Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 1, 148 - 156, 25.03.2024
https://doi.org/10.29109/gujsc.1393844

Abstract

Project Number

FDK-2022-7686

References

  • [1] Ocak, C., & Yenipınar, B. (2021). Hafif Elektrikli Araçlar için Asenkron Motor Tasarımı ve Uygulaması. Avrupa Bilim ve Teknoloji Dergisi, (26), 228-233.
  • [2] Kerem, A., & Gürbak, H. (2020). Elektrikli Araçlar için Hızlı Şarj İstasyonu Teknolojileri. Gazi University Journal of Science Part C: Design and Technology, 8(3), 644-661.
  • [3] Cao, R., Mi, C., & Cheng, M. (2012). Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV, and PHEV applications. IEEE Transactions on magnetics, 48(8), 2374-2384.
  • [4] Husain, I., Ozpineci, B., Islam, M. S., Gurpinar, E., Su, G. J., Yu, W., ... & Sahu, R. (2021). Electric drive technology trends, challenges, and opportunities for future electric vehicles. Proceedings of the IEEE, 109(6), 1039-1059.
  • [5] Liu, X., Chen, H., Zhao, J., & Belahcen, A. (2016). Research on the performances and parameters of interior PMSM used for electric vehicles. IEEE Transactions on Industrial Electronics, 63(6), 3533-3545.
  • [6] Ding, L., Cheng, Y., Zhao, T., Yao, K., Wang, Y., & Cui, S. (2023). Design and Optimization of an Asymmetric Rotor IPM Motor with High Demagnetization Prevention Capability and Robust Torque Performance. Energies, 16(9), 3635.
  • [7] Wang, S. C., Nien, Y. C., & Huang, S. M. (2022). Multi-objective optimization design and analysis of V-shape permanent magnet synchronous motor. Energies, 15(10), 3496.
  • [8] Dalcali, A. (2018). Optımal Desıgn of Hıgh Performance Interıor PM Motor for Electrıc Vehıcle. The International Journal of Energy and Engineering Sciences, 3(2), 46-54.
  • [9] Wang, A., Jia, Y., & Soong, W. L. (2011). Comparison of five topologies for an interior permanent-magnet machine for a hybrid electric vehicle. IEEE transactions on Magnetics, 47(10), 3606-3609.
  • [10] Tovar-Barranco, A., Briz, F., López-de-Heredia, A., & Villar, I. (2017, September). Comparison of permanent magnet synchronous machines with concentrated windings and different rotor configurations. In 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe) (pp. P-1). IEEE.
  • [11] Shi, Z., Sun, X., Cai, Y., Tian, X., & Chen, L. (2020). Design optimisation of an outer‐rotor permanent magnet synchronous hub motor for a low‐speed campus patrol EV. IET Electric Power Applications, 14(11), 2111-2118.
  • [12] Sundaram, M., Anand, M., Chelladurai, J., Varunraj, P., Joshua Smith, S., Sharma, S., ... & Alayi, R. (2022). Design and FEM Analysis of High-Torque Power Density Permanent Magnet Synchronous Motor (PMSM) for Two-Wheeler E-Vehicle Applications. International Transactions on Electrical Energy Systems, 2022.
  • [13] Bdewi, M. Y., Ali, M. M. E., & Mohammed, A. M. (2022). In-wheel, outer rotor, permanent magnet synchronous motor design with improved torque density for electric vehicle applications. International Journal of Electrical and Computer Engineering, 12(5), 4820.
  • [14] Ghahfarokhi, P. S., & Faiz, J. (2018). Design of four pole permanent magnet motor with different rotor topologies. Journal of Electromotion, 20, 1-4.
  • [15] Paitandi, S., & Sengupta, M. (2020). Analysis, fabrication and detailed comparative study of surface and interior rotor PMSM prototypes of identical nominal ratings and stators. Sādhanā, 45(1), 69.
  • [16] Kim, H. J., Jeong, J. S., Yoon, M. H., Moon, J. W., & Hong, J. P. (2017). Simple size determination of permanent-magnet synchronous machines. IEEE Transactions on Industrial Electronics, 64(10), 7972-7983.
  • [17] Diab, A., Rashed, M., Li, J., Gerada, C., & Bozhko, S. (2018, November). Performance analysis of PMSM for high-speed starter-generator system. In 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (pp. 1-7). IEEE.
  • [18] Shen, Q., Sun, N., Zhao, G., Han, X., & Tang, R. (2010, March). Design of a permanent magnet synchronous motor and performance analysis for subway. In 2010 Asia-Pacific Power and Energy Engineering Conference (pp. 1-4). IEEE.
  • [19] Estima, J. O., & Cardoso, A. M. (2010, September). Performance analysis of a PMSM drive for hybrid electric vehicles. In The XIX International Conference on Electrical Machines-ICEM 2010 (pp. 1-6). IEEE.
  • [20] Bdewi, M. Y., Mohammed, A. M., & Ezzaldean, M. M. (2021). Design and performance analysis of permanent magnet synchronous motor for electric vehicles application. Engineering and Technology Journal, 39(03 Part A), 394-406.
  • [21] You, Y. M., & Yoon, K. Y. (2021). Multi-objective optimization of permanent magnet synchronous motor for electric vehicle considering demagnetization. Applied Sciences, 11(5), 2159.
  • [22] Pop-Pîgleşan, F., Pop, A. C., & Marțiş, C. (2021). Synchronous reluctance machines for automotive cooling fan systems: numerical and experimental study of different slot-pole combinations and winding types. Energies, 14(2), 460.

