Research Article
BibTex RIS Cite

Sarıçiçek ve Sarıhan plütonlarının petrofiziksel karakterleri: Yerinde jeofiziksel ölçümlerle manyetik suseptibilite ve radyojenik ısı üretimi ilişkisinin irdelenmesi

Year 2024, , 654 - 672, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1431807

Abstract

Granit kökenli farklı litolojik birimler içeren Eosen yaşlı Sarıçiçek (Gümüşhane) ve Sarıhan (Bayburt) Plütonları üzerinde 532 noktada yerinde radyoaktivite ve manyetik suseptibilite ölçümleri yapılmıştır. Her iki plüton ve çevresindeki kayaçlardan numuneler alınarak laboratuvar ortamında bu kayaçların yoğunlukları belirlenmiştir. Yapılan çalışmada hem granitik kayaçların ısı üretimine olan katkıları ile ısı değerine bağlı kabuk sınıflaması hem de kayaçların radyojenik ısı üretimi ve manyetik suseptibiliteleri arasında bir ilişkinin olup olmadığı araştırılmıştır. Radyojenik ısı üretim değerine göre yapılan kabuk sınıflamasında; üst-alt kıtasal kabuk kökenli kayaçlardan oluşan Eosen yaşlı Sarıhan Plütonunun ortalama radyojenik ısı değeri (2.03 µW/m3), üst-orta kıtasal kabuk kökenli kayaçlardan oluşan Eosen yaşlı Sarıçiçek Plütonunun değerinden (1.9 µW/m3) yüksektir. Plüton, Melanj kuşağı ve Hozbirikyayla formasyonları için ortalama suseptibilite değerleri sırasıyla 1.08×10-3 SI, 0.132×10-3 SI ve 0.059×10-3 SI olarak hesaplanmıştır. Ortalama suseptibilite değerleri Sarıçiçek Plütonu için 1.518×10-3 SI ve Alibaba formasyonu için 2.5012×10-3 SI olarak belirlenmiştir. Çalışma alanındaki radyoaktif ölçümlere göre Sarıçiçek Plütonunda radyojenik ısı üretimine en büyük katkı potasyumdan (K) gelirken, Sarıhan Plütonunda ise en büyük katkıyı toryum (Th) radyonüklidi sağlamıştır. Sarıçiçek ve Sarıhan Plütonunları ve çevre formasyonların radyojenik ısı üretim değerleri ile manyetik suseptibilite değerleri arasında genel olarak bir uyum söz konusu iken, kayaçların içerdiği mineral ve element içeriklerine bağlı olarak uyumsuzluklar da gözlenmiştir. Uyumsuzluklar, magmatizma ve sonrasındaki süreçlerden dolayı radyonüklid miktarlarında ve mineral içeriklerinde meydana gelen düzensiz değişimlerle ilişkilendirilmiştir.

Supporting Institution

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimi

Project Number

BTAP-9588

Thanks

Destekleri için K.T.Ü. bilimsel Araştırma Projeleri Koordinasyon birimine teşekkür ederiz.

