Research Article
BibTex RIS Cite

Adli Bilişim Araştırmalarına Küresel Bir Bakış: Bibliyometrik Analiz ile Yayın Trendleri ve Araştırma Yönelimleri

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1703234

Abstract

Bu çalışma, adli bilişim alanındaki küresel akademik üretkenliği ve araştırma eğilimlerini analiz etmek amacıyla kapsamlı bir bibliyometrik analiz sunmaktadır. Scopus veri tabanında "digital forensics" anahtar kelimesi ile gerçekleştirilen arama sonucunda 10.414 yayından oluşan bir veri seti elde edilmiş; bu set, yayın yılı, yayın türü, en üretken yazarlar, ülkeler, kurumlar, atıf sayıları ve anahtar kelimeler gibi çeşitli açılardan incelenmiştir. VOSviewer yazılımı kullanılarak oluşturulan ağ haritaları aracılığıyla, alandaki iş birliği dinamikleri, kavramsal yapı ve tematik gelişmeler görselleştirilmiştir. Bulgular, Amerika Birleşik Devletleri’nin hem yayın hem de atıf sayılarında açık farkla önde olduğunu; bilgisayar ve mühendislik bilimlerinin ise adli bilişim literatüründe baskın olduğunu ortaya koymaktadır. Derin öğrenme, yapay zeka, blokzincir, mobil adli bilişim, IoT ve bulut bilişim gibi teknolojiler, son dönemde çalışmaların odak noktası haline gelmiştir. Ayrıca, anahtar kelime analizleri sosyal bilimler perspektifinden yapılabilecek çalışmalara da işaret etmektedir. Bu yönüyle çalışma, alandaki mevcut durumu tanımlamanın ötesine geçerek, gelecek araştırmalar için stratejik yönlendirmeler sunmaktadır. Yalnızca Scopus veri tabanıyla sınırlı olması çalışmanın temel sınırlılığıdır. Bununla birlikte, bu analiz, adli bilişim literatürünün dinamik yapısını ve çok disiplinli doğasını gözler önüne sererek hem araştırmacılara hem de politika yapıcılara değerli bir kaynak sunmaktadır.

