Review
BibTex RIS Cite

Production of Al-based Foam Using Powder Metallurgy method, Its Application Areas and Use for Energy Absorption in Polymer-based Armors

Year 2025, Volume: 13 Issue: 4
https://doi.org/10.29109/gujsc.1750808

Abstract

Son yıllarda hem akademik hem de endüstriyel alanlarda yoğun araştırmalara konu olan metalik köpükler, oldukça hafif ve gözenekli yapıya sahip malzemelerdir. Bu malzemeler, çok düşük yoğunlukları ve yüksek enerji emme özellikleriyle otomotiv endüstrisi başta olmak üzere havacılık ve savunma sanayi gibi alanlarda öne çıkmaktadır. Metalik köpükler oldukça gözenekli yapılarına rağmen yüksek mukavemet, düşük ısı iletkenliği ve yüksek enerji emme kapasitesine sahiptir. Metalik köpüklerin mekanik özellikleri, gözeneklerin şekline, boyutuna ve yüzey alanına, üretim sırasında yapıya eklenen takviye elemanlarının özelliklerine ve matris malzemesiyle etkileşimlerine bağlı olarak değişiklik gösterir. Köpük malzemeler, hafiflikleri ve enerji emme özellikleri nedeniyle araç tasarımcıları için özellikle cazip hale gelmiştir. Aracın birçok farklı alanında kullanılmalarına rağmen, özellikle çarpışma durumunda araçta oluşabilecek hasarın en aza indirilmesi ve yolcuların en az zarar görmesi hedeflenmektedir. Ayrıca, enerji ve çevrenin önemli olduğu günümüzde, araç ağırlığının azaltılması yakıt tüketimini azaltacak ve verimliliği artırarak çevreye verilen zararı en aza indirecektir. Bu makalede, toz metalurjisi (TM) yöntemiyle üretilen kapalı hücreli Al esaslı metalik köpük malzemeler hakkında genel bilgiler verildikten sonra, takviyeli ve takviyesiz köpük üretimi, sandviç köpük üretimi, küresel köpük üretimi ve metalik köpük dolgulu profil üretimi gibi özel üretim yöntemleri hakkında kapsamlı bilgi verilmektedir. Ayrıca, çok yeni bir uygulama olan metalik köpük takviyeli integral zırh malzemesinin üretimi ve diğer uygulamalar hakkında genel bilgiler verilmektedir.