References

  • Abbady, A.G.E., & Al-Ghamdi, A.H. (2018). Heat production rate from radioactive elements of granite rocks in north and southeastern Arabian Shield Kingdom of Saudi Arabia. Journal of Radiation Research and Applied Sciences, 11, 281-290. https:// doi. org/ 10. 1016/j. jrras. 2018.03.002
  • Aisabokhae, J., & Tampul, H. (2020). Statistical variability of radiation exposures from Precambrian basement rocks, NW Nigeria: implication on radiogenic heat production. Scientific African, 10, e00577. https:// doi. org/ 10. 1016/j. sciaf. 2020. e00577
  • Akingboye, A.S., Ogunyele, A.C., Jimoh, A.T., Adaramoye, O.B., Adeola, A.O., & Ajayi, T. (2021). Radioactivity, radiogenic heat production and environmental radiation risk of the basement complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environmental Earth Science, 80, 228. https:// doi. org/ 10. 1007/ s12665- 021- 09516-7
  • Altundaş, S. (2016). Sarıçiçek ve Sarıhan granodiyoritlerinin yerinde gama-ışını spektrometresi ve manyetik suseptibilite yöntemleriyle incelenmesi [Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Artemieva, I.M., & Mooney, W.D. (2001). Thermal thickness and evolution of Precambrian lithosphere: a global study. Journal Geophysical Research, 106, 16387–16414. https://doi.org/10.1029/2000JB900439
  • Artemieva, I.M. (2011). The Lithosphere: an ınterdisciplinary approach. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511975417
  • Artemieva, I.M., Thybo, H., Jakobsen, K., Rensen, N.K., & Nielsen, L.S.K. (20179. Heat production in granitic rocks: global analysis based on a new data compilation granite. Earth Science Reviews, 172 pp. 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003
  • Asfahani, J. (2022). Radioactive heat production characterization of ar-rassafeh badyieh area (area-2), Syria using aerial gamma ray spectrometric and fractal modeling techniques. Geofísica Internacional, 61(1), 20-39. https://doi.org/10.22201/igeof.00167169p.2022.61.1.2120
  • Aslan, Z. (1998). Saraycık-Sarıhan granitoyitleri (Bayburt) ve çevre kayaçlarının petrolojisi, jeokimyası ve Sarıhan granitoyidinin jeokronolojik incelenmesi [Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Aslan, Z. (2005). Petrography and petrology of the calcalkaline Sarıhan granitoid (NE Turkey): an example of magma mingling and mixing. Turkish Journal Earth Science, 14, 185-207
  • Aydin, A., Ferr´e, E.C., & Aslan, Z. (2007). The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: example from the Saruhan granitoids, NE Turkey. Tectonophysics, 441(1), 85-95. https://doi.org/10.1016/j.tecto.2007.04.009
  • Bektaş, O., Yılmaz, C., Taşlı, K., Akdağ, K., & Özgür, S. (1995). Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia, 57, 233-244
  • Bektaş, O., Şen, C., Atıcı, Y., & Köprübaşı, N. (1999). Migration of the upper cretaceous subduction-related volcanism toward the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34, 95-106. https://doi.org/10.1002/(SICI)1099-1034(199901/06)34:1/2<95::AID-GJ816>3.0.CO;2-J
  • Brimhal, W.H., & Adams, J.A.S. (1969). Concentration changes of thorium, uranium and metals in hydrothermally altered Conway Granite, New Hampshire. Geochimica et Cosmochimica Acta, 33(10), 130-131. https://doi.org/10.1016/0016-7037(69)90050-7
  • Canbay, M., & Kurtuluş, C. (2008). Armutlu Yarımadası’nda manyetik duyarlık çalışmaları. Uygulamalı Yerbilimleri, 1, 60-64
  • Canıtez, N. (1972). Source mecbanism and rupture propogation in the Mudurnu Valley Turkey: Earthquake of July 22,1967. Pure and Applied Geophysics, 93, 116-124
  • Chiozzi, P., Pasquale, V., & Verdoya., M. (2002b). Heat from radioactive elements in youngs volcanics by gamma ray spectrometry. Journal of Volcanology and Geotermal Search, 119, 205-214. https:// doi. org/ 10.1016/S0377-0273(02)00354-2
  • Chopra, N., Ray, L., Dey, S., & Mitra, A. (2020). Thermal conductivity, density, petrological and geochemical characteristics of granitoids from Singhbhum Craton, eastern India. Geothermics, 87, 101855, https://doi.org/ 10.1016/j.geothermics.2020.101855
  • Clark, D.A. (1997). Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics, 17 (2), 83-103
  • Dickson, B.L., & Scott, K.M. (1997). Interpretation of aerial gamma ray surveys adding the geochemical factors. AGSO Journal of Australian Geology & Geophysics, 17, 187-200
  • Eccles, D.R., & Sutton, R. (2004). Magnetic susceptibility measurements on kimberlite and sedimentary rocks in Alberta. EUB/AGS Geo-Note.
  • Elitok, Ö., Özgür, N., Drüppel, K., Dilek, Y., Platevoet, B., Guillou, H., Poisson, A., Scaillet, S., Satır, M., Siebel, W., Bardintzeff, J-M., Deniel, C., & Yılmaz, K. (2010). Origin and geodynamic evolution of late cenozoic potassium-rich volcanism in the Isparta area, Southwestern Turkey. International Geology Review, 52, 4-6, 454-504. https:// doi. org/ 10.1080/00206810902951411