References

  • [1] E. H. Yükseloğlu, Ş. Ş. Özcan, and B. Ceylan, ‘Olay yeri incelemesi ve Türkiye’deki uygulamalar’, Polis Bilimleri Dergisi, vol. 10, no. 1, pp. 61–80, 2008.
  • [2] N. Menek and U. Taşdöven, ‘Adli Bilimlerde Kriminalistik ve Luminol’, Adli Bilimler ve Suç Araştırmaları, vol. 3, no. 1–2, pp. 3–17, 2021.
  • [3] R. Şamlı, ‘Türk ve Dünya hukukunda bilişim suçları’, Akademik Bilişim, vol. 10, pp. 10–12, 2010.
  • [4] N. A. Almubairik and F. Alam Khan, ‘Systematic Literature Review on Wearable Digital Forensics: Acquisition Methods, Analysis Techniques, Tools, and Future Directions’, IEEE Internet Things J., vol. 12, no. 2, pp. 1320–1342, Jan. 2025, doi: 10.1109/JIOT.2024.3485027.
  • [5] T. Henkoğlu, Adli bilişim: Dijital delillerin elde edilmesi ve analizi. Pusula, 2020.
  • [6] D. Gedik, ‘BİLİŞİM SUÇLARINDA IP TESPİTİ İLE EKRAN GÖRÜNTÜLERİ ÇIKTILARININ İSPAT DEĞERİ’, Bilişim Hukuku Dergisi, vol. 1, no. 1, pp. 51–84, 2019.
  • [7] N. M. Karie and H. S. Venter, ‘Taxonomy of Challenges for Digital Forensics’, Journal of Forensic Sciences, vol. 60, no. 4, pp. 885–893, Jul. 2015, doi: 10.1111/1556-4029.12809.
  • [8] H. Arshad, A. B. Jantan, and O. I. Abiodun, ‘Digital Forensics: Review of Issues in Scientific Validation of Digital Evidence.’, Journal of Information Processing Systems, vol. 14, no. 2, 2018.
  • [9] S. Keskin, ‘Bilişim Suçlarında Ceza Muhakemesi Kanunun 134. Maddesindeki Hükümlerin Uygulanmasında Yaşanan Aksaklıklar’, Kırıkkale Üniversitesi Sosyal Bilimler Dergisi, vol. 11, no. 2, pp. 649–667, 2021.
  • [10] M. Erdem and G. Özocak, ‘Siber Güvenliğin Sağlanmasında Uluslararası Hukukun ve Türk Hukukunun Rolü’, Ankara Üniversitesi Hukuk Fakültesi Dergisi, vol. 68, no. 1, pp. 127–212, Apr. 2019, doi: 10.33629/auhfd.553979.
  • [11] L. K. Berber, Adli bilişim (computer forensic). Ankara: Yetkin Yayınları, 2004.
  • [12] Y. Başlar, ‘Adli Bilişim Sürecinde Karşılaşılan Sorunlar ve Çözüm Önerileri’, Türkiye Barolar Birliği Dergisi, no. 148, p. 47, May 2020.
  • [13] S. Raghavan, ‘Digital forensic research: current state of the art’, CSIT, vol. 1, no. 1, pp. 91–114, Mar. 2013, doi: 10.1007/s40012-012-0008-7.
  • [14] J. Slay, Y.-C. Lin, B. Turnbull, J. Beckett, and P. Lin, ‘Towards a formalization of digital forensics’, in Advances in Digital Forensics V: Fifth IFIP WG 11.9 International Conference on Digital Forensics, Orlando, Florida, USA, January 26-28, 2009, Revised Selected Papers 5, Springer, 2009, pp. 37–47.
  • [15] M. Pollitt, ‘A History of Digital Forensics’, in Advances in Digital Forensics VI, vol. 337, K.-P. Chow and S. Shenoi, Eds., in IFIP Advances in Information and Communication Technology, vol. 337. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3–15. doi: 10.1007/978-3-642-15506-2_1.
  • [16] S. Kemp, ‘We are Social’, 2024. [Online]. Available: https://wearesocial.com/us/ blog/2024/01/digital-2024
  • [17] H. N. Fakhouri, M. A. AlSharaiah, A. K. Al Hwaitat, M. Alkalaileh, and F. F. Dweikat, ‘Overview of Challenges Faced by Digital Forensic’, in 2024 2nd International Conference on Cyber Resilience (ICCR), Dubai, United Arab Emirates: IEEE, Feb. 2024, pp. 1–8. doi: 10.1109/ICCR61006.2024.10532850.
  • [18] P. Sravani, ‘Digital Forensics Market Size, Share, Report, Growth Analysis’. Accessed: May 12, 2025. [Online]. Available: https://www.precisionbusinessinsights.com/market-reports/digital-forensics-market
  • [19] F. Casino et al., ‘Research Trends, Challenges, and Emerging Topics in Digital Forensics: A Review of Reviews’, IEEE Access, vol. 10, pp. 25464–25493, 2022, doi: 10.1109/ACCESS.2022.3154059.
  • [20] T. Wu, F. Breitinger, and S. O’Shaughnessy, ‘Digital forensic tools: Recent advances and enhancing the status quo’, Forensic Science International: Digital Investigation, vol. 34, p. 300999, Sep. 2020, doi: 10.1016/j.fsidi.2020.300999.