References

  • [1] Türker, M. Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları. Politeknik Dergisi. 2024; 27: 2335–2356.
  • [2] Sharma, S.S., et al. Application of metallic foam in vehicle structure: A review. Materials Today: Proceedings. 2022; 63: 347–353.
  • [3] Koza, E., et al. Compressive strength of aluminium foams. Materials letters. 2004; 58: 132–135.
  • [4] Madgule, M., Sreenivasa, C. and Borgaonkar, A.V. Aluminium metal foam production methods, properties and applications-a review. Materials Today: Proceedings. 2023; 77: 673–679.
  • [5] Atwater, M.A., et al. Solid state porous metal production: A review of the capabilities, characteristics, and challenges. Advanced Engineering Materials. 2018; 20: 1700766.
  • [6] Gibson, L.J. Mechanical behavior of metallic foams. Annual Review of Materials Science. 2000; 30: 191–227.
  • [7] Hanssen, A.G., Langseth, M. and Hopperstad, O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International journal of impact engineering. 2000; 24: 475–507.
  • [8] Schwingel, D.D., et al. Aluminium foam sandwich structures for space applications. in 57th International Astronautical Congress. 2007.
  • [9] YU, H.-j., et al. Sound insulation property of Al-Si closed-cell aluminum foam bare board material. Transactions of nonferrous metals society of China. 2007; 17: 93–98.
  • [10] Peroni, L., Avalle, M. and Peroni, M. The mechanical behaviour of aluminium foam structures in different loading conditions. International journal of impact engineering. 2008; 35: 644–658.
  • [11] Sha, J. and Yip, T. In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading. Materials Science and Engineering: A. 2004; 386: 91–103.
  • [12] Schwingela, D., et al. Aluminium foam sandwich structures for space applications. Acta Astronautica 2007; 61 326–330.
  • [13] Michailidis, N., Stergioudi, F. and Tsouknidas, A. Deformation and energy absorption properties of powder-metallurgy produced Al foams. Materials Science and Engineering: A. 2011; 528: 7222–7227.
  • [14] Hangai, Y., et al. Drop weight impact behavior of functionally graded aluminum foam consisting of A1050 and A6061 aluminum alloys. Materials Science and Engineering: A. 2015; 639: 597–603.
  • [15] Peroni, M., Solomos, G. and Pizzinato, V. Impact behaviour testing of aluminium foam. International Journal of Impact Engineering. 2013; 53: 74–83.
  • [16] Ghazi, A., et al. Computed tomography based modelling of the behaviour of closed cell metallic foams using a shell approximation. Materials & Design. 2020; 194: 108866.
  • [17] Naeem, M.A., Gábora, A. and Mankovits, T. Influence of the manufacturing parameters on the compressive properties of closed cell aluminum foams. Periodica Polytechnica Mechanical Engineering. 2020; 64: 172–178.
  • [18] Vesenjak, M. and Ren, Z. Geometrical and mechanical analysis of various types of cellular metals. Ciência & Tecnologia dos Materiais. 2016; 28: 9–13.
  • [19] Singh, S. and Bhatnagar, N. A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materials. 2018; 25: 537–554.
  • [20] Gauthier, M., et al. Production of metallic foams having open porosity using a powder metallurgy approach. Materials and manufacturing processes. 2004; 19: 793–811.
  • [21] Yalçın, N. and Ercil, A. Döküm yöntemi ile açık gözenekli parça üretiminde gözenek boyutunun mekanik özelliklere etkisi. in 2nd International Turkish World Engineering and Science Congress. 2019. Antalya, Türkiye
  • [22] Dannemann, K.A. and Lankford Jr, J. High strain rate compression of closed-cell aluminium foams. Materials Science and Engineering: A. 2000; 293: 157–164.
  • [23] Menç, B. and Özçatalbaş, Y. Manufacturing and characterization of open-cell aluminum foam by powder metallurgy. Materials Science and Technology. 2024; 02670836241291267.
  • [24] Fu, W. and Li, Y. Fabrication, processing, properties, and applications of closed-cell aluminum foams: a review. Materials. 2024; 17: 560.
  • [25] Uzun, A. and Turker, M. The investigation of mechanical properties of B4C-reinforced AlSi7 foams. International Journal of Materials Research. 2015; 106: 970–977.
  • [26] Kırmızı, G., Arık, H. and Çinici, H. Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites. Composites Part B: Engineering. 2019; 164: 345–357.
  • [27] Zare, J. and Manesh, H.D. A novel method for producing of steel tubes with Al foam core. Materials & Design. 2011; 32: 1325–1330.
  • [28] Miyoshi, T., et al. ALPORAS aluminum foam: production process, properties, and applications. Advanced engineering materials. 2000; 2: 179–183.
  • [29] Mu, Y., et al. Deformation mechanisms of closed-cell aluminum foam in compression. Scripta Materialia. 2010; 63: 629–632.
  • [30] Paul, A. and Ramamurty, U. Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering: A. 2000; 281: 1–7.
  • [31] Yousefi, M.K., Kianirad, A. and Vaseghi, M. Simulation and investigation to the behavior of metallic foam as a bumper in automobile under impact loadings. in The First International Conference on Mechanics of Advanced Materials and Equipment. 2018.
  • [32] Uzun, A., et al. Investigation of modal properties of AlSi7 foam produced by powder metallurgy technique. Materials Testing. 2013; 55: 598–601.
  • [33] Türker, M. Production of closed cell aluminum foam as armor support material. in International Congress on Engineerıng Sciences and Multidisciplinary Approaches. 2021. İstanbul, Türkiye.
  • [34] Türker, M. Aluminum based metallic foams produced via powder metallurgy process in International Porous and Powder Materials Symposium and Exhibition. 2015. Çeşme, İzmir- Türkiye.
  • [35] Han, M.S. and Cho, J.U. Impact damage behavior of sandwich composite with aluminum foam core. Transactions of Nonferrous Metals Society of China. 2014; 24: s42–s46.
  • [36] Santosa, S. and Wierzbicki, T. On the modeling of crush behavior of a closed-cell aluminum foam structure. Journal of the Mechanics and Physics of Solids. 1998; 46: 645–669.
  • [37] Weise, J., Lehmhus, D. and Baumeister, J. Lightweight Structures Based on Aluminium Foam Granules. Lightweight Design worldwide. 2017; 10: 6–11.
  • [38] Babcsán, N., Banhart, J. and Leitlmeier, D. Metal foams–manufacture and physics of foaming. in Proceedings of the International Conference Advanced Metallic Materials. 2003.
  • [39] Andrews, E., Huang, J.-S. and Gibson, L. Creep behavior of a closed-cell aluminum foam. Acta Materialia. 1999; 47: 2927–2935.
  • [40] Uzun, A. Compressive Crush Performance of Square Tubes Filled with Spheres of Closed-Cell Aluminum Foams. Archives of Metallurgy and Materials. 2017;
  • [41] Uzun, G., et al. Effect of cutting parameters on the drilling of AlSi metallic foams. Material in Tehnologie/Materials and Technology. 2017; 51: 19–24.
  • [42] Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science. 2001; 46: 559–632.
  • [43] Gülenç, İ.T. Patlama kaynağı ile kaynaklanmış sandviç yapıların köpürebilirliğinin araştırılması. Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği. Yüksek Lisans Tezi. Gazi Üniversitesi 2014.
  • [44] Uzun, A. and Turker, M. Friction stir welding of foamable AlSi7 reinforced by B4C. International Journal of Materials Research. 2016; 107: 558–565.
  • [45] Bernard, T., Burzer, J. and Bergmann, H. Mechanical properties of structures of semifinished products joined to aluminium foams. Journal of Materials Processing Technology. 2001; 115: 20–24.
  • [46] Cambronero, L., et al. Weld structure of joined aluminium foams with concentrated solar energy. Journal of Materials Processing Technology. 2014; 214: 2637–2643.
  • [47] Pelit, Y., et al. Toz metal Al malzemelerin köpürtme öncesi saplama kaynağı ile birleştirilmesi. in 6th International Advanced Technologies Symposium (IATS11). 2011. Elazığ, Türkiye.
  • [48] Ersoy, E. and Özçatalbaş, Y. Deformation of metallic foams with closed cell at high temperatures. Int J Mater Metall Eng. 2015; 9: 789–792.
  • [49] POTOČNIK, D., RAZBORŠEK, B. and FICKO, M. Overview of aluminum foam machining. EXPRES 2020. 2020; 52.
  • [50] Yan, L., et al. Three-point bending of sandwich beams with aluminum foam-filled corrugated cores. Materials & Design. 2014; 60: 510–519.
  • [51] Changdar, A. and Chakraborty, S.S. Laser processing of metal foam-A review. Journal of Manufacturing Processes. 2021; 61: 208–225.
  • [52] Cambronero, L., et al. Manufacturing of Al–Mg–Si alloy foam using calcium carbonate as foaming agent. Journal of materials processing technology. 2009; 209: 1803–1809.
  • [53] Orłowicz, A., et al. Materials used in the automotive industry. Archives of foundry engineering. 2015; 15:
  • [54] Onck, P., et al. Fracture of Metal Foams: In‐situ Testing and Numerical Modeling. Advanced Engineering Materials. 2004; 6: 429–431.
  • [55] Lehmhus, D., et al., From stochastic foam to designed structure: Balancing cost and performance of cellular metals. 2017, Materials. p. 922.
  • [56] Turker, M. Production of Ceramics Reinforced Al Foams by Powder Metallurgy Techniques. in Materials Science Forum. 2011.
  • [57] Güden, M., Elbir, S. and Yılmaz, S. Kompozit alüminyum köpüklerin hazırlanması ve mekanik özelliklerinin belirlenmesi. II. Makine Malzemesi ve İmalat Teknolojisi Sempozyumu. 2015;
  • [58] Wang, Z., et al. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials. Applied Thermal Engineering. 2022; 201: 117778.
  • [59] Gao, H., et al. 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Composites Science and Technology. 2021; 213: 108896.
  • [60] Sreenivasa, C. and Shivakumar, K. A review on prodution of aluminium metal foams. in IOP Conference Series: Materials Science and Engineering. 2018.
  • [61] Aida, S., Zuhailawati, H. and Anasyida, A. The effect of space holder content and sintering temperature of magnesium foam on microstructural and properties prepared by sintering dissolution process (SDP) using carbamide space holder. Procedia Engineering. 2017; 184: 290–297.
  • [62] Kovacik, J. and Simancik, F. Comparison of zinc and aluminium foam behaviour. Translations-Ve Riecansky. 2004;