  • Ellwood, B.B., & Wenner, D.B. (1981). Correlation of magnetic susceptibility with 18O:16O data in late orogenic granites of the southern Appalachian Piedmont. Earth and Planetary Science Letters, 54, 200-202. https://doi.org/10.1016/0012-821X(81)90003-0
  • Eyüboğlu, Y., Chung, SL., Dudas, F.O., Santosh, M., & Akaryali, E. (2011a). Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Research, 19, 413-429. https:// doi. org/ 10.1016/j.gr.2010.07.006
  • Eyüboğlu, Y., Dudas, F.O, Santosh, M., Zhu, D.C., Yi, K., Chatterjee, N., Akaryali, E. & Liu, Z. (2016a). Cenozoic forearc gabbros from the northern zone of the Eastern Pontides Orogenic Belt, NE Turkey: Implications for slab window magmatism and convergent margin tectonics. Gondwana Research, https:// doi. org/ 10.1016/j.gr.2015.07.006
  • Göktürkler, G. (2002). Yerbilimlerinde ısı transferi modellemesi: kararlı-hal kondüktif ısı iletimi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 43, 67-80
  • Güven, İ.H. (1993). Doğu Pontidlerin 1/25000 ölçekli jeolojisi ve komplikasyonu. Maden Tetkik Arama, Ankara (Yayımlanmamış)
  • Harenyama, M., Tsuchiya, N., Takeba, M., & Chida, T. (2006). Two dimensional measurement of radioactivity of granite rocks by photostimulated luminiscence technique. Geochemical Journal, 34, 1-9. https://doi.org/10.2343/geochemj.34.1
  • Hasterok, D., & Webb, J. (2017). On the radiogenic heat production of igneous rocks. Geoscience Frontiers, 8(5), 919-940. https:// doi. org/ 10. 1016/j.gsf. 2017. 03. 00
  • He, L., Hu, S., Yang, W., & Wang, J. (2009). Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt. Earth Planetary Science Letter, 277, 525-538. https://doi.org/10.1016/j.epsl.2008.11.022
  • Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R.L., & McDonough, W.F. (2013). A reference Earth model for the heat producing elements and associated flux. Geochemistry-Geophysics-Geosystems, 14, 2003-2029. https://doi.org/10.1002/ggge.20129
  • IAEA, 2003. Guidelines for radioelement mapping using gamma ray spectrometry data. IAEATecdoc-1363, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1363_web.pdf
  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293-305
  • Ishihara, S., Hashimoto, M., & Machida, M. (2000). Magnetite/ilmenite series classification and magnetic susceptibility of the mesozoic-cenozoic batholiths in Peru. Resource Geology, 50, 123-129. https://doi.org/10.1111/j.1751-3928.2000.tb00062.x
  • Jaupart, C., & Mareschal, J.C. (2003). Constraints on crustal heat production from heat flow data. In: Rudnick, R.L. (Ed.), The Crust, Vol. 3 Treatise on Geochemistry (Eds. H.D. Holland and K.K. Turekian). Elsevier-Pergamon Oxford, 6-84. https://doi.org/10.1016/B0-08-043751-6/03017-6
  • Jokinen, J., & Kukkonen, I. (1999). Random modelling of the lithospheric thermal regime: forward simulations [Mh1] applied in uncertainty analysis. Tectonophysics, 306, 277-292. https://doi.org/10.1016/S0040-1951(99)00061-X
  • Karslı, O. (2002). Granitoyid kayaçlarda magma etkileşimleri için petrografik, mineralojik ve kimyasal bulgular: Dölek ve Sarıçiçek plütonları (Gümüşhane, KD-Türkiye) [Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Karslı, O., Chen, B., Aydın, F., & Şen, C. (2007). Geochemical and Sr-Nd-Pb isotopic compositions of the eocene Dölek and Sarıçiçek plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98, 67-96. https:// doi. org/10.1016/j.lithos.2007.03.005
  • Ketin, İ. (1966). Anadolu’nun Tektonik Birlikleri. Maden Tetkik Arama Dergisi, 66, 20-4
  • Killeen, P.G., & Cameron, G.W. (1977). Computation of in situ potassium, uranium and thorium concentration from portable gamma-ray spectrometer data; in Report of Activities Part A. Geological Survey of Canada, 77-1A, 91-92
  • King, M.S. (1997). Magnetic susceptibility mapping: applications for the Meguma Group, Central Nova Scotia. Atlantic Geology. https://doi.org/10.4138/2063
  • Maden , N., & Akaryalı, E. (2015). A review for genesis of continental arc magmas: U, Th, K and radiogenic heat production data from the Gümüşhane Pluton in the Eastern Pontides (NE Türkiye). Tectonophysics, 664, 225-243. https://doi.org/10.1016/j.tecto.2015.09.023
  • Maulana, A., Watanabe, K., Imai, A., & Yonezu, K. (2013). Origin of magnetite- and ilmenite-series granitic rocks in Sulawesi, Indonesia: magma genesis and regional metallogenic constraint. Procedia Earth and Planetary Science, 6, 50-57. https://doi.org/10.1016/j.proeps.2013.01.007
  • McLennan, S.M., & Taylor, S.R. (1996). Heat Flow and the Chemical Composition of Continental Crust. The Journal of Geology, 104(4), 369-377. http://www.jstor.org/stable/30067380
  • Menon, R., Kumar, P.S., Reddy, G.K., & Srinivasan, R. (2003). Radiogenic heat production of Late Archaean Bundelkhand granite and some Proterozoic gneisses and granitoids of central India. Current Science, 85(5)
  • Okay, A.İ., Şahintürk, Ö., & Yakar, H. (1997). Stratigraphy and tectonics of the Pulur (Bayburt) region in the eastern Pontides. Bulletin of the Mineral Research and Exploration Institute (MTA) of Turkey, 119, 1–22
