Research Article
BibTex RIS Cite

Bazalt ve Karbon Lif Takviyeli Betonların Fiziksel ve Mekanik Özelliklerinin Araştırılması

Year 2020, , 1039 - 1048, 15.10.2020
https://doi.org/10.17714/gumusfenbil.700956

Abstract

Bu çalışmada farklı lif çeşitleri kullanılarak üretilen betonların fiziksel ve mekanik özellikleri incelenmiştir. Betonların üretiminde su/çimento oranı 0.55 ve çimento miktarı da 300 kg/m3 olarak sabit tutulmuştur. Agrega olarak 0-4 mm tane büyüklüğüne sahip kırma kum ve 4-16 mm boyutlarına sahip kırma taş agregası kullanılmıştır. Lif çeşiti olarak bazalt ve karbon seçilip beton içerisine hacimce %0.5, %1, %1.5 ve %2 oranlarında ilave edilmiştir. Basınç dayanımı ve arşimet tartımları için 100x100x100 mm, eğilme dayanım tayini için 100x100x350 mm, böhme (aşınma) deneyi için 71x71x71 mm boyutlarında beton numuneleri üretilmiştir. Beton numuneleri arşimet, ultrases, böhme (aşınma), eğilme ve basınç deneylerine tabi tutulmuştur. Beton numuneler kalıptan alındıktan sonra 7 ve 28 gün süre ile standart kür havuzunda kür edilmiştir. 7. günü dolduran beton numunelerinin basınç dayanımları ölçülmüştür. 28 günü dolduran numunelerin su emme yüzdesi, porozite ve birim hacim ağırlık, böhme deneyindeki ağırlık kayıpları gibi fiziksel özellikleri belirlenip, eğilme ve basınç dayanımları ölçülmüştür. Lif oranının artmasıyla birlikte su emme ve porozite değerlerinde artış gözlemlenmiştir. Ultrases geçiş hızları incelendiğinde bazalt lifi kullanılan numunelerde karbon lifi kullanılan betonlara oranla daha yüksek olduğu gözlemlenmiştir. Mekanik dayanımlarda ve aşınma dirençlerinde bazalt lifinin karbondan daha fazla direnç gösterdiği gözlemlenmiştir.