  • [63] Tianjian, L. Ultralight porous metals: from fundamentals to applications. Acta Mechanica Sinica. 2002; 18: 457–479.
  • [64] Liu, J., et al. The compressive properties of closed-cell Zn-22Al foams. Materials Letters. 2008; 62: 683–685.
  • [65] Banhart, J. Light‐metal foams—history of innovation and technological challenges. Advanced Engineering Materials. 2013; 15: 82–111.
  • [66] Liu, P. and Liang, K. Review Functional materials of porous metals made by P/M, electroplating and some other techniques. Journal of materials science. 2001; 36: 5059–5072.
  • [67] Türker, M., et al. Effects of foaming agent and boron carbide additions on the foamability behaviour of al based metallic foam produced by powder metallurg. in Advances in Powder Metallurgy and Particulate Materials-2008, Proceedings of the 2008 World Congress on Powder Metallurgy and Particulate Materials, PowderMet 2008. 2008.
  • [68] Türker, M., et al. TM ile üretilen al esaslı metalik köpükte bor oksit ilavesinin köpürmeye etkisinin araştırılması. in 13. Uluslararası Metalurji ve Malzeme Kongresi. 2006. İstanbul, Türkiye.
  • [69] Uzun, A. Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method. Composites Part B: Engineering. 2019; 172: 206–217.
  • [70] Çinici, H., et al. Toz metalurjisi yöntemiyle üretilen AlSi7 köpüklerin düşük hızlı darbe enerjileri altında penetrasyon davranışının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2014; 29: 395–400.
  • [71] Esmaeelzadeh, S., Simchi, A. and Lehmhus, D. Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam. Materials Science and Engineering: A. 2006; 424: 290–299.
  • [72] Kennedy, A. and Asavavisitchai, S. Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams. Scripta Materialia. 2004; 50: 115–119.
  • [73] Kováčik, J., et al. Reinforced aluminium foams. in International Conference in Advanced Metallic Materials. 2003.
  • [74] Gergely, V. and Clyne, B. The FORMGRIP process: foaming of reinforced metals by gas release in precursors. Advanced Engineering Materials. 2000; 2: 175–178.
  • [75] Gergely, V., Degischer, H. and Clyne, T. Recycling of MMCs and production of metallic foams. Comprehensive composite materials. 2000; 797–820.
  • [76] Wang, C., et al. Fabrication and characterization of layered structure reinforced composite metal foam. Journal of Alloys and Compounds. 2022; 895: 162658.
  • [77] Gökmen, U. and Türker, M. Al2O3 ilavesinin alüminyum ve alumix 231 esasli metalik köpüğün köpürme özelliklerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2012; 27:
  • [78] Gergely, V. and Clyne, T. Drainage in standing liquid metal foams: modelling and experimental observations. Acta Materialia. 2004; 52: 3047–3058.
  • [79] Deqing, W. and Ziyuan, S. Effect of ceramic particles on cell size and wall thickness of aluminum foam. Materials Science and Engineering: A. 2003; 361: 45–49.
  • [80] Brunke, O., et al. Experimental and numerical analysis of the drainage of aluminium foams. Journal of Physics: Condensed Matter. 2005; 17: 6353.
  • [81] Markaki, A. and Clyne, T. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Materialia. 2001; 49: 1677–1686.
  • [82] Temiz, A., et al. Rapid casting of biodegradable porous magnesium scaffolds and electrophoretic deposition of 45S5 bioactive glass nanoparticles coatings on porous scaffolds: characterization and in vitro bioactivity analysis. International Journal of Metalcasting. 2023; 17: 1871–1882.
  • [83] Ersoy, E., Özçatalbaş, Y. and Bahçeci, E. An experimental study on hot formability of closed cell metallic foams. in International Porous and Powder Materials Symposium. 2013. İzmir, Türkiye.
  • [84] Arif, U. Sıcak Presleme Yöntemi ile Üretilmiş Al Köpüğün Gözenek Yapısı ve Köpürme Davranışı Üzerine MgO İlavesinin Etkisi. Honor Committee. 613.
  • [85] Steen, W.M. and Mazumder, J. Laser Material Processing. Springer-Verlag Ltd. London. 2010.
  • [86] Ozan, S., et al. Application of ANN in the prediction of the pore concentration of aluminum metal foams manufactured by powder metallurgy methods. The International Journal of Advanced Manufacturing Technology. 2008; 39: 251–256.
  • [87] Yu, C.-J., et al. Metal foaming by a powder metallurgy method: Production, properties and applications. Materials Research Innovations. 1998; 2: 181–188.
  • [88] Onck, P., et al. Fracture of open-and closed-cell metal foams. Journal of materials science. 2005; 40: 5821–5828.
  • [89] Parveez, B., et al. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: a review. Materials. 2022; 15: 5302.
  • [90] Madgule, M., et al. Influence of foaming agents on mechanical and microstructure characterization of AA6061 metal foams. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2024; 238: 520–532.
  • [91] Ali, H., et al. Effect of the manufacturing parameters on the pore size and porosity of closed-cell hybrid aluminum foams. International Review of Applied Sciences and Engineering. 2021; 12: 230–237.
  • [92] Banhart, J. Manufacturing routes for metallic foams. Jom. 2000; 52: 22–27.
  • [93] Kennedy, A. and Asavavisithchai, S. Effect of Ceramic Particle Additions on Foam Expansion and Stability in Compacted Al‐TiH2 Powder Precursors. Advanced Engineering Materials. 2004; 6: 400–402.
  • [94] Elbir, S., et al. SiC-particulate aluminum composite foams produced by powder compacts: Foaming and compression behavior. Journal of materials science. 2003; 38: 4745–4755.
  • [95] Asavavisithchai, S. and Kennedy, A. Effect of powder oxide content on the expansion and stability of PM-route Al foams. Journal of Colloid and Interface Science. 2006; 297: 715–723.
  • [96] Styles, M., Compston, P. and Kalyanasundaram, S. The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Composite Structures. 2007; 80: 532–538.
  • [97] speaker), M.T.I. Toz Metalurjisi Yöntemi İle Üretilen Alüminyum Esasli Metalik Köpükte Si İlavesinin Köpürmeye Etkisi in Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), . 13–15 Mayıs 2009. Karabük, Türkiye,pp1-6, .
  • [98] Banhart, J. and Baumeister, J. Deformation characteristics of metal foams. Journal of materials science. 1998; 33: 1431–1440.
  • [99] Ashby, M.F., et al. Metal foams: a design guide. Elsevier. 2000.
  • [100] Guden, M. and Yüksel, S. SiC-particulate aluminum composite foams produced from powder compacts: foaming and compression behavior. Journal of Materials Science. 2006; 41: 4075–4084.
  • [101] Wadley, H.N. Cellular metals manufacturing. Advanced engineering materials. 2002; 4: 726–733.
  • [102] Montanini, R. Measurement of strain rate sensitivity of aluminium foams for energy dissipation. International Journal of Mechanical Sciences. 2005; 47: 26–42.
  • [103] Körner, C. and Singer, R.F. Processing of metal foams—challenges and opportunities. Advanced Engineering Materials. 2000; 2: 159–165.
  • [104] Banhart, J. and Weaire, D. On the road again: metal foams find favor. Physics Today. 2002; 55: 37–42.
  • [105] Pelit, Y. and Türker, M. Mekanik Alaşımlanmış Al2O3 Takviyeli AlSi7Mg0,6 Esaslı Tozlardan Metalik Köpük Üretimi ve Özelliklerinin İncelenmesi,. in 6th Internatıonal Powder Metallurgy Conference & Exhibition. October 05–09, 2011. Ankara
  • [106] Proa-Flores, P., Mendoza-Suarez, G. and Drew, R. Effect of TiH 2 particle size distribution on aluminum foaming using the powder metallurgy method. Journal of Materials Science. 2012; 47: 455–464.
  • [107] Kriszt, B. and Degischer, H. Handbook of cellular metals: Production, processing, applications. Weinheim: Wiley-VCH. 2002; 2002.
  • [108] Yu, S., Luo, Y. and Liu, J. Effects of strain rate and SiC particle on the compressive property of SiCp/AlSi9Mg composite foams. Materials Science and Engineering: A. 2008; 487: 394–399.
  • [109] Hassan, A. and Alnaser, I.A. A review of different manufacturing methods of metallic foams. ACS omega. 2024; 9: 6280–6295.
  • [110] Bahçeci, E., Özçatalbaş, Y. and Türker, M. TM yöntemiyle AlSiMg alaşımı metalik köpük üretimi için geliştirilen preform malzeme üretim sürecinin karekterizasyonu. in 6th International Powder Metallurgy Conference Exhibition. 2011. Ankara, Türkiye.
  • [111] Matijasevic, B. and Banhart, J. Improvement of aluminium foam technology by tailoring of blowing agent. Scripta Materialia. 2006; 54: 503–508.
  • [112] Kim, A., et al. Time–temperature superposition for foaming kinetics of Al-alloy foams. Journal of Materials Processing Technology. 2008; 202: 450–456.
  • [113] Turker, M., et al. Effect of Foaming Agent on The Structure and Morphology of Al and Alumix 231 Foams Produced by Powder Metallurgy. in Materials Science Forum. 2011.
  • [114] Banhart, J. Manufacturing routes for metallic foams. The journal of the Minerals, Metals & Materials Society 2012; 52(12):22-27
  • [115] Baumgärtner, F., Duarte, I. and Banhart, J. Industrialization of powder compact toaming process. Advanced Engineering Materials. 2000; 2: 168–174.
  • [116] Mudge, A. and Morsi, K. Fabrication of Uniform and Rounded Closed-Cell Aluminum Foams Using Novel Foamable Precursor Particles (FPPs). Metals. 2024; 14: 120.
  • [117] Banhart, J. Metallic foams: challenges and opportunities. Eurofoam. 2000; 2000: 13–20.
  • [118] Shiomi, M., et al. Fabrication of aluminium foams from powder by hot extrusion and foaming. Journal of Materials Processing Technology. 2010; 210: 1203–1208.
  • [119] Wang, L., et al. Achieving metallurgical bonding in steel faceplate/aluminum foam sandwich via hot pressing and foaming processes: interfacial microstructure evolution and tensile behavior. Journal of Materials Processing Technology. 2024; 334: 118636.
  • [120] KARAKOÇ, H., et al. Sıcak presleme yöntemi ile B4C takviyeli Alumix 231 köpüklerin üretimi ve gözenek morfolojisinin incelenmesi.
  • [121] Uzun, A., et al. Vickers Microhardness Studies on B 4 C Reinforced/Unreinforced Foamable Aluminium Composites. Transactions of the Indian Institute of Metals. 2018; 71: 327–337.
  • [122] Pen, S.I., et al. Synthesis and characterization of Al foams produced by powder metallurgy route using dolomite and titanium hydride as a foaming agents. Materiali in tehnologije. 2014; 48: 943–947.
