Research Article
BibTex RIS Cite

Su Verilmiş AISI 52100 Çeliğinde Metalografik Numune Hazırlama İşlemlerinin Kalıntı Östenit Hacim Oranına Etkisi

Year 2020, Volume: 8 Issue: 2, 427 - 438, 28.06.2020
https://doi.org/10.29109/gujsc.672334

Abstract

Metalografik incelemelerde numune hazırlama işlemleri malzeme karakterizasyonunda temel basamaklardan biri olup, numune hazırlama işlemlerinin mikroyapıyı oluşturan fazların kararlılığında değişkenliğe sebebiyet vermesi yapılan deneysel çalışmanın yorumlanmasında hatalara neden olabilmektedir. Bu çalışmada, su verilmiş AISI 52100 çeliğinde metalografik numune hazırlama işlemlerinde (zımpara+polisaj) uygulanan yükün kalıntı östenit hacim oranına etkisi araştırılmıştır. Farklı yükler (20N, 40N, 80N, 100N) altında hazırlanan numuneler optik mikroskop, SEM ile incelenmiş ve XRD analizleri yapılmıştır. Kalıntı östenit miktarı XRD analizinin doğrudan karşılaştırılması yöntemiyle hesaplanmıştır. Yüzey pürüzlülüğünün XRD desenlerine etkilerini belirlemek amacıyla yüzey pürüzlülüğü ölçümleri yapılmıştır. Uygulanan yükün kalıntı östeniti martensite dönüştürme ve bu dönüşüm sonrasında makro sertlikte artış ihtimalini değerlendirmek amacıyla sertlik ölçümleri gerçekleştirilmiştir. Bu çalışmalar sonucunda farklı yükler altında hazırlanan metalografi inceleme numunelerinin optik mikroskop, SEM ile mikroyapı incelemeleri ve XRD analizleri kalıntı östenit hacim oranında dikkate değer bir farklılığın oluşmadığını göstermiştir. Kalıntı östenit faz hacim oranında değişimin gözlemlenmemesinin sebebi olarak kalıntı östenit hacim oranının az olması (<%10) sebebiyle fazla miktardaki martenzit hacim oranının östenit üzerine uyguladığı yüksek basma gerilmesi olduğu düşünülmektedir.

Thanks

Çalışmamızın gerçekleştirilmesinde kullanmış olduğumuz alt yapı ve laboratuvar imkânlarının kurulmasını sağlayan Gazi Üniversitesi Bilimsel Araştırma Projeleri birimine teşekkür ederiz.