Design and Performance Analysis of an Outer-Rotor PMaSynRM

Year 2024, Volume: 12 Issue: 1, 148 - 156, 25.03.2024
https://doi.org/10.29109/gujsc.1393844

Abstract

Permanent magnet synchronous motors (PMSMs) are consciously used as traction motors in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The rotor position (inner-rotor, outer-rotor) and topology of PMSMs significantly impact their torque profile, efficiency, and demagnetization characteristics. This article focuses on designing an outer-rotor permanent-magnet-assisted synchronous reluctance motor (PMaSynRM) under traction motor requirements and investigating its electromagnetic performance using the finite element method (FEM). This study's primary challenge is achieving optimal machine performance, considering high maximum torque and the risk of demagnetization at low levels. The design, derived from analytical calculations, was subjected to Finite Element Method (FEM) analyses. These analyses investigated motor performance in terms of efficiency, the ability to generate torque at different drive currents, and the risk of demagnetization. As a result of the study, the proposed PMaSynRM design was obtained that provides an adequate demagnetization performance even under 300% loading, has a maximum torque exceeding 35 Nm, and achieves an efficiency of 90% at rated conditions.

Supporting Institution

Gazi University Scientific Research Projects Coordination Unit (BAP)

Project Number

FDK-2022-7686

Thanks

This work has been supported by Gazi University Scientific Research Projects Coordination Unit (BAP) under grant number FDK-2022-7686.