  • [21] G. Horsman and N. Sunde, ‘Unboxing the digital forensic investigation process’, Science & Justice, vol. 62, no. 2, pp. 171–180, Mar. 2022, doi: 10.1016/j.scijus.2022.01.002.
  • [22] D. Chhtrapati, S. P. Chaudhari, D. Mevada, A. Bhatt, and D. Trivedi, ‘Research Productivity and Network Visualization on Digital Evidence: A Bibliometric Study’, Science & Technology Libraries, vol. 40, no. 4, pp. 358–372, Oct. 2021, doi: 10.1080/0194262X.2021.1948486.
  • [23] R. Goyal, ‘Blockchain Technology in Forensic Science. A Bibliometric Review’, in 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India: IEEE, Dec. 2021, pp. 1570–1573. doi: 10.1109/ICAC3N53548.2021.9725660.
  • [24] E. Ramadhani, D. Hariyadi, and F. E. Nastiti, ‘A Bibliometrics Analysis of Digital Forensics Research in Indonesia Based on Scopus Index: 2012-2021’, in 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA), Yogyakarta, Indonesia: IEEE, Nov. 2022, pp. 1–6. doi: 10.1109/ICITDA55840.2022.9971449.
  • [25] E. Ramadhani and D. Hariyadi, ‘A Bibliometrics Analysis of Multimedia Forensics and Deep Learning Research Based on Scopus Index’, JITSI: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 3, pp. 129–133, 2023.
  • [26] R. D. Syahputri, A. Anggono, P. Prasetyono, and M. Djasuli, ‘Evolution and Research Opportunities of Digital Forensic Tools: A Bibliometric Analysis’, CogITo Smart Journal, vol. 10, no. 2, pp. 474–485, 2024.
  • [27] A. K. AL-Raggad and M. Al-Raggad, ‘Analyzing trends: A bibliometric study of administrative law and forensic accounting in the digital age’, Heliyon, vol. 10, no. 18, p. e37462, Sep. 2024, doi: 10.1016/j.heliyon.2024.e37462.
  • [28] Y. Lu, J. Liu, and R. Zhang, ‘Current Status and Trends in Image Anti-Forensics Research: A Bibliometric Analysis’, arXiv preprint arXiv:2408.11365, 2024.
  • [29] H. Ying et al., ‘A bibliometric analysis of research on heart failure comorbid with depression from 2002 to 2021’, Heliyon, vol. 9, no. 2, p. e13054, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13054.
  • [30] M. Aria and C. Cuccurullo, ‘bibliometrix : An R-tool for comprehensive science mapping analysis’, Journal of Informetrics, vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.
  • [31] N. Van Eck and L. Waltman, ‘Software survey: VOSviewer, a computer program for bibliometric mapping’, scientometrics, vol. 84, no. 2, pp. 523–538, 2009.
  • [32] ‘Scopus | Abstract and citation database | Elsevier’, www.elsevier.com. Accessed: May 20, 2025. [Online]. Available: https://www.elsevier.com/products/scopus
  • [33] A. N. Guz and J. J. Rushchitsky, ‘Scopus: A system for the evaluation of scientific journals’, Int Appl Mech, vol. 45, no. 4, pp. 351–362, Apr. 2009, doi: 10.1007/s10778-009-0189-4.
  • [34] Z. Ayaz, ‘Sosyal Medya Analitiği Konulu Akademik Çalışmaların Bibliyometrik Analizi’, Yeni Medya Dergisi, Oct. 2024, doi: 10.55609/yenimedya.1527131.
  • [35] A. Stasi, T. U. G. Mir, A. Pellegrino, A. K. Wani, and S. Shukla, ‘Forty years of research and development on forensic genetics: A bibliometric analysis’, Forensic Science International: Genetics, vol. 63, p. 102826, Mar. 2023, doi: 10.1016/j.fsigen.2023.102826.
  • [36] M. Tanriverdi̇, ‘Yalın Yönetim Kavramı Üzerine Yapılan Çalışmaların Bibliyometrik Analizi’, TurkishStudies, vol. Volume 19 Issue 2, no. Volume 19 Issue 2, pp. 567–585, 2024, doi: 10.7827/TurkishStudies.73226.
  • [37] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, ‘MesoNet: a Compact Facial Video Forgery Detection Network’, in 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, Hong Kong: IEEE, Dec. 2018, pp. 1–7. doi: 10.1109/WIFS.2018.8630761.
  • [38] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, ‘Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset’, Future Generation Computer Systems, vol. 100, pp. 779–796, Nov. 2019, doi: 10.1016/j.future.2019.05.041.