References

  • Açıkgenç, M., 2015. A Graphic Based Approach for the Mix Design of Steel Fiber Reinforced Concrete (Ph.D. thesis), Civil Engineering Department, Fırat University, Elazig, Turkeyp. 186 (in Turkish).
  • Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T., 2016. High-performance Fiber-reinforced Concrete: A Review, J. Mater. Sci. 51 (14) 6517–6551.
  • Alberti, M.G., Enfedaque, A. and Gálvez, J.C., 2017. Fibre Reinforced Concrete with A Combination of Polyolefin and Steel-hooked Fibres, Compos. Struct. 171, 317–325.
  • Barr, B., Hoseinian, S.B. and Beygi, M.A., 2003. Shrinkage of Concrete Stored in Natural Environments. Cem. Concr. Compos., 25, 19–29.
  • Biolzi, L., Cattaneo, S. and Guerrini, G.L. 2000. Fracture of Plain and Fiber-reinforced High Strength Mortar Slabs with EA and ESPI Monitoring. Appl. Compos. Mater., 7, 1–12.
  • Biolzi, L. and Cattaneo, S., 2017. Response of Steel Fiber Reinforced High Strength Concrete Beams: Experiments and Code Predictions. Cem. Concr. Compos., 77, 1–13.
  • Branston, J., Das, S., Kenno, S.Y. and Taylor, C., 2016. Mechanical Behaviour of Basalt Fibre Reinforced Concrete, Constr. Build. Mater. 124, 878–886.
  • Campione, G., Mendola, L.L. and Papia M., 2006. Shear Strength of Fiber Reinforced Beams with Stirrups. Struct Eng Mech;24(1):107–36.
  • Chung, D.D.L., 2000. Cement Reinforced with Short Carbon Fibers: A Multifunctional Material. Compos. B Eng. 31 (6), 511-526.
  • Craig, R., 1987. Flexural Behaviour and Design of Reinforced Fiber Concrete Members, SP-105. American Concrete Institute, Detroit, p.517-563.
  • Fiore V, Scalici T, Di Bella G, Valenza A. A Review on Basalt Fibre and Its Composites. Compos Part B-Eng 2015; 74:74–94.
  • Gao, J., Sha, A., Wang, Z., Hu, L., Yun, D., Liu, Z. and Huang, Y., 2018. Characterization of Carbon Fiber Distribution in Cement-based Composites by Computed Tomography. Constr. Build. Mater. 177, 134-147.
  • Habel, K., Viviani, V., Denarié, E. and Brühwiler, E., 2006. Development of the Mechanical Properties of an Ultra-high Performance Fiber Reinforced Concrete (UHPFRC), Cem. Concr. Res. 36 (7) 1362–1370.
  • Hameed, R., Turatsinze, A., Duprat, F. and Sellier, A., 2010. A Study on the Reinforced Fibrous Concrete Elements Subjected to Uniaxial Tensile Loading. KSCE J. Civ. Eng. 14, 547–556.
  • Jiang, C., Fan, K., Wu, F. and Chen, D., 2014. Experimental Study on the Mechanical Properties and Microstructure of Chopped Basalt Fibre Reinforced Concrete, Mater. Des. 58, 187–193.
  • Kabay N. 2014. Abrasion Resistance and Fracture Energy of Concretes with Basalt Fibre. Constr Build Mater ; 50:95–101.
  • Kaufmann, W., 2013. Strength and Deformations of Structural Concrete Subjected to in-Plane Shear and Normal Forces; Birkhäuser: Basel, Switzerland.
  • Kizilkanat, A.B., Kabay, N., Akyüncü, V., Chowdhury, S. and Akça, A.H., 2015. Mechanical Properties and Fracture Behavior of Basalt and Glass Fiber Reinforced Concrete: An Experimental Study, Constr. Build. Mater. 100 218–224.
  • Li, Z., Lara, M.A.P. and Bolander, J.E., 2006. Restraining Effects of Fibers During Non-uniform Drying of Cement Composites. Cem. Concr. Res., 36, 1643–1652. Mehta, P.K., Monteiro, P.J.M., 2006. Concrete: Microstructure, Properties and Materials, McGraw-Hill. New York.
  • Park, J.J., Yoo, D.Y., Park, G.J. and Kim, S.W., 2017. Feasibility of Reducing the Fiber Content in Ultra-high-Performance Fiber-reinforced Concrete Under Flexure. Materials, 10, 118.
  • Ralegaonkar, R., Gavali, H., Aswath, P. and Abolmaali, S., 2018. Application of Chopped Basalt Fibers in Reinforced Mortar: A review, Constr. Build. Mater. 164, 589–602.
  • Sivakumar, A. and Santhanam, M., 2007. Mechanical Properties of High Strength Concrete Reinforced with Metallic and Non-metallic Fibres. Cem. Concr. Compos., 29, 603–608.
  • Shah, S.P., 1992. Do Fibers Increase the Tensile Strength of Cement-based Matrix? ACI Mater. J. 88, 595–602. Thomas, J. A., 2007. Ramaswamy, Mechanical Properties of Steel Fiber-reinforced Concrete, J. Mater. Civ. Eng. 19 (5) 385–392.
  • TS EN 197-1, 2012. Cement- Stage 1: General Cements – Component, TSE, Ankara Turkey. Using the Orthogonal Design Method, Constr. Build. Mater. 31 (2012) 289–293.
  • TS 706 EN 12620+A1 2009. Beton Agregaları, TSE, Ankara Türkiye.
  • TS EN 12390-4, 2019. Beton-Sertleşmiş Beton Deneyleri - Bölüm 3: Deney Numunelerinin Basınç Dayanımının Tayini, TSE, Ankara Türkiye
  • TS EN 12390-4, 2019. Beton-Sertleşmiş Beton Deneyleri-Bölüm 4: Basınç Dayanım Deney Makinelerinin Özellikleri, TSE, Ankara Türkiye
  • TS EN 12390-5 2019. Beton-Sertleşmiş Beton Deneyleri-Bölüm 5: Deney Numunelerinin Eğilme Dayanımının Tayini, TSE, Ankara Türkiye
  • TS 2824 EN 1338, 2005, Zemin Döşemesi İçin Beton Kaplama Blokları-Gerekli Şartlar ve Deney Metotları, Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 1170-6, 1999. Ön Yapımlı Beton Mamuller-Cam Elyaf Takviyeli Çimento (ctc) Deney Metodu-Bölüm 6: Suya Daldırma Yoluyla Su Emme ve Kuru Yoğunluk Tayini TSE, Ankara, Türkiye.
  • TS EN 12504-4 2004. Beton Deneyleri-Bölüm 4: Ultrases Geçiş Hızının Tayini TSE, Ankara Türkiye.
  • Yaşar, E., Erdogan, Y., Kılıç, A., 2004. Effect of Limestone Aggregate Type and Water-Cement Ratio on Concrete Strength. Mater. Lett. , 58 (5), 772-777.