References

  • M. Witte and C. Lesch, “On the improvement of measurement accuracy of retained austenite in steel with X-ray diffraction,” Mater. Charact., vol. 139, no. November 2017, pp. 111–115, 2018.
  • A. F. Mark, X. Wang, E. Essadiqi, J. D. Embury, and J. D. Boyd, “Development and characterisation of model TRIP steel microstructures,” Mater. Sci. Eng. A, vol. 576, pp. 108–117, 2013.
  • J. Lai, H. Huang, and W. Buising, “Effects of microstructure and surface roughness on the fatigue strength of high-strength steels,” Procedia Struct. Integr., vol. 2, pp. 1213–1220, 2016.
  • T. Dutta, D. Das, S. Banerjee, S. K. Saha, and S. Datta, “An automated morphological classification of ferrite-martensite dual-phase microstructures,” Meas. J. Int. Meas. Confed., vol. 137, pp. 595–603, 2019.
  • G. Azizi, H. Mirzadeh, and M. H. Parsa, “The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties,” Mater. Sci. Eng. A, vol. 639, pp. 402–406, 2015.
  • A. Molkeri, F. Pahlevani, I. Emmanuelawati, and V. Sahajwalla, “Thermal and mechanical stability of retained austenite in high carbon steel: An in-situ investigation,” Mater. Lett., vol. 163, pp. 209–213, Jan. 2016.
  • Z. Nishiyama, M. E. Fine, M. Meshii, and C. M. Wayman, “Martensitic transformation,” p. 467, 1978.
  • W. F. Smith, ‘‘Mühendislik alaşımlarının yapı ve özellikleri,’’ Çev.: M. Erdoğan, Nobel Yay., Ankara 2000.
  • Z. Y. Tang, J. N. Huang, H. Ding, Z. H. Cai, and R. D. K. Misra, “Austenite stability and mechanical properties of a low-alloyed ECAPed TRIP-aided steel,” Mater. Sci. Eng. A, vol. 724, pp. 95–102, May 2018.
  • A. Järvenpää, M. Jaskari, J. Man, and L. P. Karjalainen, “Austenite stability in reversion- treated structures of a 301LN steel under tensile loading,” Mater. Charact., vol. 127, pp. 12–26, May 2017.
  • R. D. K. Misra, Z. Zhang, Z. Jia, M. C. Somani, and L. P. Karjalainen, “Probing deformation processes in near-defect free volume in high strength–high ductility nanograined/ultrafine-grained (NG/UFG) metastable austenitic stainless steels,” Scr. Mater., vol. 63, no. 11, pp. 1057–1060, Nov. 2010.
  • R. H. Leal and J. R. C. Guimarães, “Microstructure evolution during mechanically induced martensitic transformation in Fe-33%Ni-0.1%C,” Mater. Sci. Eng., vol. 48, no. 2, pp. 249–254, May 1981.
  • Z. C. Li, R. D. K. Misra, Z. H. Cai, H. X. Li, and H. Ding, “Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect,” Mater. Sci. Eng. A, vol. 673, pp. 63–72, Sep. 2016.
  • C. García-Mateo and F. G. Caballero, “The role of retained austenite on tensile properties of steels with bainitic microstructures,” Mater. Trans., vol. 46, no. 8, pp. 1839–1846, 2005.
  • R. Sierra and J. A. Nemes, “Investigation of the mechanical behaviour of multi-phase TRIP steels using finite element methods,” Int. J. Mech. Sci., vol. 50, no. 4, pp. 649–665, Apr. 2008.
  • X. Cheng, R. Petrov, L. Zhao, and M. Janssen, “Fatigue crack growth in TRIP steel under positive R-ratios,” Eng. Fract. Mech., vol. 75, no. 3–4, pp. 739–749, Feb. 2008.
  • Y. F. Shen, L. N. Qiu, X. Sun, L. Zuo, P. K. Liaw, and D. Raabe, “Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels,” Mater. Sci. Eng. A, vol. 636, pp. 551–564, Jun. 2015.
  • M.-M. Wang, C. C. Tasan, D. Ponge, A. Kostka, and D. Raabe, “Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels,” Acta Mater., vol. 79, pp. 268–281, Oct. 2014.
  • K. S. Choi, A. Soulami, W. N. Liu, X. Sun, and M. A. Khaleel, “Influence of various material design parameters on deformation behaviors of TRIP steels,” Comput. Mater. Sci., vol. 50, no. 2, pp. 720–730, Dec. 2010.
  • X. Qiao, L. Han, W. Zhang, and J. Gu, “Nano-indentation investigation on the mechanical stability of individual austenite in high-carbon steel,” Mater. Charact., vol. 110, pp. 86–93, Dec. 2015.
  • ASTM. E975, “Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1,” ASTM, vol. 03, no. Reapproved 2008, pp. 1–7, 2013.
  • S. Practice, “Microetching Metals and Alloys 1,” October, vol. 11, no. November, pp. 1–21, 1999.
  • Roberts C.S. Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite, Trans. AIME 197: 203-204, 1953.
  • Y. Kaynak and E. Tascioglu, “Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy,” Procedia CIRP, vol. 71, pp. 500–504, 2018.
  • Pitschke, W., Hermann, H., & Mattern, N. The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis. Powder Diffraction, 8(2), 74-83, 1993.
  • Suortti, P. Effects of porosity and surface roughness on the X‐ray intensity reflected from a powder specimen. J. Appl. Cryst., 5: 325-331, 1972.
  • M. X. Zhang, P. M. Kelly, L. K. Bekessy, and J. D. Gates, “Determination of retained austenite using an X-ray texture goniometer,” Mater. Charact., vol. 45, no. 1, pp. 39–49, 2000.