  • [39] J. Luka, J. Fridrich, and M. Goljan, ‘Digital Camera Identification From Sensor Pattern Noise’, IEEE Trans.Inform.Forensic Secur., vol. 1, no. 2, pp. 205–214, Jun. 2006, doi: 10.1109/TIFS.2006.873602.
  • [40] Jian Li, Xiaolong Li, Bin Yang, and Xingming Sun, ‘Segmentation-Based Image Copy-Move Forgery Detection Scheme’, IEEE Trans.Inform.Forensic Secur., vol. 10, no. 3, pp. 507–518, Mar. 2015, doi: 10.1109/TIFS.2014.2381872.
  • [41] A. C. Popescu and H. Farid, ‘Exposing digital forgeries by detecting traces of resampling’, IEEE Trans. Signal Process., vol. 53, no. 2, pp. 758–767, Feb. 2005, doi: 10.1109/TSP.2004.839932.
  • [42] L. Zheng, Y. Zhang, and V. L. L. Thing, ‘A survey on image tampering and its detection in real-world photos’, Journal of Visual Communication and Image Representation, vol. 58, pp. 380–399, Jan. 2019, doi: 10.1016/j.jvcir.2018.12.022.
  • [43] M. A. Qureshi and M. Deriche, ‘A bibliography of pixel-based blind image forgery detection techniques’, Signal Processing: Image Communication, vol. 39, pp. 46–74, Nov. 2015, doi: 10.1016/j.image.2015.08.008.
  • [44] S. Bourouis, R. Alroobaea, A. M. Alharbi, M. Andejany, and S. Rubaiee, ‘Recent Advances in Digital Multimedia Tampering Detection for Forensics Analysis’, Symmetry, vol. 12, no. 11, p. 1811, Nov. 2020, doi: 10.3390/sym12111811.
  • [45] P. Capasso, G. Cattaneo, and M. De Marsico, ‘A Comprehensive Survey on Methods for Image Integrity’, ACM Trans. Multimedia Comput. Commun. Appl., vol. 20, no. 11, pp. 1–34, Nov. 2024, doi: 10.1145/3633203.
  • [46] N. Kaur, N. Jindal, and K. Singh, ‘Passive Image Forgery Detection Techniques: A Review, Challenges, and Future Directions’, Wireless Pers Commun, vol. 134, no. 3, pp. 1491–1529, Feb. 2024, doi: 10.1007/s11277-024-10959-x.
  • [47] Grand View Research, ‘Digital Forensics Market Size, Share & Trends Analysis Report By Component (Hardware, Software, Service), By Type (Computer Forensics, Cloud Forensics), By Tool, By End-use, By Region, And Segment Forecasts, 2024 - 2030’, Grand View Reseach, San Francisco, Market Analysis GVR-4-68038-135-1. Accessed: May 16, 2025. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/digital-forensics-market
  • [48] M. S. Rana, M. N. Nobi, B. Murali, and A. H. Sung, ‘Deepfake Detection: A Systematic Literature Review’, IEEE Access, vol. 10, pp. 25494–25513, 2022, doi: 10.1109/ACCESS.2022.3154404.
  • [49] Resmi Gazete, ‘Mevzuat Bilgi Sistemi’. Accessed: May 20, 2025. [Online]. Available: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=5271&MevzuatTur=1&MevzuatTertip=5
  • [50] J. Z. Zhang, P. R. Srivastava, D. Sharma, and P. Eachempati, ‘Big data analytics and machine learning: A retrospective overview and bibliometric analysis’, Expert Systems with Applications, vol. 184, p. 115561, Dec. 2021, doi: 10.1016/j.eswa.2021.115561.
  • [51] E. Di̇Kbiyik, Ö. Demi̇R, and B. Doğan, ‘Derin Öğrenme Yöntemleri İle Konuşmadan Duygu Tanıma Üzerine Bir Literatür Araştırması’, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 10, no. 4, pp. 765–791, Dec. 2022, doi: 10.29109/gujsc.1111884.
  • [52] Y. Li, Z. Xu, X. Wang, and X. Wang, ‘A bibliometric analysis on deep learning during 2007–2019’, Int. J. Mach. Learn. & Cyber., vol. 11, no. 12, pp. 2807–2826, Dec. 2020, doi: 10.1007/s13042-020-01152-0.
  • [53] M. Koo, ‘ChatGPT Research: A Bibliometric Analysis Based on the Web of Science from 2023 to June 2024’, Knowledge, vol. 5, no. 1, p. 4, Feb. 2025, doi: 10.3390/knowledge5010004.
  • [54] L. Chettri and R. Bera, ‘A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems’, IEEE Internet Things J., vol. 7, no. 1, pp. 16–32, Jan. 2020, doi: 10.1109/JIOT.2019.2948888.
  • [55] M. Mohammed Sadeeq, N. M. Abdulkareem, S. R. M. Zeebaree, D. Mikaeel Ahmed, A. Saifullah Sami, and R. R. Zebari, ‘IoT and Cloud Computing Issues, Challenges and Opportunities: A Review’, QAJ, vol. 1, no. 2, pp. 1–7, Mar. 2021, doi: 10.48161/qaj.v1n2a36.

