. Barter, L. Molent, Flight-by-flight fatigue crack growth life assessment, International Journal of Fatigue, 29:1647–1657, 2007.
  • R. K. Yee, K. S. Sidhu, Innovative laser heating methodology study for crack growth retardation in aircraft structures, International Journal of Fatigue, 27:245–253, 2005.
  • R. Jones, S. Pitt, D. Peng, The generalised Frost–Dugdale approach to modelling fatigue crack growth, Engineering Failure Analysis, 15:1130–1149, 2008.
  • L. Molent, S. A. Barter, R. J. H. Wanhill, The lead crack fatigue lifing framework, International Journal of Fatigue, 33:323–331, 2011.
  • W. Zhuang, L. Molent, Analytical study of fatigue crack growth in AA7050 notched specimens under spectrum loading, Engineering Fracture Mechanics, 77:1884–1895, 2010.
  • I. Salam, A. Tauqir, A. Q. Khan, Creep-fatigue failure of an aero engine turbine blades, Engineering Failure Analysis, 9:335–347, 2002.
  • L. Molent, S. A. Barter, The lead fatigue crack concept for aircraft structural integrity, Procedia Engineering, 2:363–377, 2010.
  • J. M. Larsen, B.D. Worth, C. G. Annis, F. K. Haake, An assessment of the role of near-threshold crack growth in high-cycle fatigue life prediction of aerospace titanium alloys under turbine engine spectra, International Journal of Fracture, 80:237-255, 1996.
  • T. Nicholas, J. R. Zuiker, On the use of the Goodman diagram for high cycle fatigue design, International Journal of Fracture, 80:219-235, 1996.
  • B. A. Cowles, High cycle fatigue in aircraft gas turbines-an industry perspective, International Journal of Fracture, 80:147-163, 1996.
  • Y. Mi, M. H. Aliabadi, Three-dimensional crack growth simulation using BEM, Comput. Struct., 52(5):871-8, 1994.
  • W. T. Riddell, A. R. Ingraffea, P. A. Wawrzynek, Experimental observations and numerical predictions of three-dimensional fatigue crack propagation, Eng. Fract. Mech., 58(4):293-310, 1997.
  • B. J. Carter, P. A. Wawrzynek, A. R. Ingraffea, Automated 3-D crack growth simulation, Int. J. Numer. Methods Eng., 47:229-53, 2000.
  • K. W. Barlow, R. Chandra, Fatigue crack propagation simulation in an aircraft engine fan blade attachment, Int. J. Fatigue, 27:1661-8, 2005.
  • J. Hou, M. Goldstraw, S. Maan, M. Knop, An evaluation of 3D crack growth using ZENCRACK, DSTO-TR-1158, Defense Science and Technology Organization, 2001.
  • Zentech, Zencrack, 3D fracture mechanics simulation, UK: Zentech Int. Ltd., 2008.
  • M. Schollmann, M. Fan, H. A. Richard, Development of a new software for adaptive crack growth simulations in 3D structures, Eng. Fract. Mech., 70:249–68, 2003.
  • BEASY™, Fatigue and crack growth software, <http://www.beasy.com>.
  • S. Bordas, B. Moran, Enriched finite elements and level sets for damage tolerance assessment of complex structures, Eng. Fract. Mech., 73:1176–1201, 2006.
  • M. Moes, A. Gravouil, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model, Int. J. Numer. Methods Eng., 53:2549–2568, 2002.
  • J. Oliver, A. E. Huespe, P. J. Sanchez, A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM, Comput. Methods Appl. Mech. Eng., 195:4732–4752, 2006.
  • J. Rannou, A. Gravouil, M. C. Baietto-Dubourg, A local multigrid X-FEM strategy for 3-D crack propagation, Int. J. Numer. Methods En., 77:581–600, 2009.
  • M. Duflot, The extended finite element method in thermoelastic fracture mechanics, Int. J. Numer. Methods Eng., 74:827–847, 2008.
  • T. H. Hyde, N. A. Warrior, Mixed-mode stress intensity factors for inclined cracks in round bars, J. Strain. Anal., 28:257–262, 1993.
  • W. Lan, X. Deng, M. A. Sutton, Three-dimensional finite element simulations of mixed-mode stable tearing crack growth experiments, Eng. Fract. Mech., 74:2498–2517, 2007.