  • [123] Schaeffler, P., et al. Production, properties, and applications of Alulight® closed-cell aluminum foams. in Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies. 2005.
  • [124] Stanzick, H., et al. Process Control in Aluminum Foam Production Using Real‐Time X‐ray Radioscopy. Advanced Engineering Materials. 2002; 4: 814–823.
  • [125] Babcsán, N., Moreno, F.G. and Banhart, J. Metal foams—high temperature colloids: part II: in situ analysis of metal foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007; 309: 254–263.
  • [126] Yang, D., et al. Effect of decomposition kinetics of titanium hydride on the Al alloy melt foaming process. Journal of Materials Science & Technology. 2015; 31: 361–368.
  • [127] Abo sbia, A.E.S. and Uzun, A. Production of MWCNT-Reinforced Aluminum Foams Via Powder Space-Holder Technique and Investigation of their Mechanical Properties. Transactions of the Indian Institute of Metals. 2022; 75: 2241–2253.
  • [128] Gökmen, U., Özçatalbaş, Y. and Türker, M. Al2O3 Takviyeli Metalik Köpüğe Köpürme Sıcaklığı ve Köpürtücü Madde Miktarının Etkisinin Araştırılması. in 5. Uluslararası Toz Metalurjisi Konferansı. 2008. Ankara.
  • [129] Banhart, J. and Seeliger, H.W. Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials. 2008; 10: 793–802.
  • [130] Banhart, J., et al. Real-time x-ray investigation of aluminium foam sandwich production Advanced Engineering Materials. 2001; 3: 1–10.
  • [131] Magnucka-Blandzi, E. and Magnucki, K. Effective design of a sandwich beam with a metal foam core. Thin-Walled Structures. 2007; 45: 432–438.
  • [132] Contorno, D., et al. Forming of aluminum foam sandwich panels: Numerical simulations and experimental tests. Journal of Materials Processing Technology. 2006; 177: 364–367.
  • [133] Simancik, F. Metallic foams-ultra light materials for structural applications. Inżynieria Materiałowa. 2001; 22: 823–828.
  • [134] Liu, S., et al. Fatigue of an Aluminum Foam Sandwich Formed by Powder Metallurgy. Materials. 2023; 16: 1226.
  • [135] Stöbener, K., et al. Composites based on metallic foams: phenomenology; production; properties and principles. in Proc (Nov. 2003), International Conference “Advanced Metallic Materials. 2003.
  • [136] Mohan, K., et al. Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending. Materials Science and Engineering: A. 2005; 409: 292–301.
  • [137] Çinici, H. and Türker, M. Effect of Foaming Duration and Temperature on the Foamability Behaviour of AlSi7Mg0. 6 Sandwich. in PM2010 World Congress – Foams Porous Materials. 2010. Italy.
  • [138] Bucher, T., et al. Laser forming of sandwich panels with metal foam cores. Journal of Manufacturing Science and Engineering. 2018; 140: 111015.
  • [139] Hanssen, A., et al. A numerical model for bird strike of aluminium foam-based sandwich panels. International journal of impact engineering. 2006; 32: 1127–1144.
  • [140] Uzun, A. and Turker, M. The effect of production parameters on the foaming behavior of spherical-shaped aluminum foam. Materials Research. 2014; 17: 311–315.
  • [141] Vesenjak, M., et al. Structural characterisation of advanced pore morphology (APM) foam elements. Materials letters. 2013; 110: 201–203.
  • [142] Ulbin, M., et al. Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements. Materials Letters. 2014; 136: 416–419.
  • [143] Stöbener, K., et al. Forming metal foams by simpler methods for cheaper solutions. Metal Powder Report. 2005; 60: 12–16.
  • [144] Patel, N., et al. Aluminum foam production, properties, and applications: a review. International Journal of Metalcasting. 2024; 18: 2181–2198.
  • [145] Kovačič, A. and Ren, Z. On the porosity of advanced pore morphology structures. Composite Structures. 2016; 158: 235–244.
  • [146] Wang, F., et al. Foaming Behavior of Microsized Aluminum Foam Using Hot Rolling Precursor. Metals. 2023; 13: 928.
  • [147] Kovačič, A., et al. Geometrical and mechanical properties of polyamide PA 12 bonds in composite advanced pore morphology (APM) foam structures. Archives of Civil and Mechanical Engineering. 2018; 18: 1198–1206.
  • [148] Sulong, M., et al. Compressive properties of Advanced Pore Morphology (APM) foam elements. Materials Science and Engineering: A. 2014; 607: 498–504.
  • [149] Sun, K., et al. Recent advances and future trends in enhancing the compressive strength of aluminum matrix foam composites reinforced with ceramic hollow spheres: A review. Composite Structures. 2024; 331: 117918.
  • [150] Rausch, G., Stöbener, K. and Bassan, D. Improving structural crashworthiness using metallic and organic foams. 2006;
  • [151] Arif, U. Investigation of Crushing Behavior of Polystyrene Coated Spherical Shaped Aluminum Foams. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9: 1273–1281.
  • [152] Wang, E., et al. Lightweight metallic cellular materials: a systematic review on mechanical characteristics and engineering applications. International Journal of Mechanical Sciences. 2023; 108795.
  • [153] Sánchez de la Muela, A., Cambronero, L. and Ruiz-Bustinza, I. Quasi-static and dynamic analysis of single-layer sandwich structures of APM foam spheroid elements in-situ foamed with marble”. Rev. Metal. 2020; 56: e159.
  • [154] Weise, J., et al. Mechanical Behavior of Particulate Aluminium‐Epoxy Hybrid Foams Based on Cold‐Setting Polymers. Advanced Engineering Materials. 2017; 19: 1700090.
  • [155] Borovinsek, M., et al. Analysis of advanced pore morphology (APM) foam elements using compressive testing and time-lapse computed microtomography. Materials. 2021; 14: 5897.
  • [156] Vopalensky, M., et al. Fast 4D On-the-Fly Tomography for Observation of Advanced Pore Morphology (APM) Foam Elements Subjected to Compressive Loading. Materials. 2021; 14: 7256.
  • [157] Salehi, M., Mirbagheri, S. and Ramiani, A.J. Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading. Transactions of Nonferrous Metals Society of China. 2021; 31: 92–110.
  • [158] Uzun, A., et al. Investigation of mechanical properties of tubular aluminum foams. International Journal of Materials Research. 2016; 107: 996–1004.
  • [159] Crupi, V. and Montanini, R. Aluminium foam sandwiches collapse modes under static and dynamic three-point bending. International Journal of Impact Engineering. 2007; 34: 509–521.
  • [160] Banhart, J. Metal foams-from fundamental research to applications. Frontiers in the Design of Materials. 2007; 279:
  • [161] Lefebvre, L.P., Banhart, J. and Dunand, D.C. Porous metals and metallic foams: current status and recent developments. Advanced engineering materials. 2008; 10: 775–787.
  • [162] Seitzberger, M., et al. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. International Journal of Solids and Structures. 2000; 37: 4125–4147.
  • [163] Olurin, O., Fleck, N.A. and Ashby, M.F. Deformation and fracture of aluminium foams. Materials Science and Engineering: A. 2000; 291: 136–146.
  • [164] Davies, G. and Zhen, S. Metallic foams: their production, properties and applications. Journal of Materials science. 1983; 18: 1899–1911.
  • [165] Yao, R., et al. On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects. Thin-Walled Structures. 2023; 189: 110734.
  • [166] Banhart, J. Aluminium foams for lighter vehicles. International Journal of vehicle design. 2005; 37: 114–125.
  • [167] Claar, T.D., et al. Ultra-lightweight aluminum foam materials for automotive applications. SAE transactions. 2000; 98–106.
  • [168] Wang, D., et al. Structure-material-performance integration lightweight optimisation design for frontal bumper system. International journal of crashworthiness. 2018; 23: 311–327.
  • [169] Baumeister, J., et al. Applications of aluminium hybrid foam sandwiches in battery housings for electric vehicles: Anwendung von Aluminium‐Hybridschaum‐Sandwichen in Batteriegehäusen von Elektrofahrzeugen. Materialwissenschaft und Werkstofftechnik. 2014; 45: 1099–1107.
  • [170] Heyhat, M.M., Mousavi, S. and Siavashi, M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. Journal of Energy Storage. 2020; 28: 101235.
  • [171] Banhart, J. Industrialisation of aluminium foam technology. in Proceedings of the ninth International Conference on aluminium alloys. 2004.
  • [172] Banhart, J. and Seeliger, H. Aluminium Foam Sandwich Panels: Metallurgy, Manufacture and Applications, Porous Metals and Metallic Foams. in Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams. 2007.
  • [173] Seeliger, H.W. Aluminium foam sandwich (AFS) ready for market introduction. Advanced Engineering Materials. 2004; 6: 448–451.
  • [174] Pinnoji, P.K., et al. New motorcycle helmets with metal foam shell. in 2008 IRCOBI Conference Proceedings, Bern, Switzerland. 2008.
  • [175] Pinnoji, P.K., et al. Impact dynamics of metal foam shells for motorcycle helmets: Experiments & numerical modeling. International Journal of Impact Engineering. 2010; 37: 274–284.
  • [176] Carruthers, J., et al. The design and prototyping of a lightweight crashworthy rail vehicle driver's cab. in 9th World Congress on Railway Research. 2011.
  • [177] Neugebauer, R. and Hipke, T. Machine tools with metal foams. Advanced Engineering Materials. 2006; 8: 858–863.
  • [178] Gökmen, U. Toz metalurjisi yöntemi ile Al esaslı parçacık takviyeli metalik köpük üretimi. Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara. 2009.
  • [179] Ersin BAHÇECİ, Y.Ö., Mehmet TÜRKER, PM YÖNTEMİYLE BÜYÜK YÜZEY ALANLI METALİK KÖPÜK ÜRE TİMİNDE KÖPÜREBİLİRLİK PROBLEMLERİ, in 6. ULUSLARARASI TOZ METALURJİSİ KONFERANSI ve SERGİSİ, M.T.v. ediğerleri, Editor. 05–09 Ekim 2011 Mina Ajans: Orta Doğu Teknik Üniversitesi Ankara, Türkiye. p. 253–260.
  • [180] Türker, M. Al Foams Reinforced With B4C And SiC Particles: Production Process, Characterization, Properties and Applications. in International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications; Exhibition (ICMATSE 2020). 2020. Gazi University, Ankara, Türkiye.