A Global Perspective on Digital Forensics Research: Publication Trends and Research Directions through Bibliometric Analysis

Year 2025, Volume: 13 Issue: 3
https://doi.org/10.29109/gujsc.1703234

Abstract

This study presents a comprehensive bibliometric analysis aimed at evaluating global academic productivity and research trends in the field of digital forensics. A dataset of 10,414 publications was obtained through a Scopus search using the keyword “digital forensics” and analyzed across various dimensions including publication year, type, prolific authors, countries, institutions, citation counts, and keywords. Using VOSviewer, visual maps were created to uncover collaboration networks, conceptual structures, and thematic developments within the field. The findings indicate that the United States leads in both publication volume and citation impact, with computer and engineering sciences dominating the digital forensics literature. Technologies such as deep learning, artificial intelligence, blockchain, mobile forensics, IoT, and cloud computing have become focal points of recent research. Moreover, keyword analyses reveal opportunities for interdisciplinary studies, particularly from a social sciences perspective. Beyond describing the current state of the field, this study offers strategic insights for future research directions. The primary limitation of the research lies in its exclusive use of the Scopus database. Nevertheless, the analysis highlights the dynamic and interdisciplinary nature of digital forensics, offering valuable guidance for researchers, practitioners, and policymakers.

References

  • [1] E. H. Yükseloğlu, Ş. Ş. Özcan, and B. Ceylan, ‘Olay yeri incelemesi ve Türkiye’deki uygulamalar’, Polis Bilimleri Dergisi, vol. 10, no. 1, pp. 61–80, 2008.
  • [2] N. Menek and U. Taşdöven, ‘Adli Bilimlerde Kriminalistik ve Luminol’, Adli Bilimler ve Suç Araştırmaları, vol. 3, no. 1–2, pp. 3–17, 2021.
  • [3] R. Şamlı, ‘Türk ve Dünya hukukunda bilişim suçları’, Akademik Bilişim, vol. 10, pp. 10–12, 2010.
  • [4] N. A. Almubairik and F. Alam Khan, ‘Systematic Literature Review on Wearable Digital Forensics: Acquisition Methods, Analysis Techniques, Tools, and Future Directions’, IEEE Internet Things J., vol. 12, no. 2, pp. 1320–1342, Jan. 2025, doi: 10.1109/JIOT.2024.3485027.
  • [5] T. Henkoğlu, Adli bilişim: Dijital delillerin elde edilmesi ve analizi. Pusula, 2020.
  • [6] D. Gedik, ‘BİLİŞİM SUÇLARINDA IP TESPİTİ İLE EKRAN GÖRÜNTÜLERİ ÇIKTILARININ İSPAT DEĞERİ’, Bilişim Hukuku Dergisi, vol. 1, no. 1, pp. 51–84, 2019.
  • [7] N. M. Karie and H. S. Venter, ‘Taxonomy of Challenges for Digital Forensics’, Journal of Forensic Sciences, vol. 60, no. 4, pp. 885–893, Jul. 2015, doi: 10.1111/1556-4029.12809.
  • [8] H. Arshad, A. B. Jantan, and O. I. Abiodun, ‘Digital Forensics: Review of Issues in Scientific Validation of Digital Evidence.’, Journal of Information Processing Systems, vol. 14, no. 2, 2018.
  • [9] S. Keskin, ‘Bilişim Suçlarında Ceza Muhakemesi Kanunun 134. Maddesindeki Hükümlerin Uygulanmasında Yaşanan Aksaklıklar’, Kırıkkale Üniversitesi Sosyal Bilimler Dergisi, vol. 11, no. 2, pp. 649–667, 2021.
  • [10] M. Erdem and G. Özocak, ‘Siber Güvenliğin Sağlanmasında Uluslararası Hukukun ve Türk Hukukunun Rolü’, Ankara Üniversitesi Hukuk Fakültesi Dergisi, vol. 68, no. 1, pp. 127–212, Apr. 2019, doi: 10.33629/auhfd.553979.
  • [11] L. K. Berber, Adli bilişim (computer forensic). Ankara: Yetkin Yayınları, 2004.