The Effect on Retained Austenite Volume Fraction of Sample Preparation Processes in Water Quenched AISI 52100 Steel

Year 2020, Volume: 8 Issue: 2, 427 - 438, 28.06.2020
https://doi.org/10.29109/gujsc.672334

Abstract

Sample preparation is one of the main steps in metallographic examinations and the sample preparation processes give rise to changes in the determination of volume fraction of any phases can cause to failure at the interpretation of a study. In this study, effect of applied load during metallographic sample preparation process on the volume fraction of retained austenite of the water quenched AISI 52100 was investigated. Metallographic examination samples were prepared under different loads (20N, 40N, 80N, 100N) were examined by optical and SEM microscopes. The retained austenite volume fraction was calculated by direct comparison method from the XRD analysis. Surface roughness was determined via a profilometer in order to reveal the effect of surface roughness on XRD patterns. Hardness measurements were performed to determine the probability of applied load that may transform retained austenite into martensite and rise in macro hardness after this transformation.
No significant phase transformation was observed in the retained austenite phase volume fraction of metallographic examination samples prepared under different loads on retained austenite volume fraction measurements by the XRD method and. It is thought that a large amount of martensite volume fraction applies compressive stress on the retained austenite owing to low retained austenite volume fraction (<%10) is the reason for not being observed phase transformation.