References

  • [1] Ocak, C., & Yenipınar, B. (2021). Hafif Elektrikli Araçlar için Asenkron Motor Tasarımı ve Uygulaması. Avrupa Bilim ve Teknoloji Dergisi, (26), 228-233.
  • [2] Kerem, A., & Gürbak, H. (2020). Elektrikli Araçlar için Hızlı Şarj İstasyonu Teknolojileri. Gazi University Journal of Science Part C: Design and Technology, 8(3), 644-661.
  • [3] Cao, R., Mi, C., & Cheng, M. (2012). Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV, and PHEV applications. IEEE Transactions on magnetics, 48(8), 2374-2384.
  • [4] Husain, I., Ozpineci, B., Islam, M. S., Gurpinar, E., Su, G. J., Yu, W., ... & Sahu, R. (2021). Electric drive technology trends, challenges, and opportunities for future electric vehicles. Proceedings of the IEEE, 109(6), 1039-1059.
  • [5] Liu, X., Chen, H., Zhao, J., & Belahcen, A. (2016). Research on the performances and parameters of interior PMSM used for electric vehicles. IEEE Transactions on Industrial Electronics, 63(6), 3533-3545.
  • [6] Ding, L., Cheng, Y., Zhao, T., Yao, K., Wang, Y., & Cui, S. (2023). Design and Optimization of an Asymmetric Rotor IPM Motor with High Demagnetization Prevention Capability and Robust Torque Performance. Energies, 16(9), 3635.
  • [7] Wang, S. C., Nien, Y. C., & Huang, S. M. (2022). Multi-objective optimization design and analysis of V-shape permanent magnet synchronous motor. Energies, 15(10), 3496.
  • [8] Dalcali, A. (2018). Optımal Desıgn of Hıgh Performance Interıor PM Motor for Electrıc Vehıcle. The International Journal of Energy and Engineering Sciences, 3(2), 46-54.
  • [9] Wang, A., Jia, Y., & Soong, W. L. (2011). Comparison of five topologies for an interior permanent-magnet machine for a hybrid electric vehicle. IEEE transactions on Magnetics, 47(10), 3606-3609.
  • [10] Tovar-Barranco, A., Briz, F., López-de-Heredia, A., & Villar, I. (2017, September). Comparison of permanent magnet synchronous machines with concentrated windings and different rotor configurations. In 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe) (pp. P-1). IEEE.
  • [11] Shi, Z., Sun, X., Cai, Y., Tian, X., & Chen, L. (2020). Design optimisation of an outer‐rotor permanent magnet synchronous hub motor for a low‐speed campus patrol EV. IET Electric Power Applications, 14(11), 2111-2118.
  • [12] Sundaram, M., Anand, M., Chelladurai, J., Varunraj, P., Joshua Smith, S., Sharma, S., ... & Alayi, R. (2022). Design and FEM Analysis of High-Torque Power Density Permanent Magnet Synchronous Motor (PMSM) for Two-Wheeler E-Vehicle Applications. International Transactions on Electrical Energy Systems, 2022.
  • [13] Bdewi, M. Y., Ali, M. M. E., & Mohammed, A. M. (2022). In-wheel, outer rotor, permanent magnet synchronous motor design with improved torque density for electric vehicle applications. International Journal of Electrical and Computer Engineering, 12(5), 4820.
  • [14] Ghahfarokhi, P. S., & Faiz, J. (2018). Design of four pole permanent magnet motor with different rotor topologies. Journal of Electromotion, 20, 1-4.
  • [15] Paitandi, S., & Sengupta, M. (2020). Analysis, fabrication and detailed comparative study of surface and interior rotor PMSM prototypes of identical nominal ratings and stators. Sādhanā, 45(1), 69.
  • [16] Kim, H. J., Jeong, J. S., Yoon, M. H., Moon, J. W., & Hong, J. P. (2017). Simple size determination of permanent-magnet synchronous machines. IEEE Transactions on Industrial Electronics, 64(10), 7972-7983.
  • [17] Diab, A., Rashed, M., Li, J., Gerada, C., & Bozhko, S. (2018, November). Performance analysis of PMSM for high-speed starter-generator system. In 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (pp. 1-7). IEEE.
  • [18] Shen, Q., Sun, N., Zhao, G., Han, X., & Tang, R. (2010, March). Design of a permanent magnet synchronous motor and performance analysis for subway. In 2010 Asia-Pacific Power and Energy Engineering Conference (pp. 1-4). IEEE.
  • [19] Estima, J. O., & Cardoso, A. M. (2010, September). Performance analysis of a PMSM drive for hybrid electric vehicles. In The XIX International Conference on Electrical Machines-ICEM 2010 (pp. 1-6). IEEE.
  • [20] Bdewi, M. Y., Mohammed, A. M., & Ezzaldean, M. M. (2021). Design and performance analysis of permanent magnet synchronous motor for electric vehicles application. Engineering and Technology Journal, 39(03 Part A), 394-406.
  • [21] You, Y. M., & Yoon, K. Y. (2021). Multi-objective optimization of permanent magnet synchronous motor for electric vehicle considering demagnetization. Applied Sciences, 11(5), 2159.
  • [22] Pop-Pîgleşan, F., Pop, A. C., & Marțiş, C. (2021). Synchronous reluctance machines for automotive cooling fan systems: numerical and experimental study of different slot-pole combinations and winding types. Energies, 14(2), 460.
There are 22 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Tasarım ve Teknoloji
Authors

Burak Yenipınar 0000-0002-5997-944X

Ali Saygın 0000-0003-1800-9655

Yusuf Sönmez 0000-0002-9775-9835

Cemal Yılmaz 0000-0003-2053-052X

Cemil Ocak 0000-0001-6542-6350

Project Number FDK-2022-7686
Early Pub Date February 24, 2024
Publication Date March 25, 2024
Submission Date November 21, 2023
Acceptance Date January 5, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Yenipınar, B., Saygın, A., Sönmez, Y., Yılmaz, C., et al. (2024). Design and Performance Analysis of an Outer-Rotor PMaSynRM. Gazi University Journal of Science Part C: Design and Technology, 12(1), 148-156. https://doi.org/10.29109/gujsc.1393844

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526