  • [12] Y. Başlar, ‘Adli Bilişim Sürecinde Karşılaşılan Sorunlar ve Çözüm Önerileri’, Türkiye Barolar Birliği Dergisi, no. 148, p. 47, May 2020.
  • [13] S. Raghavan, ‘Digital forensic research: current state of the art’, CSIT, vol. 1, no. 1, pp. 91–114, Mar. 2013, doi: 10.1007/s40012-012-0008-7.
  • [14] J. Slay, Y.-C. Lin, B. Turnbull, J. Beckett, and P. Lin, ‘Towards a formalization of digital forensics’, in Advances in Digital Forensics V: Fifth IFIP WG 11.9 International Conference on Digital Forensics, Orlando, Florida, USA, January 26-28, 2009, Revised Selected Papers 5, Springer, 2009, pp. 37–47.
  • [15] M. Pollitt, ‘A History of Digital Forensics’, in Advances in Digital Forensics VI, vol. 337, K.-P. Chow and S. Shenoi, Eds., in IFIP Advances in Information and Communication Technology, vol. 337. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3–15. doi: 10.1007/978-3-642-15506-2_1.
  • [16] S. Kemp, ‘We are Social’, 2024. [Online]. Available: https://wearesocial.com/us/ blog/2024/01/digital-2024
  • [17] H. N. Fakhouri, M. A. AlSharaiah, A. K. Al Hwaitat, M. Alkalaileh, and F. F. Dweikat, ‘Overview of Challenges Faced by Digital Forensic’, in 2024 2nd International Conference on Cyber Resilience (ICCR), Dubai, United Arab Emirates: IEEE, Feb. 2024, pp. 1–8. doi: 10.1109/ICCR61006.2024.10532850.
  • [18] P. Sravani, ‘Digital Forensics Market Size, Share, Report, Growth Analysis’. Accessed: May 12, 2025. [Online]. Available: https://www.precisionbusinessinsights.com/market-reports/digital-forensics-market
  • [19] F. Casino et al., ‘Research Trends, Challenges, and Emerging Topics in Digital Forensics: A Review of Reviews’, IEEE Access, vol. 10, pp. 25464–25493, 2022, doi: 10.1109/ACCESS.2022.3154059.
  • [20] T. Wu, F. Breitinger, and S. O’Shaughnessy, ‘Digital forensic tools: Recent advances and enhancing the status quo’, Forensic Science International: Digital Investigation, vol. 34, p. 300999, Sep. 2020, doi: 10.1016/j.fsidi.2020.300999.
  • [21] G. Horsman and N. Sunde, ‘Unboxing the digital forensic investigation process’, Science & Justice, vol. 62, no. 2, pp. 171–180, Mar. 2022, doi: 10.1016/j.scijus.2022.01.002.
  • [22] D. Chhtrapati, S. P. Chaudhari, D. Mevada, A. Bhatt, and D. Trivedi, ‘Research Productivity and Network Visualization on Digital Evidence: A Bibliometric Study’, Science & Technology Libraries, vol. 40, no. 4, pp. 358–372, Oct. 2021, doi: 10.1080/0194262X.2021.1948486.
  • [23] R. Goyal, ‘Blockchain Technology in Forensic Science. A Bibliometric Review’, in 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India: IEEE, Dec. 2021, pp. 1570–1573. doi: 10.1109/ICAC3N53548.2021.9725660.
  • [24] E. Ramadhani, D. Hariyadi, and F. E. Nastiti, ‘A Bibliometrics Analysis of Digital Forensics Research in Indonesia Based on Scopus Index: 2012-2021’, in 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA), Yogyakarta, Indonesia: IEEE, Nov. 2022, pp. 1–6. doi: 10.1109/ICITDA55840.2022.9971449.
  • [25] E. Ramadhani and D. Hariyadi, ‘A Bibliometrics Analysis of Multimedia Forensics and Deep Learning Research Based on Scopus Index’, JITSI: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 3, pp. 129–133, 2023.
  • [26] R. D. Syahputri, A. Anggono, P. Prasetyono, and M. Djasuli, ‘Evolution and Research Opportunities of Digital Forensic Tools: A Bibliometric Analysis’, CogITo Smart Journal, vol. 10, no. 2, pp. 474–485, 2024.