References

  • M. Witte and C. Lesch, “On the improvement of measurement accuracy of retained austenite in steel with X-ray diffraction,” Mater. Charact., vol. 139, no. November 2017, pp. 111–115, 2018.
  • A. F. Mark, X. Wang, E. Essadiqi, J. D. Embury, and J. D. Boyd, “Development and characterisation of model TRIP steel microstructures,” Mater. Sci. Eng. A, vol. 576, pp. 108–117, 2013.
  • J. Lai, H. Huang, and W. Buising, “Effects of microstructure and surface roughness on the fatigue strength of high-strength steels,” Procedia Struct. Integr., vol. 2, pp. 1213–1220, 2016.
  • T. Dutta, D. Das, S. Banerjee, S. K. Saha, and S. Datta, “An automated morphological classification of ferrite-martensite dual-phase microstructures,” Meas. J. Int. Meas. Confed., vol. 137, pp. 595–603, 2019.
  • G. Azizi, H. Mirzadeh, and M. H. Parsa, “The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties,” Mater. Sci. Eng. A, vol. 639, pp. 402–406, 2015.
  • A. Molkeri, F. Pahlevani, I. Emmanuelawati, and V. Sahajwalla, “Thermal and mechanical stability of retained austenite in high carbon steel: An in-situ investigation,” Mater. Lett., vol. 163, pp. 209–213, Jan. 2016.
  • Z. Nishiyama, M. E. Fine, M. Meshii, and C. M. Wayman, “Martensitic transformation,” p. 467, 1978.
  • W. F. Smith, ‘‘Mühendislik alaşımlarının yapı ve özellikleri,’’ Çev.: M. Erdoğan, Nobel Yay., Ankara 2000.
  • Z. Y. Tang, J. N. Huang, H. Ding, Z. H. Cai, and R. D. K. Misra, “Austenite stability and mechanical properties of a low-alloyed ECAPed TRIP-aided steel,” Mater. Sci. Eng. A, vol. 724, pp. 95–102, May 2018.
  • A. Järvenpää, M. Jaskari, J. Man, and L. P. Karjalainen, “Austenite stability in reversion- treated structures of a 301LN steel under tensile loading,” Mater. Charact., vol. 127, pp. 12–26, May 2017.
  • R. D. K. Misra, Z. Zhang, Z. Jia, M. C. Somani, and L. P. Karjalainen, “Probing deformation processes in near-defect free volume in high strength–high ductility nanograined/ultrafine-grained (NG/UFG) metastable austenitic stainless steels,” Scr. Mater., vol. 63, no. 11, pp. 1057–1060, Nov. 2010.
  • R. H. Leal and J. R. C. Guimarães, “Microstructure evolution during mechanically induced martensitic transformation in Fe-33%Ni-0.1%C,” Mater. Sci. Eng., vol. 48, no. 2, pp. 249–254, May 1981.
  • Z. C. Li, R. D. K. Misra, Z. H. Cai, H. X. Li, and H. Ding, “Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect,” Mater. Sci. Eng. A, vol. 673, pp. 63–72, Sep. 2016.
  • C. García-Mateo and F. G. Caballero, “The role of retained austenite on tensile properties of steels with bainitic microstructures,” Mater. Trans., vol. 46, no. 8, pp. 1839–1846, 2005.
  • R. Sierra and J. A. Nemes, “Investigation of the mechanical behaviour of multi-phase TRIP steels using finite element methods,” Int. J. Mech. Sci., vol. 50, no. 4, pp. 649–665, Apr. 2008.
  • X. Cheng, R. Petrov, L. Zhao, and M. Janssen, “Fatigue crack growth in TRIP steel under positive R-ratios,” Eng. Fract. Mech., vol. 75, no. 3–4, pp. 739–749, Feb. 2008.
  • Y. F. Shen, L. N. Qiu, X. Sun, L. Zuo, P. K. Liaw, and D. Raabe, “Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels,” Mater. Sci. Eng. A, vol. 636, pp. 551–564, Jun. 2015.
  • M.-M. Wang, C. C. Tasan, D. Ponge, A. Kostka, and D. Raabe, “Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels,” Acta Mater., vol. 79, pp. 268–281, Oct. 2014.
  • K. S. Choi, A. Soulami, W. N. Liu, X. Sun, and M. A. Khaleel, “Influence of various material design parameters on deformation behaviors of TRIP steels,” Comput. Mater. Sci., vol. 50, no. 2, pp. 720–730, Dec. 2010.
  • X. Qiao, L. Han, W. Zhang, and J. Gu, “Nano-indentation investigation on the mechanical stability of individual austenite in high-carbon steel,” Mater. Charact., vol. 110, pp. 86–93, Dec. 2015.
  • ASTM. E975, “Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1,” ASTM, vol. 03, no. Reapproved 2008, pp. 1–7, 2013.
  • S. Practice, “Microetching Metals and Alloys 1,” October, vol. 11, no. November, pp. 1–21, 1999.
  • Roberts C.S. Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite, Trans. AIME 197: 203-204, 1953.
  • Y. Kaynak and E. Tascioglu, “Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy,” Procedia CIRP, vol. 71, pp. 500–504, 2018.
  • Pitschke, W., Hermann, H., & Mattern, N. The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis. Powder Diffraction, 8(2), 74-83, 1993.
  • Suortti, P. Effects of porosity and surface roughness on the X‐ray intensity reflected from a powder specimen. J. Appl. Cryst., 5: 325-331, 1972.
  • M. X. Zhang, P. M. Kelly, L. K. Bekessy, and J. D. Gates, “Determination of retained austenite using an X-ray texture goniometer,” Mater. Charact., vol. 45, no. 1, pp. 39–49, 2000.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Burak Nalçacı 0000-0002-3919-7061

Volkan Kılıçlı 0000-0002-0456-5987

Mehmet Erdoğan 0000-0003-4430-9360

Publication Date June 28, 2020
Submission Date January 9, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Nalçacı, B., Kılıçlı, V., & Erdoğan, M. (2020). Su Verilmiş AISI 52100 Çeliğinde Metalografik Numune Hazırlama İşlemlerinin Kalıntı Östenit Hacim Oranına Etkisi. Gazi University Journal of Science Part C: Design and Technology, 8(2), 427-438. https://doi.org/10.29109/gujsc.672334

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526