Production of Al-based Foam Using Powder Metallurgy method, Its Application Areas and Use for Energy Absorption in Polymer-based Armors

Year 2025, Volume: 13 Issue: 4
https://doi.org/10.29109/gujsc.1750808

Abstract

Son yıllarda hem akademik hem de endüstriyel alanlarda yoğun araştırmalara konu olan metalik köpükler, oldukça hafif ve gözenekli yapıya sahip malzemelerdir. Bu malzemeler, çok düşük yoğunlukları ve yüksek enerji emme özellikleriyle otomotiv endüstrisi başta olmak üzere havacılık ve savunma sanayi gibi alanlarda öne çıkmaktadır. Metalik köpükler oldukça gözenekli yapılarına rağmen yüksek mukavemet, düşük ısı iletkenliği ve yüksek enerji emme kapasitesine sahiptir. Metalik köpüklerin mekanik özellikleri, gözeneklerin şekline, boyutuna ve yüzey alanına, üretim sırasında yapıya eklenen takviye elemanlarının özelliklerine ve matris malzemesiyle etkileşimlerine bağlı olarak değişiklik gösterir. Köpük malzemeler, hafiflikleri ve enerji emme özellikleri nedeniyle araç tasarımcıları için özellikle cazip hale gelmiştir. Aracın birçok farklı alanında kullanılmalarına rağmen, özellikle çarpışma durumunda araçta oluşabilecek hasarın en aza indirilmesi ve yolcuların en az zarar görmesi hedeflenmektedir. Ayrıca, enerji ve çevrenin önemli olduğu günümüzde, araç ağırlığının azaltılması yakıt tüketimini azaltacak ve verimliliği artırarak çevreye verilen zararı en aza indirecektir. Bu makalede, toz metalurjisi (TM) yöntemiyle üretilen kapalı hücreli Al esaslı metalik köpük malzemeler hakkında genel bilgiler verildikten sonra, takviyeli ve takviyesiz köpük üretimi, sandviç köpük üretimi, küresel köpük üretimi ve metalik köpük dolgulu profil üretimi gibi özel üretim yöntemleri hakkında kapsamlı bilgi verilmektedir. Ayrıca, çok yeni bir uygulama olan metalik köpük takviyeli integral zırh malzemesinin üretimi ve diğer uygulamalar hakkında genel bilgiler verilmektedir

Ethical Statement

The author of this article declares that the materials and methods they use in their work do not require ethical committee approval and/or legal-specific permission