  • [27] A. K. AL-Raggad and M. Al-Raggad, ‘Analyzing trends: A bibliometric study of administrative law and forensic accounting in the digital age’, Heliyon, vol. 10, no. 18, p. e37462, Sep. 2024, doi: 10.1016/j.heliyon.2024.e37462.
  • [28] Y. Lu, J. Liu, and R. Zhang, ‘Current Status and Trends in Image Anti-Forensics Research: A Bibliometric Analysis’, arXiv preprint arXiv:2408.11365, 2024.
  • [29] H. Ying et al., ‘A bibliometric analysis of research on heart failure comorbid with depression from 2002 to 2021’, Heliyon, vol. 9, no. 2, p. e13054, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13054.
  • [30] M. Aria and C. Cuccurullo, ‘bibliometrix : An R-tool for comprehensive science mapping analysis’, Journal of Informetrics, vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.
  • [31] N. Van Eck and L. Waltman, ‘Software survey: VOSviewer, a computer program for bibliometric mapping’, scientometrics, vol. 84, no. 2, pp. 523–538, 2009.
  • [32] ‘Scopus | Abstract and citation database | Elsevier’, www.elsevier.com. Accessed: May 20, 2025. [Online]. Available: https://www.elsevier.com/products/scopus
  • [33] A. N. Guz and J. J. Rushchitsky, ‘Scopus: A system for the evaluation of scientific journals’, Int Appl Mech, vol. 45, no. 4, pp. 351–362, Apr. 2009, doi: 10.1007/s10778-009-0189-4.
  • [34] Z. Ayaz, ‘Sosyal Medya Analitiği Konulu Akademik Çalışmaların Bibliyometrik Analizi’, Yeni Medya Dergisi, Oct. 2024, doi: 10.55609/yenimedya.1527131.
  • [35] A. Stasi, T. U. G. Mir, A. Pellegrino, A. K. Wani, and S. Shukla, ‘Forty years of research and development on forensic genetics: A bibliometric analysis’, Forensic Science International: Genetics, vol. 63, p. 102826, Mar. 2023, doi: 10.1016/j.fsigen.2023.102826.
  • [36] M. Tanriverdi̇, ‘Yalın Yönetim Kavramı Üzerine Yapılan Çalışmaların Bibliyometrik Analizi’, TurkishStudies, vol. Volume 19 Issue 2, no. Volume 19 Issue 2, pp. 567–585, 2024, doi: 10.7827/TurkishStudies.73226.
  • [37] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, ‘MesoNet: a Compact Facial Video Forgery Detection Network’, in 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, Hong Kong: IEEE, Dec. 2018, pp. 1–7. doi: 10.1109/WIFS.2018.8630761.
  • [38] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, ‘Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset’, Future Generation Computer Systems, vol. 100, pp. 779–796, Nov. 2019, doi: 10.1016/j.future.2019.05.041.
  • [39] J. Luka, J. Fridrich, and M. Goljan, ‘Digital Camera Identification From Sensor Pattern Noise’, IEEE Trans.Inform.Forensic Secur., vol. 1, no. 2, pp. 205–214, Jun. 2006, doi: 10.1109/TIFS.2006.873602.
  • [40] Jian Li, Xiaolong Li, Bin Yang, and Xingming Sun, ‘Segmentation-Based Image Copy-Move Forgery Detection Scheme’, IEEE Trans.Inform.Forensic Secur., vol. 10, no. 3, pp. 507–518, Mar. 2015, doi: 10.1109/TIFS.2014.2381872.
  • [41] A. C. Popescu and H. Farid, ‘Exposing digital forgeries by detecting traces of resampling’, IEEE Trans. Signal Process., vol. 53, no. 2, pp. 758–767, Feb. 2005, doi: 10.1109/TSP.2004.839932.
  • [42] L. Zheng, Y. Zhang, and V. L. L. Thing, ‘A survey on image tampering and its detection in real-world photos’, Journal of Visual Communication and Image Representation, vol. 58, pp. 380–399, Jan. 2019, doi: 10.1016/j.jvcir.2018.12.022.
  • [43] M. A. Qureshi and M. Deriche, ‘A bibliography of pixel-based blind image forgery detection techniques’, Signal Processing: Image Communication, vol. 39, pp. 46–74, Nov. 2015, doi: 10.1016/j.image.2015.08.008.