  • H. Zhang, H. Toda, P. C. Qu,Y. Sakaguchi, M. Kobayashi, K. Uesugi, Y. Suzuki, Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography, Acta Mater., 57:3287–3300, 2009.
  • J. Rannou, N. Limodin, J. Rethore, A. Gravouil, W. Ludwig, M. C. Baietto-Dubourg, J. Y. Buffiere, A. Combescure, F. Hild, S. Roux, Three dimensional experimental and numerical multiscale analysis of a fatigue crack, Comput. Methods Appl. Mech. Eng., 199:1307–1325, 2010.
  • A. O. Ayhan, Mixed-mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates, Eng. Fract. Mech., 71:1059–1079, 2004.
  • A. O. Ayhan, Mixed-mode stress intensity factors for deflected and inclined corner cracks in finitethickness plates, Int. J. Fract., 29:305–317, 2007a.
  • A. O. Ayhan, A. C. Kaya, H. F. Nied, Analysis of three-dimensional interface cracks using enriched finite elements, Int. J. Fract., 142:255–276, 2006.
  • A.O. Ayhan, Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements, Int. J. Solids Struct., 44:8579–8599, 2007b.
  • A. O. Ayhan, Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements, Int. J. Solids Struct., 46:796–810, 2009.
  • A. O. Ayhan, H. F. Nied, FRAC3D-Finite element based software for 3-D and generalized plane strain fracture analysis, SRC Technical Report, 1998.
  • A. O. Ayhan, H. F. Nied, Stress intensity factors for three-dimensional surface cracks using enriched elements, Int J Numer Method Engng., 54:899-921, 2002.
  • B. R. Davis, P. A. Wawrzynek, B. J. Carter, A. R. Ingraffea, 3-D simulation of arbitrary crack growth using an energy-based formulation-Part II: Non-planar growth, Engineering Fracture Mechanics, 154:111–127, 2016.
  • A. O. Ayhan, Simulation of three-dimensional fatigue crack propagation using enriched finite elements, Computers & Structures, 89:801-812, 2011.
  • M. Uslu, O. Demir, A. O. Ayhan, Surface cracks in finite thickness plates under thermal and displacement-controlled loads – Part 1: Stress intensity factors, Engineering Fracture Mechanics, 115:284–295, 2014.
  • A. O. Ayhan, Finite element analysis of nonlinear deformation mechanisms in semiconductor packages, Ph.D. dissertation, Lehigh University, 1999.
  • M. Uslu, O. Demir, A. O. Ayhan, Surface cracks in finite thickness plates under thermal and displacement-controlled loads – Part 2: Crack propagation, Engineering Fracture Mechanics, 115:255–269, 2014.
  • P. C. Paris, M. P. Gomez, W. E. Anderson, A rational analytic theory of fatigue, Trend Engng., 13:9–14, 1961.
  • F. Erdogan, G. C. Sih, On the crack extension of plates under plane loading and transverse shear, J. Bas. Engng., 85:519-527, 1963.
  • ANSYS, Academic Research Version 12.0, Ansys Inc., Canonsburg, PA, USA, 2009.
  • DataFit 9 Tutorials, Oakdale Engineering, Oakdale, PA 15071.
  • H. E. Misak, V. Y. Perel, V. Sabelkin, S. Mall, Crack growth behavior of 7075-T6 under biaxial tension–tension fatigue, International Journal of Fatigue, 55158–165, 2013.
  • M. Kikuchi, Y. Wada, C. Ohdama, Effect of KIII on fatigue crack growth behavior, Journal of Engineering Materials and Technology, 134(4), 041009, 2012.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Oğuzhan Demir

Ali Osman Ayhan

Project Number 113M407
Publication Date June 25, 2017
Submission Date June 22, 2016
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Demir, O., & Ayhan, A. O. (2017). Düzlemsel Olmayan Çatlak İlerleme Problemlerinin Üç Boyutlu Analizi. Gazi University Journal of Science Part C: Design and Technology, 5(2), 159-175.

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526