Investigation of Physical and Mechanical Properties of Basalt and Carbon Fiber Reinforced Concrete

Year 2020, , 1039 - 1048, 15.10.2020
https://doi.org/10.17714/gumusfenbil.700956

Abstract

In this study, physical and mechanical properties of concretes produced by using different fiber types were investigated. In the production of concrete, the water / cement ratio was kept as 0.55 and the cement amount was kept constant as 300 kg/m3. As aggregate, 0-4mm crushed sand and 4-16mm crushed stone aggregate were used. Basalt and carbon were selected as fiber type and 0.5%, 1%, 1.5% and 2% by volume were added to the concrete. Concrete samples with dimensions of 100x100x100mm for compressive strength and Archimedes weighing, 100x100x350mm for determination of flexural strength and 71x71x71mm for abrasion test were produced. Concrete samples were subjected to Archimedes, ultrasounds, abrasion, bending and pressure tests. The concrete samples were cured in the standard curing pool for 7 and 28 days after being taken from the mold. The compressive strength of the concretes filled on the 7th day were measured. The physical properties of the samples that were completed after 28 days such as water absorption percentage, porosity and unit volume weight, weight losses in bending test were determined and their flexural and compressive strengths were measured. Water absorption and porosity values increased with increasing fiber ratio. When the ultrasound transition rates were examined, it was observed that the samples using basalt fiber were higher than the concretes using carbon fiber. It has been observed that basalt fiber has more resistance than carbon in mechanical strength and abrasion resistance.