  • Pasquale, V., Verdoya, M., & Chiozzi, P. (2001). Radioactive heat generation and its thermal effects in the Alp-Apennines boundary zone. Tectonophsics, 331,269-283 https:// doi. org/ 10.1016/S0040-1951(00)00294-8
  • Podugu, N., Ray, L., Singh, S.P., & Roy, S. (2017). Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north-central India: implications for thermal regime beneath the Indian shield. Journal of Geophysical Research: Solid Earth, 122, 5766-5788.
  • Porquet, M., Pueyo, E.L., Román-Berdiel, T., Olivier, P., Longares, L.A., Cuevas, J., Ramajo, J., Antolín, B., Aranguren, A., & Auréjac, J.B. (2017). Anisotropy of magnetic susceptibility of the Pyrenean granites. Journal of Maps, 13(2), 438-448. https://doi.org/
  • Pueyo, E.L., Román-Berdiel, T., Calvín, P., Bouchez, J.L., Beamud, E., Ayala, C., Loi, F., Soto, R., Clariana, P., & Margalef, A. (2022). Petrophysical characterization of non-magnetic granites; density and magnetic susceptibility relationships. Geosciences, 12, 240. https://doi.org/ 10.3390/geosciences12060240
  • Rodriguez, J.A.B., Proenza-Fernandez, J.A., Rodriguez-Vega, A., Lopez-Saucedo, F., & Cazares-Carreon, K.I. (2017b). Magnetic susceptibility and natural gamma radioactivity as indirect proxies for characterization of sandstones and limestones of Sabinas Basin. Geofizika, 34(1), 19-43. https:// doi. org/ 10. 15233/ gfz. 2017. 34.6
  • Rodriguez, J.A.B., Fernandez, J.A.P., Pulido, G.I.D., Garcia, M.G., & Medellin, I.Y.Z. (2017). Magnetic susceptibility and natural gamma radioactivity as ındirect ındicators of ımpurities in limestones of the Sabinas Basin: possible relationships with the sedimentation environment. Journal of Geoscience and Environment Protection, 5, 77-91. https://doi.org/10.4236/gep.2017.510007
  • Rodriguez, J.A.B., Nino-Rodriguez, E., Rodriguez-Riojas, P.A., Diaz-Martinez, R., Rodriguez-Vega, A., & Lopez-Saucedo, F. (2020). In situ magnetic susceptibility and gamma radiation data in the Candela-Monclova intrusive belt, Northeast Mexico: case studies of the Cerro Colorado and Cerro Marcelinos pluton. Turkish Journal of Earth Sciences, 29, 579-595. https:// doi. org/ 10. 3906/ yer- 1905- 21
  • Rodríguez, J.A.B., Tolentino-Álvarez, J., Batista-Cruz, R.Y., Almaguer‑Carmenates Y., & Lopez‑Saucedo, F.J. (2023). Radiogenic heat production in rocks from the Sabinas Basin (northeastern Mexico) determined by in situ gamma radiation measurements. Environmental Earth Sciences, 82, 458. https://doi.org/10.1007/s12665-023-11157-x
  • Roque, A., & Riberio, F.B. (1997). Radioactivity and Radiogenic Heat Production in the Sediments of the Silo Francisco Sedimentary Basin, Central Brazil. Applied Radiation and Isotopes, 48, 3413-422
  • Rollinson, H.R. (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman.
  • Rudnick, R.L., & Fountain, D.M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3), 267-309. https:// doi. org/ 10.1029/95RG01302
  • Rybach, L. (1976). Radioactive heat production: A physical property determined by the chemistry of rocks. In The Physics and Chemistry of Minerals and Rocks; Stems, Wiley-Interscience: New York, USA, 309-318.
  • Sharma, P.V. (1997). Environmental and Engineering Geophysics. Cambridge University Press, 474, United Kingdom.
  • Takahashi, M., Aramaki, S., & Ishihara, S. (1980). Magnetite series/ ilmenite series vs. I-type/ S-type granitoids. In: Ishihara, I., Takenouchi, S. (Eds.), Granitic magmatism and related mineralization. Mining Geology, Nihon Shigen Chishitsu Gakkai- Society of Resource Geologists of Japan, Tokyo, 13-28
  • Taylor, S.R., & McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
  • Topuz, G., & Okay, A.İ. (2006). Comment on “petrography and petrology of the calc-alkaline Sarıhan Granitoid (NE Turkey): an example of magma mingling and mixing”. Turkish Journal of Earth Sciences, 15(3), 373-377. https://journals.tubitak.gov.tr/earth/vol15/iss3/5
  • Uyanık, N.A. (2011). Isparta Alkali Volkanitlerinin radyometrik ve manyetik yöntemlerle incelenmesi [Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü].
  • Van Schmus, W.R. (1995). Natural radioactivity of the crust and mantle. In: Global Earth Physics. A Handbook of Physical Constants (AGU Reference Shelf 1). https://doi.org/10.1029/RF001p0283
  • Verdoya, M., Pasquale, V., Chiozzi, P., & Kukkonen, I.T. (1997). Radiogenic in the Variscan crust: new determinations and distribution models in Corsica (Northwestern Mediterranean). Tectonophysics, 291, 63-75. https://doi.org/10.1016/S0040-1951(98)00031-6
  • Waples, D.W. (2002). A new model for heat flow in Extensional Basins: Estimating radiogenic heat production. Natural Resources Research, 11. https://doi.org/10.1023/A:101556811999
  • Wilson, M. (19899. Igneous Petrogenesis: A Global Tectonic Approach.  Geological Magazine, 126, 4
  • Wollenberg, H.A., & Smith, A.R. (1987). Radiogenic heat production of crustal rocks: an assessment based on geochemical data. Geophysical Research Letters, 14, 295-298. https://doi.org/10.1029/GL014i003p00295