Supporting Institution

TÜBİTAK-GAZİ ÜNİVERSİTESİ BAP

References

  • [1] Türker, M. Toz Metal Al Köpükler: Üretimi, Çeşitleri ve Kullanım Alanları. Politeknik Dergisi. 2024; 27: 2335–2356.
  • [2] Sharma, S.S., et al. Application of metallic foam in vehicle structure: A review. Materials Today: Proceedings. 2022; 63: 347–353.
  • [3] Koza, E., et al. Compressive strength of aluminium foams. Materials letters. 2004; 58: 132–135.
  • [4] Madgule, M., Sreenivasa, C. and Borgaonkar, A.V. Aluminium metal foam production methods, properties and applications-a review. Materials Today: Proceedings. 2023; 77: 673–679.
  • [5] Atwater, M.A., et al. Solid state porous metal production: A review of the capabilities, characteristics, and challenges. Advanced Engineering Materials. 2018; 20: 1700766.
  • [6] Gibson, L.J. Mechanical behavior of metallic foams. Annual Review of Materials Science. 2000; 30: 191–227.
  • [7] Hanssen, A.G., Langseth, M. and Hopperstad, O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International journal of impact engineering. 2000; 24: 475–507.
  • [8] Schwingel, D.D., et al. Aluminium foam sandwich structures for space applications. in 57th International Astronautical Congress. 2007.
  • [9] YU, H.-j., et al. Sound insulation property of Al-Si closed-cell aluminum foam bare board material. Transactions of nonferrous metals society of China. 2007; 17: 93–98.
  • [10] Peroni, L., Avalle, M. and Peroni, M. The mechanical behaviour of aluminium foam structures in different loading conditions. International journal of impact engineering. 2008; 35: 644–658.
  • [11] Sha, J. and Yip, T. In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading. Materials Science and Engineering: A. 2004; 386: 91–103.
  • [12] Schwingela, D., et al. Aluminium foam sandwich structures for space applications. Acta Astronautica 2007; 61 326–330.
  • [13] Michailidis, N., Stergioudi, F. and Tsouknidas, A. Deformation and energy absorption properties of powder-metallurgy produced Al foams. Materials Science and Engineering: A. 2011; 528: 7222–7227.
  • [14] Hangai, Y., et al. Drop weight impact behavior of functionally graded aluminum foam consisting of A1050 and A6061 aluminum alloys. Materials Science and Engineering: A. 2015; 639: 597–603.
  • [15] Peroni, M., Solomos, G. and Pizzinato, V. Impact behaviour testing of aluminium foam. International Journal of Impact Engineering. 2013; 53: 74–83.
  • [16] Ghazi, A., et al. Computed tomography based modelling of the behaviour of closed cell metallic foams using a shell approximation. Materials & Design. 2020; 194: 108866.
  • [17] Naeem, M.A., Gábora, A. and Mankovits, T. Influence of the manufacturing parameters on the compressive properties of closed cell aluminum foams. Periodica Polytechnica Mechanical Engineering. 2020; 64: 172–178.
  • [18] Vesenjak, M. and Ren, Z. Geometrical and mechanical analysis of various types of cellular metals. Ciência & Tecnologia dos Materiais. 2016; 28: 9–13.
  • [19] Singh, S. and Bhatnagar, N. A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materials. 2018; 25: 537–554.
  • [20] Gauthier, M., et al. Production of metallic foams having open porosity using a powder metallurgy approach. Materials and manufacturing processes. 2004; 19: 793–811.
  • [21] Yalçın, N. and Ercil, A. Döküm yöntemi ile açık gözenekli parça üretiminde gözenek boyutunun mekanik özelliklere etkisi. in 2nd International Turkish World Engineering and Science Congress. 2019. Antalya, Türkiye
  • [22] Dannemann, K.A. and Lankford Jr, J. High strain rate compression of closed-cell aluminium foams. Materials Science and Engineering: A. 2000; 293: 157–164.
  • [23] Menç, B. and Özçatalbaş, Y. Manufacturing and characterization of open-cell aluminum foam by powder metallurgy. Materials Science and Technology. 2024; 02670836241291267.
  • [24] Fu, W. and Li, Y. Fabrication, processing, properties, and applications of closed-cell aluminum foams: a review. Materials. 2024; 17: 560.
  • [25] Uzun, A. and Turker, M. The investigation of mechanical properties of B4C-reinforced AlSi7 foams. International Journal of Materials Research. 2015; 106: 970–977.
  • [26] Kırmızı, G., Arık, H. and Çinici, H. Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites. Composites Part B: Engineering. 2019; 164: 345–357.
  • [27] Zare, J. and Manesh, H.D. A novel method for producing of steel tubes with Al foam core. Materials & Design. 2011; 32: 1325–1330.
  • [28] Miyoshi, T., et al. ALPORAS aluminum foam: production process, properties, and applications. Advanced engineering materials. 2000; 2: 179–183.
  • [29] Mu, Y., et al. Deformation mechanisms of closed-cell aluminum foam in compression. Scripta Materialia. 2010; 63: 629–632.
  • [30] Paul, A. and Ramamurty, U. Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering: A. 2000; 281: 1–7.
  • [31] Yousefi, M.K., Kianirad, A. and Vaseghi, M. Simulation and investigation to the behavior of metallic foam as a bumper in automobile under impact loadings. in The First International Conference on Mechanics of Advanced Materials and Equipment. 2018.
  • [32] Uzun, A., et al. Investigation of modal properties of AlSi7 foam produced by powder metallurgy technique. Materials Testing. 2013; 55: 598–601.
  • [33] Türker, M. Production of closed cell aluminum foam as armor support material. in International Congress on Engineerıng Sciences and Multidisciplinary Approaches. 2021. İstanbul, Türkiye.
  • [34] Türker, M. Aluminum based metallic foams produced via powder metallurgy process in International Porous and Powder Materials Symposium and Exhibition. 2015. Çeşme, İzmir- Türkiye.
  • [35] Han, M.S. and Cho, J.U. Impact damage behavior of sandwich composite with aluminum foam core. Transactions of Nonferrous Metals Society of China. 2014; 24: s42–s46.
  • [36] Santosa, S. and Wierzbicki, T. On the modeling of crush behavior of a closed-cell aluminum foam structure. Journal of the Mechanics and Physics of Solids. 1998; 46: 645–669.
  • [37] Weise, J., Lehmhus, D. and Baumeister, J. Lightweight Structures Based on Aluminium Foam Granules. Lightweight Design worldwide. 2017; 10: 6–11.
  • [38] Babcsán, N., Banhart, J. and Leitlmeier, D. Metal foams–manufacture and physics of foaming. in Proceedings of the International Conference Advanced Metallic Materials. 2003.
  • [39] Andrews, E., Huang, J.-S. and Gibson, L. Creep behavior of a closed-cell aluminum foam. Acta Materialia. 1999; 47: 2927–2935.
  • [40] Uzun, A. Compressive Crush Performance of Square Tubes Filled with Spheres of Closed-Cell Aluminum Foams. Archives of Metallurgy and Materials. 2017;
  • [41] Uzun, G., et al. Effect of cutting parameters on the drilling of AlSi metallic foams. Material in Tehnologie/Materials and Technology. 2017; 51: 19–24.
  • [42] Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science. 2001; 46: 559–632.
  • [43] Gülenç, İ.T. Patlama kaynağı ile kaynaklanmış sandviç yapıların köpürebilirliğinin araştırılması. Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği. Yüksek Lisans Tezi. Gazi Üniversitesi 2014.
  • [44] Uzun, A. and Turker, M. Friction stir welding of foamable AlSi7 reinforced by B4C. International Journal of Materials Research. 2016; 107: 558–565.
  • [45] Bernard, T., Burzer, J. and Bergmann, H. Mechanical properties of structures of semifinished products joined to aluminium foams. Journal of Materials Processing Technology. 2001; 115: 20–24.
  • [46] Cambronero, L., et al. Weld structure of joined aluminium foams with concentrated solar energy. Journal of Materials Processing Technology. 2014; 214: 2637–2643.
  • [47] Pelit, Y., et al. Toz metal Al malzemelerin köpürtme öncesi saplama kaynağı ile birleştirilmesi. in 6th International Advanced Technologies Symposium (IATS11). 2011. Elazığ, Türkiye.
  • [48] Ersoy, E. and Özçatalbaş, Y. Deformation of metallic foams with closed cell at high temperatures. Int J Mater Metall Eng. 2015; 9: 789–792.
  • [49] POTOČNIK, D., RAZBORŠEK, B. and FICKO, M. Overview of aluminum foam machining. EXPRES 2020. 2020; 52.
  • [50] Yan, L., et al. Three-point bending of sandwich beams with aluminum foam-filled corrugated cores. Materials & Design. 2014; 60: 510–519.
  • [51] Changdar, A. and Chakraborty, S.S. Laser processing of metal foam-A review. Journal of Manufacturing Processes. 2021; 61: 208–225.
  • [52] Cambronero, L., et al. Manufacturing of Al–Mg–Si alloy foam using calcium carbonate as foaming agent. Journal of materials processing technology. 2009; 209: 1803–1809.
  • [53] Orłowicz, A., et al. Materials used in the automotive industry. Archives of foundry engineering. 2015; 15:
  • [54] Onck, P., et al. Fracture of Metal Foams: In‐situ Testing and Numerical Modeling. Advanced Engineering Materials. 2004; 6: 429–431.
  • [55] Lehmhus, D., et al., From stochastic foam to designed structure: Balancing cost and performance of cellular metals. 2017, Materials. p. 922.
  • [56] Turker, M. Production of Ceramics Reinforced Al Foams by Powder Metallurgy Techniques. in Materials Science Forum. 2011.
  • [57] Güden, M., Elbir, S. and Yılmaz, S. Kompozit alüminyum köpüklerin hazırlanması ve mekanik özelliklerinin belirlenmesi. II. Makine Malzemesi ve İmalat Teknolojisi Sempozyumu. 2015;
  • [58] Wang, Z., et al. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials. Applied Thermal Engineering. 2022; 201: 117778.
  • [59] Gao, H., et al. 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Composites Science and Technology. 2021; 213: 108896.
  • [60] Sreenivasa, C. and Shivakumar, K. A review on prodution of aluminium metal foams. in IOP Conference Series: Materials Science and Engineering. 2018.
  • [61] Aida, S., Zuhailawati, H. and Anasyida, A. The effect of space holder content and sintering temperature of magnesium foam on microstructural and properties prepared by sintering dissolution process (SDP) using carbamide space holder. Procedia Engineering. 2017; 184: 290–297.
  • [62] Kovacik, J. and Simancik, F. Comparison of zinc and aluminium foam behaviour. Translations-Ve Riecansky. 2004;
  • [63] Tianjian, L. Ultralight porous metals: from fundamentals to applications. Acta Mechanica Sinica. 2002; 18: 457–479.