  • [44] S. Bourouis, R. Alroobaea, A. M. Alharbi, M. Andejany, and S. Rubaiee, ‘Recent Advances in Digital Multimedia Tampering Detection for Forensics Analysis’, Symmetry, vol. 12, no. 11, p. 1811, Nov. 2020, doi: 10.3390/sym12111811.
  • [45] P. Capasso, G. Cattaneo, and M. De Marsico, ‘A Comprehensive Survey on Methods for Image Integrity’, ACM Trans. Multimedia Comput. Commun. Appl., vol. 20, no. 11, pp. 1–34, Nov. 2024, doi: 10.1145/3633203.
  • [46] N. Kaur, N. Jindal, and K. Singh, ‘Passive Image Forgery Detection Techniques: A Review, Challenges, and Future Directions’, Wireless Pers Commun, vol. 134, no. 3, pp. 1491–1529, Feb. 2024, doi: 10.1007/s11277-024-10959-x.
  • [47] Grand View Research, ‘Digital Forensics Market Size, Share & Trends Analysis Report By Component (Hardware, Software, Service), By Type (Computer Forensics, Cloud Forensics), By Tool, By End-use, By Region, And Segment Forecasts, 2024 - 2030’, Grand View Reseach, San Francisco, Market Analysis GVR-4-68038-135-1. Accessed: May 16, 2025. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/digital-forensics-market
  • [48] M. S. Rana, M. N. Nobi, B. Murali, and A. H. Sung, ‘Deepfake Detection: A Systematic Literature Review’, IEEE Access, vol. 10, pp. 25494–25513, 2022, doi: 10.1109/ACCESS.2022.3154404.
  • [49] Resmi Gazete, ‘Mevzuat Bilgi Sistemi’. Accessed: May 20, 2025. [Online]. Available: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=5271&MevzuatTur=1&MevzuatTertip=5
  • [50] J. Z. Zhang, P. R. Srivastava, D. Sharma, and P. Eachempati, ‘Big data analytics and machine learning: A retrospective overview and bibliometric analysis’, Expert Systems with Applications, vol. 184, p. 115561, Dec. 2021, doi: 10.1016/j.eswa.2021.115561.
  • [51] E. Di̇Kbiyik, Ö. Demi̇R, and B. Doğan, ‘Derin Öğrenme Yöntemleri İle Konuşmadan Duygu Tanıma Üzerine Bir Literatür Araştırması’, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 10, no. 4, pp. 765–791, Dec. 2022, doi: 10.29109/gujsc.1111884.
  • [52] Y. Li, Z. Xu, X. Wang, and X. Wang, ‘A bibliometric analysis on deep learning during 2007–2019’, Int. J. Mach. Learn. & Cyber., vol. 11, no. 12, pp. 2807–2826, Dec. 2020, doi: 10.1007/s13042-020-01152-0.
  • [53] M. Koo, ‘ChatGPT Research: A Bibliometric Analysis Based on the Web of Science from 2023 to June 2024’, Knowledge, vol. 5, no. 1, p. 4, Feb. 2025, doi: 10.3390/knowledge5010004.
  • [54] L. Chettri and R. Bera, ‘A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems’, IEEE Internet Things J., vol. 7, no. 1, pp. 16–32, Jan. 2020, doi: 10.1109/JIOT.2019.2948888.
  • [55] M. Mohammed Sadeeq, N. M. Abdulkareem, S. R. M. Zeebaree, D. Mikaeel Ahmed, A. Saifullah Sami, and R. R. Zebari, ‘IoT and Cloud Computing Issues, Challenges and Opportunities: A Review’, QAJ, vol. 1, no. 2, pp. 1–7, Mar. 2021, doi: 10.48161/qaj.v1n2a36.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Information Systems (Other)
Journal Section Tasarım ve Teknoloji
Authors

Onur Ceran 0000-0003-2147-0506

Early Pub Date July 2, 2025
Publication Date
Submission Date May 21, 2025
Acceptance Date June 15, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Ceran, O. (2025). Adli Bilişim Araştırmalarına Küresel Bir Bakış: Bibliyometrik Analiz ile Yayın Trendleri ve Araştırma Yönelimleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3). https://doi.org/10.29109/gujsc.1703234

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526