Petrophysical characteristics of Sarıçiçek and Sarıhan plutons: Investigation of the relationship between magnetic susceptibility and radiogenic heat production with in-situ geophysical measurements

Year 2024, , 654 - 672, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1431807

Abstract

In-situ radioactivity and magnetic susceptibility measurements were made at 532 points on the Eocene Sarıçiçek (Gümüşhane) and Sarıhan (Bayburt) plutons. Samples were taken from plutons and its surrounding rocks and their densities were determined. In this study, both the contributions of granitic rocks to heat production and whether there is a relationship between these two petrophysical properties of the rocks (radiogenic heat production and magnetic susceptibility) were investigated. In addition, crustal classifications of rocks were made in terms of their radiogenic heat values. In the crust classification based on radiogenic heat production value; the average radiogenic heat production value (2.03 µW/m3) of the Eocene aged Sarıhan Pluton, consisting of rocks of upper-lower continental crust origin, was obtained to be higher than the value of the Eocene aged Sarıçiçek Pluton (1.9 µW/m3), consisting of rocks upper-middle continental crust origin. Average susceptibility values for Pluton, Melange belt, and Hozbirikyayla formations were calculated as 1.08×10-3 SI, 0.132×10-3 SI, and 0.059×10-3 SI, respectively. Average susceptibility were determined as 1.518×10-3 SI for Sarıçiçek Pluton and 2.5012×10-3 SI for Alibaba formation. The highest contribution to radiogenic heat in Sarıçiçek and Sarıhan Pluton came from K and Th. While there is general in good agreement with radiogenic heat and magnetic susceptibility of the Sarıçiçek and Sarıhan Plutons and formations surrounding, incompatibilities have also been observed in some places depending on the mineral and element contents of rocks. Unconformities have been associated with irregular changes in radionuclide amounts and mineral contents due to magmatism and subsequent processes.