  • [64] Liu, J., et al. The compressive properties of closed-cell Zn-22Al foams. Materials Letters. 2008; 62: 683–685.
  • [65] Banhart, J. Light‐metal foams—history of innovation and technological challenges. Advanced Engineering Materials. 2013; 15: 82–111.
  • [66] Liu, P. and Liang, K. Review Functional materials of porous metals made by P/M, electroplating and some other techniques. Journal of materials science. 2001; 36: 5059–5072.
  • [67] Türker, M., et al. Effects of foaming agent and boron carbide additions on the foamability behaviour of al based metallic foam produced by powder metallurg. in Advances in Powder Metallurgy and Particulate Materials-2008, Proceedings of the 2008 World Congress on Powder Metallurgy and Particulate Materials, PowderMet 2008. 2008.
  • [68] Türker, M., et al. TM ile üretilen al esaslı metalik köpükte bor oksit ilavesinin köpürmeye etkisinin araştırılması. in 13. Uluslararası Metalurji ve Malzeme Kongresi. 2006. İstanbul, Türkiye.
  • [69] Uzun, A. Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method. Composites Part B: Engineering. 2019; 172: 206–217.
  • [70] Çinici, H., et al. Toz metalurjisi yöntemiyle üretilen AlSi7 köpüklerin düşük hızlı darbe enerjileri altında penetrasyon davranışının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2014; 29: 395–400.
  • [71] Esmaeelzadeh, S., Simchi, A. and Lehmhus, D. Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam. Materials Science and Engineering: A. 2006; 424: 290–299.
  • [72] Kennedy, A. and Asavavisitchai, S. Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams. Scripta Materialia. 2004; 50: 115–119.
  • [73] Kováčik, J., et al. Reinforced aluminium foams. in International Conference in Advanced Metallic Materials. 2003.
  • [74] Gergely, V. and Clyne, B. The FORMGRIP process: foaming of reinforced metals by gas release in precursors. Advanced Engineering Materials. 2000; 2: 175–178.
  • [75] Gergely, V., Degischer, H. and Clyne, T. Recycling of MMCs and production of metallic foams. Comprehensive composite materials. 2000; 797–820.
  • [76] Wang, C., et al. Fabrication and characterization of layered structure reinforced composite metal foam. Journal of Alloys and Compounds. 2022; 895: 162658.
  • [77] Gökmen, U. and Türker, M. Al2O3 ilavesinin alüminyum ve alumix 231 esasli metalik köpüğün köpürme özelliklerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2012; 27:
  • [78] Gergely, V. and Clyne, T. Drainage in standing liquid metal foams: modelling and experimental observations. Acta Materialia. 2004; 52: 3047–3058.
  • [79] Deqing, W. and Ziyuan, S. Effect of ceramic particles on cell size and wall thickness of aluminum foam. Materials Science and Engineering: A. 2003; 361: 45–49.
  • [80] Brunke, O., et al. Experimental and numerical analysis of the drainage of aluminium foams. Journal of Physics: Condensed Matter. 2005; 17: 6353.
  • [81] Markaki, A. and Clyne, T. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Materialia. 2001; 49: 1677–1686.
  • [82] Temiz, A., et al. Rapid casting of biodegradable porous magnesium scaffolds and electrophoretic deposition of 45S5 bioactive glass nanoparticles coatings on porous scaffolds: characterization and in vitro bioactivity analysis. International Journal of Metalcasting. 2023; 17: 1871–1882.
  • [83] Ersoy, E., Özçatalbaş, Y. and Bahçeci, E. An experimental study on hot formability of closed cell metallic foams. in International Porous and Powder Materials Symposium. 2013. İzmir, Türkiye.
  • [84] Arif, U. Sıcak Presleme Yöntemi ile Üretilmiş Al Köpüğün Gözenek Yapısı ve Köpürme Davranışı Üzerine MgO İlavesinin Etkisi. Honor Committee. 613.
  • [85] Steen, W.M. and Mazumder, J. Laser Material Processing. Springer-Verlag Ltd. London. 2010.
  • [86] Ozan, S., et al. Application of ANN in the prediction of the pore concentration of aluminum metal foams manufactured by powder metallurgy methods. The International Journal of Advanced Manufacturing Technology. 2008; 39: 251–256.
  • [87] Yu, C.-J., et al. Metal foaming by a powder metallurgy method: Production, properties and applications. Materials Research Innovations. 1998; 2: 181–188.
  • [88] Onck, P., et al. Fracture of open-and closed-cell metal foams. Journal of materials science. 2005; 40: 5821–5828.
  • [89] Parveez, B., et al. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: a review. Materials. 2022; 15: 5302.
  • [90] Madgule, M., et al. Influence of foaming agents on mechanical and microstructure characterization of AA6061 metal foams. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2024; 238: 520–532.
  • [91] Ali, H., et al. Effect of the manufacturing parameters on the pore size and porosity of closed-cell hybrid aluminum foams. International Review of Applied Sciences and Engineering. 2021; 12: 230–237.
  • [92] Banhart, J. Manufacturing routes for metallic foams. Jom. 2000; 52: 22–27.
  • [93] Kennedy, A. and Asavavisithchai, S. Effect of Ceramic Particle Additions on Foam Expansion and Stability in Compacted Al‐TiH2 Powder Precursors. Advanced Engineering Materials. 2004; 6: 400–402.
  • [94] Elbir, S., et al. SiC-particulate aluminum composite foams produced by powder compacts: Foaming and compression behavior. Journal of materials science. 2003; 38: 4745–4755.
  • [95] Asavavisithchai, S. and Kennedy, A. Effect of powder oxide content on the expansion and stability of PM-route Al foams. Journal of Colloid and Interface Science. 2006; 297: 715–723.
  • [96] Styles, M., Compston, P. and Kalyanasundaram, S. The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Composite Structures. 2007; 80: 532–538.
  • [97] speaker), M.T.I. Toz Metalurjisi Yöntemi İle Üretilen Alüminyum Esasli Metalik Köpükte Si İlavesinin Köpürmeye Etkisi in Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), . 13–15 Mayıs 2009. Karabük, Türkiye,pp1-6, .
  • [98] Banhart, J. and Baumeister, J. Deformation characteristics of metal foams. Journal of materials science. 1998; 33: 1431–1440.
  • [99] Ashby, M.F., et al. Metal foams: a design guide. Elsevier. 2000.
  • [100] Guden, M. and Yüksel, S. SiC-particulate aluminum composite foams produced from powder compacts: foaming and compression behavior. Journal of Materials Science. 2006; 41: 4075–4084.
  • [101] Wadley, H.N. Cellular metals manufacturing. Advanced engineering materials. 2002; 4: 726–733.
  • [102] Montanini, R. Measurement of strain rate sensitivity of aluminium foams for energy dissipation. International Journal of Mechanical Sciences. 2005; 47: 26–42.
  • [103] Körner, C. and Singer, R.F. Processing of metal foams—challenges and opportunities. Advanced Engineering Materials. 2000; 2: 159–165.
  • [104] Banhart, J. and Weaire, D. On the road again: metal foams find favor. Physics Today. 2002; 55: 37–42.
  • [105] Pelit, Y. and Türker, M. Mekanik Alaşımlanmış Al2O3 Takviyeli AlSi7Mg0,6 Esaslı Tozlardan Metalik Köpük Üretimi ve Özelliklerinin İncelenmesi,. in 6th Internatıonal Powder Metallurgy Conference & Exhibition. October 05–09, 2011. Ankara
  • [106] Proa-Flores, P., Mendoza-Suarez, G. and Drew, R. Effect of TiH 2 particle size distribution on aluminum foaming using the powder metallurgy method. Journal of Materials Science. 2012; 47: 455–464.
  • [107] Kriszt, B. and Degischer, H. Handbook of cellular metals: Production, processing, applications. Weinheim: Wiley-VCH. 2002; 2002.
  • [108] Yu, S., Luo, Y. and Liu, J. Effects of strain rate and SiC particle on the compressive property of SiCp/AlSi9Mg composite foams. Materials Science and Engineering: A. 2008; 487: 394–399.
  • [109] Hassan, A. and Alnaser, I.A. A review of different manufacturing methods of metallic foams. ACS omega. 2024; 9: 6280–6295.
  • [110] Bahçeci, E., Özçatalbaş, Y. and Türker, M. TM yöntemiyle AlSiMg alaşımı metalik köpük üretimi için geliştirilen preform malzeme üretim sürecinin karekterizasyonu. in 6th International Powder Metallurgy Conference Exhibition. 2011. Ankara, Türkiye.
  • [111] Matijasevic, B. and Banhart, J. Improvement of aluminium foam technology by tailoring of blowing agent. Scripta Materialia. 2006; 54: 503–508.
  • [112] Kim, A., et al. Time–temperature superposition for foaming kinetics of Al-alloy foams. Journal of Materials Processing Technology. 2008; 202: 450–456.
  • [113] Turker, M., et al. Effect of Foaming Agent on The Structure and Morphology of Al and Alumix 231 Foams Produced by Powder Metallurgy. in Materials Science Forum. 2011.
  • [114] Banhart, J. Manufacturing routes for metallic foams. The journal of the Minerals, Metals & Materials Society 2012; 52(12):22-27
  • [115] Baumgärtner, F., Duarte, I. and Banhart, J. Industrialization of powder compact toaming process. Advanced Engineering Materials. 2000; 2: 168–174.
  • [116] Mudge, A. and Morsi, K. Fabrication of Uniform and Rounded Closed-Cell Aluminum Foams Using Novel Foamable Precursor Particles (FPPs). Metals. 2024; 14: 120.
  • [117] Banhart, J. Metallic foams: challenges and opportunities. Eurofoam. 2000; 2000: 13–20.
  • [118] Shiomi, M., et al. Fabrication of aluminium foams from powder by hot extrusion and foaming. Journal of Materials Processing Technology. 2010; 210: 1203–1208.
  • [119] Wang, L., et al. Achieving metallurgical bonding in steel faceplate/aluminum foam sandwich via hot pressing and foaming processes: interfacial microstructure evolution and tensile behavior. Journal of Materials Processing Technology. 2024; 334: 118636.
  • [120] KARAKOÇ, H., et al. Sıcak presleme yöntemi ile B4C takviyeli Alumix 231 köpüklerin üretimi ve gözenek morfolojisinin incelenmesi.
  • [121] Uzun, A., et al. Vickers Microhardness Studies on B 4 C Reinforced/Unreinforced Foamable Aluminium Composites. Transactions of the Indian Institute of Metals. 2018; 71: 327–337.
  • [122] Pen, S.I., et al. Synthesis and characterization of Al foams produced by powder metallurgy route using dolomite and titanium hydride as a foaming agents. Materiali in tehnologije. 2014; 48: 943–947.
  • [123] Schaeffler, P., et al. Production, properties, and applications of Alulight® closed-cell aluminum foams. in Proceedings of the Fifth International Workshop on Advanced Manufacturing Technologies. 2005.
  • [124] Stanzick, H., et al. Process Control in Aluminum Foam Production Using Real‐Time X‐ray Radioscopy. Advanced Engineering Materials. 2002; 4: 814–823.