References

  • Açıkgenç, M., 2015. A Graphic Based Approach for the Mix Design of Steel Fiber Reinforced Concrete (Ph.D. thesis), Civil Engineering Department, Fırat University, Elazig, Turkeyp. 186 (in Turkish).
  • Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T., 2016. High-performance Fiber-reinforced Concrete: A Review, J. Mater. Sci. 51 (14) 6517–6551.
  • Alberti, M.G., Enfedaque, A. and Gálvez, J.C., 2017. Fibre Reinforced Concrete with A Combination of Polyolefin and Steel-hooked Fibres, Compos. Struct. 171, 317–325.
  • Barr, B., Hoseinian, S.B. and Beygi, M.A., 2003. Shrinkage of Concrete Stored in Natural Environments. Cem. Concr. Compos., 25, 19–29.
  • Biolzi, L., Cattaneo, S. and Guerrini, G.L. 2000. Fracture of Plain and Fiber-reinforced High Strength Mortar Slabs with EA and ESPI Monitoring. Appl. Compos. Mater., 7, 1–12.
  • Biolzi, L. and Cattaneo, S., 2017. Response of Steel Fiber Reinforced High Strength Concrete Beams: Experiments and Code Predictions. Cem. Concr. Compos., 77, 1–13.
  • Branston, J., Das, S., Kenno, S.Y. and Taylor, C., 2016. Mechanical Behaviour of Basalt Fibre Reinforced Concrete, Constr. Build. Mater. 124, 878–886.
  • Campione, G., Mendola, L.L. and Papia M., 2006. Shear Strength of Fiber Reinforced Beams with Stirrups. Struct Eng Mech;24(1):107–36.
  • Chung, D.D.L., 2000. Cement Reinforced with Short Carbon Fibers: A Multifunctional Material. Compos. B Eng. 31 (6), 511-526.
  • Craig, R., 1987. Flexural Behaviour and Design of Reinforced Fiber Concrete Members, SP-105. American Concrete Institute, Detroit, p.517-563.
  • Fiore V, Scalici T, Di Bella G, Valenza A. A Review on Basalt Fibre and Its Composites. Compos Part B-Eng 2015; 74:74–94.
  • Gao, J., Sha, A., Wang, Z., Hu, L., Yun, D., Liu, Z. and Huang, Y., 2018. Characterization of Carbon Fiber Distribution in Cement-based Composites by Computed Tomography. Constr. Build. Mater. 177, 134-147.
  • Habel, K., Viviani, V., Denarié, E. and Brühwiler, E., 2006. Development of the Mechanical Properties of an Ultra-high Performance Fiber Reinforced Concrete (UHPFRC), Cem. Concr. Res. 36 (7) 1362–1370.
  • Hameed, R., Turatsinze, A., Duprat, F. and Sellier, A., 2010. A Study on the Reinforced Fibrous Concrete Elements Subjected to Uniaxial Tensile Loading. KSCE J. Civ. Eng. 14, 547–556.
  • Jiang, C., Fan, K., Wu, F. and Chen, D., 2014. Experimental Study on the Mechanical Properties and Microstructure of Chopped Basalt Fibre Reinforced Concrete, Mater. Des. 58, 187–193.
  • Kabay N. 2014. Abrasion Resistance and Fracture Energy of Concretes with Basalt Fibre. Constr Build Mater ; 50:95–101.
  • Kaufmann, W., 2013. Strength and Deformations of Structural Concrete Subjected to in-Plane Shear and Normal Forces; Birkhäuser: Basel, Switzerland.
  • Kizilkanat, A.B., Kabay, N., Akyüncü, V., Chowdhury, S. and Akça, A.H., 2015. Mechanical Properties and Fracture Behavior of Basalt and Glass Fiber Reinforced Concrete: An Experimental Study, Constr. Build. Mater. 100 218–224.
  • Li, Z., Lara, M.A.P. and Bolander, J.E., 2006. Restraining Effects of Fibers During Non-uniform Drying of Cement Composites. Cem. Concr. Res., 36, 1643–1652. Mehta, P.K., Monteiro, P.J.M., 2006. Concrete: Microstructure, Properties and Materials, McGraw-Hill. New York.
  • Park, J.J., Yoo, D.Y., Park, G.J. and Kim, S.W., 2017. Feasibility of Reducing the Fiber Content in Ultra-high-Performance Fiber-reinforced Concrete Under Flexure. Materials, 10, 118.
  • Ralegaonkar, R., Gavali, H., Aswath, P. and Abolmaali, S., 2018. Application of Chopped Basalt Fibers in Reinforced Mortar: A review, Constr. Build. Mater. 164, 589–602.
  • Sivakumar, A. and Santhanam, M., 2007. Mechanical Properties of High Strength Concrete Reinforced with Metallic and Non-metallic Fibres. Cem. Concr. Compos., 29, 603–608.
  • Shah, S.P., 1992. Do Fibers Increase the Tensile Strength of Cement-based Matrix? ACI Mater. J. 88, 595–602. Thomas, J. A., 2007. Ramaswamy, Mechanical Properties of Steel Fiber-reinforced Concrete, J. Mater. Civ. Eng. 19 (5) 385–392.
  • TS EN 197-1, 2012. Cement- Stage 1: General Cements – Component, TSE, Ankara Turkey. Using the Orthogonal Design Method, Constr. Build. Mater. 31 (2012) 289–293.
  • TS 706 EN 12620+A1 2009. Beton Agregaları, TSE, Ankara Türkiye.
  • TS EN 12390-4, 2019. Beton-Sertleşmiş Beton Deneyleri - Bölüm 3: Deney Numunelerinin Basınç Dayanımının Tayini, TSE, Ankara Türkiye
  • TS EN 12390-4, 2019. Beton-Sertleşmiş Beton Deneyleri-Bölüm 4: Basınç Dayanım Deney Makinelerinin Özellikleri, TSE, Ankara Türkiye
  • TS EN 12390-5 2019. Beton-Sertleşmiş Beton Deneyleri-Bölüm 5: Deney Numunelerinin Eğilme Dayanımının Tayini, TSE, Ankara Türkiye
  • TS 2824 EN 1338, 2005, Zemin Döşemesi İçin Beton Kaplama Blokları-Gerekli Şartlar ve Deney Metotları, Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 1170-6, 1999. Ön Yapımlı Beton Mamuller-Cam Elyaf Takviyeli Çimento (ctc) Deney Metodu-Bölüm 6: Suya Daldırma Yoluyla Su Emme ve Kuru Yoğunluk Tayini TSE, Ankara, Türkiye.
  • TS EN 12504-4 2004. Beton Deneyleri-Bölüm 4: Ultrases Geçiş Hızının Tayini TSE, Ankara Türkiye.
  • Yaşar, E., Erdogan, Y., Kılıç, A., 2004. Effect of Limestone Aggregate Type and Water-Cement Ratio on Concrete Strength. Mater. Lett. , 58 (5), 772-777.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Behcet Dündar 0000-0003-0724-9469

Emriye Çınar

Servet Peşin 0000-0003-1033-1631

Publication Date October 15, 2020
Submission Date March 9, 2020
Acceptance Date September 10, 2020
Published in Issue Year 2020

Cite

APA Dündar, B., Çınar, E., & Peşin, S. (2020). Bazalt ve Karbon Lif Takviyeli Betonların Fiziksel ve Mekanik Özelliklerinin Araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 1039-1048. https://doi.org/10.17714/gumusfenbil.700956