Project Number

BTAP-9588

References

  • Abbady, A.G.E., & Al-Ghamdi, A.H. (2018). Heat production rate from radioactive elements of granite rocks in north and southeastern Arabian Shield Kingdom of Saudi Arabia. Journal of Radiation Research and Applied Sciences, 11, 281-290. https:// doi. org/ 10. 1016/j. jrras. 2018.03.002
  • Aisabokhae, J., & Tampul, H. (2020). Statistical variability of radiation exposures from Precambrian basement rocks, NW Nigeria: implication on radiogenic heat production. Scientific African, 10, e00577. https:// doi. org/ 10. 1016/j. sciaf. 2020. e00577
  • Akingboye, A.S., Ogunyele, A.C., Jimoh, A.T., Adaramoye, O.B., Adeola, A.O., & Ajayi, T. (2021). Radioactivity, radiogenic heat production and environmental radiation risk of the basement complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environmental Earth Science, 80, 228. https:// doi. org/ 10. 1007/ s12665- 021- 09516-7
  • Altundaş, S. (2016). Sarıçiçek ve Sarıhan granodiyoritlerinin yerinde gama-ışını spektrometresi ve manyetik suseptibilite yöntemleriyle incelenmesi [Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Artemieva, I.M., & Mooney, W.D. (2001). Thermal thickness and evolution of Precambrian lithosphere: a global study. Journal Geophysical Research, 106, 16387–16414. https://doi.org/10.1029/2000JB900439
  • Artemieva, I.M. (2011). The Lithosphere: an ınterdisciplinary approach. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511975417
  • Artemieva, I.M., Thybo, H., Jakobsen, K., Rensen, N.K., & Nielsen, L.S.K. (20179. Heat production in granitic rocks: global analysis based on a new data compilation granite. Earth Science Reviews, 172 pp. 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003
  • Asfahani, J. (2022). Radioactive heat production characterization of ar-rassafeh badyieh area (area-2), Syria using aerial gamma ray spectrometric and fractal modeling techniques. Geofísica Internacional, 61(1), 20-39. https://doi.org/10.22201/igeof.00167169p.2022.61.1.2120
  • Aslan, Z. (1998). Saraycık-Sarıhan granitoyitleri (Bayburt) ve çevre kayaçlarının petrolojisi, jeokimyası ve Sarıhan granitoyidinin jeokronolojik incelenmesi [Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Aslan, Z. (2005). Petrography and petrology of the calcalkaline Sarıhan granitoid (NE Turkey): an example of magma mingling and mixing. Turkish Journal Earth Science, 14, 185-207
  • Aydin, A., Ferr´e, E.C., & Aslan, Z. (2007). The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: example from the Saruhan granitoids, NE Turkey. Tectonophysics, 441(1), 85-95. https://doi.org/10.1016/j.tecto.2007.04.009
  • Bektaş, O., Yılmaz, C., Taşlı, K., Akdağ, K., & Özgür, S. (1995). Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia, 57, 233-244
  • Bektaş, O., Şen, C., Atıcı, Y., & Köprübaşı, N. (1999). Migration of the upper cretaceous subduction-related volcanism toward the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34, 95-106. https://doi.org/10.1002/(SICI)1099-1034(199901/06)34:1/2<95::AID-GJ816>3.0.CO;2-J
  • Brimhal, W.H., & Adams, J.A.S. (1969). Concentration changes of thorium, uranium and metals in hydrothermally altered Conway Granite, New Hampshire. Geochimica et Cosmochimica Acta, 33(10), 130-131. https://doi.org/10.1016/0016-7037(69)90050-7
  • Canbay, M., & Kurtuluş, C. (2008). Armutlu Yarımadası’nda manyetik duyarlık çalışmaları. Uygulamalı Yerbilimleri, 1, 60-64
  • Canıtez, N. (1972). Source mecbanism and rupture propogation in the Mudurnu Valley Turkey: Earthquake of July 22,1967. Pure and Applied Geophysics, 93, 116-124
  • Chiozzi, P., Pasquale, V., & Verdoya., M. (2002b). Heat from radioactive elements in youngs volcanics by gamma ray spectrometry. Journal of Volcanology and Geotermal Search, 119, 205-214. https:// doi. org/ 10.1016/S0377-0273(02)00354-2
  • Chopra, N., Ray, L., Dey, S., & Mitra, A. (2020). Thermal conductivity, density, petrological and geochemical characteristics of granitoids from Singhbhum Craton, eastern India. Geothermics, 87, 101855, https://doi.org/ 10.1016/j.geothermics.2020.101855
  • Clark, D.A. (1997). Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics, 17 (2), 83-103
  • Dickson, B.L., & Scott, K.M. (1997). Interpretation of aerial gamma ray surveys adding the geochemical factors. AGSO Journal of Australian Geology & Geophysics, 17, 187-200
  • Eccles, D.R., & Sutton, R. (2004). Magnetic susceptibility measurements on kimberlite and sedimentary rocks in Alberta. EUB/AGS Geo-Note.
  • Elitok, Ö., Özgür, N., Drüppel, K., Dilek, Y., Platevoet, B., Guillou, H., Poisson, A., Scaillet, S., Satır, M., Siebel, W., Bardintzeff, J-M., Deniel, C., & Yılmaz, K. (2010). Origin and geodynamic evolution of late cenozoic potassium-rich volcanism in the Isparta area, Southwestern Turkey. International Geology Review, 52, 4-6, 454-504. https:// doi. org/ 10.1080/00206810902951411
  • Ellwood, B.B., & Wenner, D.B. (1981). Correlation of magnetic susceptibility with 18O:16O data in late orogenic granites of the southern Appalachian Piedmont. Earth and Planetary Science Letters, 54, 200-202. https://doi.org/10.1016/0012-821X(81)90003-0