  • [125] Babcsán, N., Moreno, F.G. and Banhart, J. Metal foams—high temperature colloids: part II: in situ analysis of metal foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007; 309: 254–263.
  • [126] Yang, D., et al. Effect of decomposition kinetics of titanium hydride on the Al alloy melt foaming process. Journal of Materials Science & Technology. 2015; 31: 361–368.
  • [127] Abo sbia, A.E.S. and Uzun, A. Production of MWCNT-Reinforced Aluminum Foams Via Powder Space-Holder Technique and Investigation of their Mechanical Properties. Transactions of the Indian Institute of Metals. 2022; 75: 2241–2253.
  • [128] Gökmen, U., Özçatalbaş, Y. and Türker, M. Al2O3 Takviyeli Metalik Köpüğe Köpürme Sıcaklığı ve Köpürtücü Madde Miktarının Etkisinin Araştırılması. in 5. Uluslararası Toz Metalurjisi Konferansı. 2008. Ankara.
  • [129] Banhart, J. and Seeliger, H.W. Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials. 2008; 10: 793–802.
  • [130] Banhart, J., et al. Real-time x-ray investigation of aluminium foam sandwich production Advanced Engineering Materials. 2001; 3: 1–10.
  • [131] Magnucka-Blandzi, E. and Magnucki, K. Effective design of a sandwich beam with a metal foam core. Thin-Walled Structures. 2007; 45: 432–438.
  • [132] Contorno, D., et al. Forming of aluminum foam sandwich panels: Numerical simulations and experimental tests. Journal of Materials Processing Technology. 2006; 177: 364–367.
  • [133] Simancik, F. Metallic foams-ultra light materials for structural applications. Inżynieria Materiałowa. 2001; 22: 823–828.
  • [134] Liu, S., et al. Fatigue of an Aluminum Foam Sandwich Formed by Powder Metallurgy. Materials. 2023; 16: 1226.
  • [135] Stöbener, K., et al. Composites based on metallic foams: phenomenology; production; properties and principles. in Proc (Nov. 2003), International Conference “Advanced Metallic Materials. 2003.
  • [136] Mohan, K., et al. Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending. Materials Science and Engineering: A. 2005; 409: 292–301.
  • [137] Çinici, H. and Türker, M. Effect of Foaming Duration and Temperature on the Foamability Behaviour of AlSi7Mg0. 6 Sandwich. in PM2010 World Congress – Foams Porous Materials. 2010. Italy.
  • [138] Bucher, T., et al. Laser forming of sandwich panels with metal foam cores. Journal of Manufacturing Science and Engineering. 2018; 140: 111015.
  • [139] Hanssen, A., et al. A numerical model for bird strike of aluminium foam-based sandwich panels. International journal of impact engineering. 2006; 32: 1127–1144.
  • [140] Uzun, A. and Turker, M. The effect of production parameters on the foaming behavior of spherical-shaped aluminum foam. Materials Research. 2014; 17: 311–315.
  • [141] Vesenjak, M., et al. Structural characterisation of advanced pore morphology (APM) foam elements. Materials letters. 2013; 110: 201–203.
  • [142] Ulbin, M., et al. Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements. Materials Letters. 2014; 136: 416–419.
  • [143] Stöbener, K., et al. Forming metal foams by simpler methods for cheaper solutions. Metal Powder Report. 2005; 60: 12–16.
  • [144] Patel, N., et al. Aluminum foam production, properties, and applications: a review. International Journal of Metalcasting. 2024; 18: 2181–2198.
  • [145] Kovačič, A. and Ren, Z. On the porosity of advanced pore morphology structures. Composite Structures. 2016; 158: 235–244.
  • [146] Wang, F., et al. Foaming Behavior of Microsized Aluminum Foam Using Hot Rolling Precursor. Metals. 2023; 13: 928.
  • [147] Kovačič, A., et al. Geometrical and mechanical properties of polyamide PA 12 bonds in composite advanced pore morphology (APM) foam structures. Archives of Civil and Mechanical Engineering. 2018; 18: 1198–1206.
  • [148] Sulong, M., et al. Compressive properties of Advanced Pore Morphology (APM) foam elements. Materials Science and Engineering: A. 2014; 607: 498–504.
  • [149] Sun, K., et al. Recent advances and future trends in enhancing the compressive strength of aluminum matrix foam composites reinforced with ceramic hollow spheres: A review. Composite Structures. 2024; 331: 117918.
  • [150] Rausch, G., Stöbener, K. and Bassan, D. Improving structural crashworthiness using metallic and organic foams. 2006;
  • [151] Arif, U. Investigation of Crushing Behavior of Polystyrene Coated Spherical Shaped Aluminum Foams. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9: 1273–1281.
  • [152] Wang, E., et al. Lightweight metallic cellular materials: a systematic review on mechanical characteristics and engineering applications. International Journal of Mechanical Sciences. 2023; 108795.
  • [153] Sánchez de la Muela, A., Cambronero, L. and Ruiz-Bustinza, I. Quasi-static and dynamic analysis of single-layer sandwich structures of APM foam spheroid elements in-situ foamed with marble”. Rev. Metal. 2020; 56: e159.
  • [154] Weise, J., et al. Mechanical Behavior of Particulate Aluminium‐Epoxy Hybrid Foams Based on Cold‐Setting Polymers. Advanced Engineering Materials. 2017; 19: 1700090.
  • [155] Borovinsek, M., et al. Analysis of advanced pore morphology (APM) foam elements using compressive testing and time-lapse computed microtomography. Materials. 2021; 14: 5897.
  • [156] Vopalensky, M., et al. Fast 4D On-the-Fly Tomography for Observation of Advanced Pore Morphology (APM) Foam Elements Subjected to Compressive Loading. Materials. 2021; 14: 7256.
  • [157] Salehi, M., Mirbagheri, S. and Ramiani, A.J. Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading. Transactions of Nonferrous Metals Society of China. 2021; 31: 92–110.
  • [158] Uzun, A., et al. Investigation of mechanical properties of tubular aluminum foams. International Journal of Materials Research. 2016; 107: 996–1004.
  • [159] Crupi, V. and Montanini, R. Aluminium foam sandwiches collapse modes under static and dynamic three-point bending. International Journal of Impact Engineering. 2007; 34: 509–521.
  • [160] Banhart, J. Metal foams-from fundamental research to applications. Frontiers in the Design of Materials. 2007; 279:
  • [161] Lefebvre, L.P., Banhart, J. and Dunand, D.C. Porous metals and metallic foams: current status and recent developments. Advanced engineering materials. 2008; 10: 775–787.
  • [162] Seitzberger, M., et al. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. International Journal of Solids and Structures. 2000; 37: 4125–4147.
  • [163] Olurin, O., Fleck, N.A. and Ashby, M.F. Deformation and fracture of aluminium foams. Materials Science and Engineering: A. 2000; 291: 136–146.
  • [164] Davies, G. and Zhen, S. Metallic foams: their production, properties and applications. Journal of Materials science. 1983; 18: 1899–1911.
  • [165] Yao, R., et al. On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects. Thin-Walled Structures. 2023; 189: 110734.
  • [166] Banhart, J. Aluminium foams for lighter vehicles. International Journal of vehicle design. 2005; 37: 114–125.
  • [167] Claar, T.D., et al. Ultra-lightweight aluminum foam materials for automotive applications. SAE transactions. 2000; 98–106.
  • [168] Wang, D., et al. Structure-material-performance integration lightweight optimisation design for frontal bumper system. International journal of crashworthiness. 2018; 23: 311–327.
  • [169] Baumeister, J., et al. Applications of aluminium hybrid foam sandwiches in battery housings for electric vehicles: Anwendung von Aluminium‐Hybridschaum‐Sandwichen in Batteriegehäusen von Elektrofahrzeugen. Materialwissenschaft und Werkstofftechnik. 2014; 45: 1099–1107.
  • [170] Heyhat, M.M., Mousavi, S. and Siavashi, M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. Journal of Energy Storage. 2020; 28: 101235.
  • [171] Banhart, J. Industrialisation of aluminium foam technology. in Proceedings of the ninth International Conference on aluminium alloys. 2004.
  • [172] Banhart, J. and Seeliger, H. Aluminium Foam Sandwich Panels: Metallurgy, Manufacture and Applications, Porous Metals and Metallic Foams. in Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams. 2007.
  • [173] Seeliger, H.W. Aluminium foam sandwich (AFS) ready for market introduction. Advanced Engineering Materials. 2004; 6: 448–451.
  • [174] Pinnoji, P.K., et al. New motorcycle helmets with metal foam shell. in 2008 IRCOBI Conference Proceedings, Bern, Switzerland. 2008.
  • [175] Pinnoji, P.K., et al. Impact dynamics of metal foam shells for motorcycle helmets: Experiments & numerical modeling. International Journal of Impact Engineering. 2010; 37: 274–284.
  • [176] Carruthers, J., et al. The design and prototyping of a lightweight crashworthy rail vehicle driver's cab. in 9th World Congress on Railway Research. 2011.
  • [177] Neugebauer, R. and Hipke, T. Machine tools with metal foams. Advanced Engineering Materials. 2006; 8: 858–863.
  • [178] Gökmen, U. Toz metalurjisi yöntemi ile Al esaslı parçacık takviyeli metalik köpük üretimi. Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara. 2009.
  • [179] Ersin BAHÇECİ, Y.Ö., Mehmet TÜRKER, PM YÖNTEMİYLE BÜYÜK YÜZEY ALANLI METALİK KÖPÜK ÜRE TİMİNDE KÖPÜREBİLİRLİK PROBLEMLERİ, in 6. ULUSLARARASI TOZ METALURJİSİ KONFERANSI ve SERGİSİ, M.T.v. ediğerleri, Editor. 05–09 Ekim 2011 Mina Ajans: Orta Doğu Teknik Üniversitesi Ankara, Türkiye. p. 253–260.
  • [180] Türker, M. Al Foams Reinforced With B4C And SiC Particles: Production Process, Characterization, Properties and Applications. in International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications; Exhibition (ICMATSE 2020). 2020. Gazi University, Ankara, Türkiye.
There are 180 citations in total.

Details

Primary Language English
Subjects Powder Metallurgy
Journal Section Tasarım ve Teknoloji
Authors

Mehmet Türker 0000-0001-7028-0587

Early Pub Date September 26, 2025
Publication Date October 13, 2025
Submission Date July 25, 2025
Acceptance Date August 4, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Türker, M. (2025). Production of Al-based Foam Using Powder Metallurgy method, Its Application Areas and Use for Energy Absorption in Polymer-based Armors. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(4). https://doi.org/10.29109/gujsc.1750808

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526