  • Eyüboğlu, Y., Chung, SL., Dudas, F.O., Santosh, M., & Akaryali, E. (2011a). Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Research, 19, 413-429. https:// doi. org/ 10.1016/j.gr.2010.07.006
  • Eyüboğlu, Y., Dudas, F.O, Santosh, M., Zhu, D.C., Yi, K., Chatterjee, N., Akaryali, E. & Liu, Z. (2016a). Cenozoic forearc gabbros from the northern zone of the Eastern Pontides Orogenic Belt, NE Turkey: Implications for slab window magmatism and convergent margin tectonics. Gondwana Research, https:// doi. org/ 10.1016/j.gr.2015.07.006
  • Göktürkler, G. (2002). Yerbilimlerinde ısı transferi modellemesi: kararlı-hal kondüktif ısı iletimi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 43, 67-80
  • Güven, İ.H. (1993). Doğu Pontidlerin 1/25000 ölçekli jeolojisi ve komplikasyonu. Maden Tetkik Arama, Ankara (Yayımlanmamış)
  • Harenyama, M., Tsuchiya, N., Takeba, M., & Chida, T. (2006). Two dimensional measurement of radioactivity of granite rocks by photostimulated luminiscence technique. Geochemical Journal, 34, 1-9. https://doi.org/10.2343/geochemj.34.1
  • Hasterok, D., & Webb, J. (2017). On the radiogenic heat production of igneous rocks. Geoscience Frontiers, 8(5), 919-940. https:// doi. org/ 10. 1016/j.gsf. 2017. 03. 00
  • He, L., Hu, S., Yang, W., & Wang, J. (2009). Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt. Earth Planetary Science Letter, 277, 525-538. https://doi.org/10.1016/j.epsl.2008.11.022
  • Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R.L., & McDonough, W.F. (2013). A reference Earth model for the heat producing elements and associated flux. Geochemistry-Geophysics-Geosystems, 14, 2003-2029. https://doi.org/10.1002/ggge.20129
  • IAEA, 2003. Guidelines for radioelement mapping using gamma ray spectrometry data. IAEATecdoc-1363, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1363_web.pdf
  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293-305
  • Ishihara, S., Hashimoto, M., & Machida, M. (2000). Magnetite/ilmenite series classification and magnetic susceptibility of the mesozoic-cenozoic batholiths in Peru. Resource Geology, 50, 123-129. https://doi.org/10.1111/j.1751-3928.2000.tb00062.x
  • Jaupart, C., & Mareschal, J.C. (2003). Constraints on crustal heat production from heat flow data. In: Rudnick, R.L. (Ed.), The Crust, Vol. 3 Treatise on Geochemistry (Eds. H.D. Holland and K.K. Turekian). Elsevier-Pergamon Oxford, 6-84. https://doi.org/10.1016/B0-08-043751-6/03017-6
  • Jokinen, J., & Kukkonen, I. (1999). Random modelling of the lithospheric thermal regime: forward simulations [Mh1] applied in uncertainty analysis. Tectonophysics, 306, 277-292. https://doi.org/10.1016/S0040-1951(99)00061-X
  • Karslı, O. (2002). Granitoyid kayaçlarda magma etkileşimleri için petrografik, mineralojik ve kimyasal bulgular: Dölek ve Sarıçiçek plütonları (Gümüşhane, KD-Türkiye) [Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Karslı, O., Chen, B., Aydın, F., & Şen, C. (2007). Geochemical and Sr-Nd-Pb isotopic compositions of the eocene Dölek and Sarıçiçek plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98, 67-96. https:// doi. org/10.1016/j.lithos.2007.03.005
  • Ketin, İ. (1966). Anadolu’nun Tektonik Birlikleri. Maden Tetkik Arama Dergisi, 66, 20-4
  • Killeen, P.G., & Cameron, G.W. (1977). Computation of in situ potassium, uranium and thorium concentration from portable gamma-ray spectrometer data; in Report of Activities Part A. Geological Survey of Canada, 77-1A, 91-92
  • King, M.S. (1997). Magnetic susceptibility mapping: applications for the Meguma Group, Central Nova Scotia. Atlantic Geology. https://doi.org/10.4138/2063
  • Maden , N., & Akaryalı, E. (2015). A review for genesis of continental arc magmas: U, Th, K and radiogenic heat production data from the Gümüşhane Pluton in the Eastern Pontides (NE Türkiye). Tectonophysics, 664, 225-243. https://doi.org/10.1016/j.tecto.2015.09.023
  • Maulana, A., Watanabe, K., Imai, A., & Yonezu, K. (2013). Origin of magnetite- and ilmenite-series granitic rocks in Sulawesi, Indonesia: magma genesis and regional metallogenic constraint. Procedia Earth and Planetary Science, 6, 50-57. https://doi.org/10.1016/j.proeps.2013.01.007
  • McLennan, S.M., & Taylor, S.R. (1996). Heat Flow and the Chemical Composition of Continental Crust. The Journal of Geology, 104(4), 369-377. http://www.jstor.org/stable/30067380
  • Menon, R., Kumar, P.S., Reddy, G.K., & Srinivasan, R. (2003). Radiogenic heat production of Late Archaean Bundelkhand granite and some Proterozoic gneisses and granitoids of central India. Current Science, 85(5)
  • Okay, A.İ., Şahintürk, Ö., & Yakar, H. (1997). Stratigraphy and tectonics of the Pulur (Bayburt) region in the eastern Pontides. Bulletin of the Mineral Research and Exploration Institute (MTA) of Turkey, 119, 1–22
  • Pasquale, V., Verdoya, M., & Chiozzi, P. (2001). Radioactive heat generation and its thermal effects in the Alp-Apennines boundary zone. Tectonophsics, 331,269-283 https:// doi. org/ 10.1016/S0040-1951(00)00294-8
  • Podugu, N., Ray, L., Singh, S.P., & Roy, S. (2017). Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north-central India: implications for thermal regime beneath the Indian shield. Journal of Geophysical Research: Solid Earth, 122, 5766-5788.
  • Porquet, M., Pueyo, E.L., Román-Berdiel, T., Olivier, P., Longares, L.A., Cuevas, J., Ramajo, J., Antolín, B., Aranguren, A., & Auréjac, J.B. (2017). Anisotropy of magnetic susceptibility of the Pyrenean granites. Journal of Maps, 13(2), 438-448. https://doi.org/
  • Pueyo, E.L., Román-Berdiel, T., Calvín, P., Bouchez, J.L., Beamud, E., Ayala, C., Loi, F., Soto, R., Clariana, P., & Margalef, A. (2022). Petrophysical characterization of non-magnetic granites; density and magnetic susceptibility relationships. Geosciences, 12, 240. https://doi.org/ 10.3390/geosciences12060240
  • Rodriguez, J.A.B., Proenza-Fernandez, J.A., Rodriguez-Vega, A., Lopez-Saucedo, F., & Cazares-Carreon, K.I. (2017b). Magnetic susceptibility and natural gamma radioactivity as indirect proxies for characterization of sandstones and limestones of Sabinas Basin. Geofizika, 34(1), 19-43. https:// doi. org/ 10. 15233/ gfz. 2017. 34.6
  • Rodriguez, J.A.B., Fernandez, J.A.P., Pulido, G.I.D., Garcia, M.G., & Medellin, I.Y.Z. (2017). Magnetic susceptibility and natural gamma radioactivity as ındirect ındicators of ımpurities in limestones of the Sabinas Basin: possible relationships with the sedimentation environment. Journal of Geoscience and Environment Protection, 5, 77-91. https://doi.org/10.4236/gep.2017.510007
  • Rodriguez, J.A.B., Nino-Rodriguez, E., Rodriguez-Riojas, P.A., Diaz-Martinez, R., Rodriguez-Vega, A., & Lopez-Saucedo, F. (2020). In situ magnetic susceptibility and gamma radiation data in the Candela-Monclova intrusive belt, Northeast Mexico: case studies of the Cerro Colorado and Cerro Marcelinos pluton. Turkish Journal of Earth Sciences, 29, 579-595. https:// doi. org/ 10. 3906/ yer- 1905- 21
  • Rodríguez, J.A.B., Tolentino-Álvarez, J., Batista-Cruz, R.Y., Almaguer‑Carmenates Y., & Lopez‑Saucedo, F.J. (2023). Radiogenic heat production in rocks from the Sabinas Basin (northeastern Mexico) determined by in situ gamma radiation measurements. Environmental Earth Sciences, 82, 458. https://doi.org/10.1007/s12665-023-11157-x
  • Roque, A., & Riberio, F.B. (1997). Radioactivity and Radiogenic Heat Production in the Sediments of the Silo Francisco Sedimentary Basin, Central Brazil. Applied Radiation and Isotopes, 48, 3413-422
  • Rollinson, H.R. (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman.
  • Rudnick, R.L., & Fountain, D.M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3), 267-309. https:// doi. org/ 10.1029/95RG01302
  • Rybach, L. (1976). Radioactive heat production: A physical property determined by the chemistry of rocks. In The Physics and Chemistry of Minerals and Rocks; Stems, Wiley-Interscience: New York, USA, 309-318.
  • Sharma, P.V. (1997). Environmental and Engineering Geophysics. Cambridge University Press, 474, United Kingdom.
  • Takahashi, M., Aramaki, S., & Ishihara, S. (1980). Magnetite series/ ilmenite series vs. I-type/ S-type granitoids. In: Ishihara, I., Takenouchi, S. (Eds.), Granitic magmatism and related mineralization. Mining Geology, Nihon Shigen Chishitsu Gakkai- Society of Resource Geologists of Japan, Tokyo, 13-28
  • Taylor, S.R., & McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
  • Topuz, G., & Okay, A.İ. (2006). Comment on “petrography and petrology of the calc-alkaline Sarıhan Granitoid (NE Turkey): an example of magma mingling and mixing”. Turkish Journal of Earth Sciences, 15(3), 373-377. https://journals.tubitak.gov.tr/earth/vol15/iss3/5
  • Uyanık, N.A. (2011). Isparta Alkali Volkanitlerinin radyometrik ve manyetik yöntemlerle incelenmesi [Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü].
  • Van Schmus, W.R. (1995). Natural radioactivity of the crust and mantle. In: Global Earth Physics. A Handbook of Physical Constants (AGU Reference Shelf 1). https://doi.org/10.1029/RF001p0283
  • Verdoya, M., Pasquale, V., Chiozzi, P., & Kukkonen, I.T. (1997). Radiogenic in the Variscan crust: new determinations and distribution models in Corsica (Northwestern Mediterranean). Tectonophysics, 291, 63-75. https://doi.org/10.1016/S0040-1951(98)00031-6
  • Waples, D.W. (2002). A new model for heat flow in Extensional Basins: Estimating radiogenic heat production. Natural Resources Research, 11. https://doi.org/10.1023/A:101556811999
  • Wilson, M. (19899. Igneous Petrogenesis: A Global Tectonic Approach.  Geological Magazine, 126, 4
  • Wollenberg, H.A., & Smith, A.R. (1987). Radiogenic heat production of crustal rocks: an assessment based on geochemical data. Geophysical Research Letters, 14, 295-298. https://doi.org/10.1029/GL014i003p00295
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Geothermics and Radiometrics, Magnetism and Palaeomagnetism
Journal Section Articles
Authors

Suna Altundaş 0000-0002-5840-0352

Hakan Çınar 0000-0002-6562-1962

Project Number BTAP-9588
Publication Date June 15, 2024
Submission Date February 5, 2024
Acceptance Date May 2, 2024
Published in Issue Year 2024

Cite

APA Altundaş, S., & Çınar, H. (2024). Sarıçiçek ve Sarıhan plütonlarının petrofiziksel karakterleri: Yerinde jeofiziksel ölçümlerle manyetik suseptibilite ve radyojenik ısı üretimi ilişkisinin irdelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(2), 654-672. https://doi.org/10.17714/gumusfenbil.1431807