Research Article
BibTex RIS Cite

Analitik fonksiyonlar teorisinde Pascal tipi dağılım serileri ile uygulamaları üzerine bir çalışma

Year 2021, , 229 - 234, 15.01.2021
https://doi.org/10.17714/gumusfenbil.710716

Abstract

Bu güncel çalışmada,



formundaki Pascal tipli dağılım serisi kullanılarak iki kuvvet serisi ve tanımlanmıştır. Daha sonra bu serilerin USTN(β) analitik fonksiyon sınıfına ait olması için gerekli şartlar geliştirilmiştir.

References

  • Altınkaya, Ş. and Yalçın, S. (2017). Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Annals of Oradea Universty Mathematics Fascicola, 24(2), 5-8.
  • Bulboaca, T. and Murugusundaramoorthy, G. (2020). Univalent functions with positive coefficients involving Pascal distribution series. Communications of the Korean Mathematical Society, 35(3), 867-877. https://doi.org/10.4134/CKMS.c190413
  • El-Deeb, S., Bulboaca, T. and Dziok, J. (2019). Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Mathematical Journal, 59(2), 301-314. https://doi.org/10.5666/KMJ.2019.59.2.301
  • Frasin, B. (2020). Subclasses of analytic functions associated with Pascal distribution series. Advances in the Theory of Nonlinear Analysis and its Applications, 4(2), 92-99. https://doi.org/10.31197/atnaa.692948
  • Goodman, A. (1991). On uniformly starlike functions. Journal of Mathematical Analysis and Applications, 155(2), 364-370.
  • Murugusundaramoorthy, G., Vijaya, K. and Porwal, S. (2016). Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacettepe Journal of Mathematics and Statistics, 45(4), 1101-1107.
  • Porwal, S. (2014). An application of a Poisson distribution series on certain analytic functions. Journal of Complex Analysis, 2014, 1-3. http://dx.doi.org/10.1155/2014/984135
  • Porwal, S., Magesh, N. and Abirami, C. (2020). Certain subclasses of analytic functions associated with Mittag–Lefflertype Poisson distribution series. Boletín de la Sociedad Matemática Mexicana, 26(3), 1035-104. https://doi.org/10.1007/s40590-020-00288-x
  • Silverman, H. (1975). Univalent functions with negative coefficients. Proceedings of the American Mathematical Society, 51(1), 109-116.
  • Subramanian, K., Murugusundaramoorthy, G., Balasubrahmanyam, P. and Silverman, H. (1995). Subclasses of uniformly convex and uniformly starlike functions. Mathematica Japonicae, 42(3), 517–522.

A study on the Pascal type distribution series with applications in analytic function theory

Year 2021, , 229 - 234, 15.01.2021
https://doi.org/10.17714/gumusfenbil.710716

Abstract

In this current study, by using the Pascal type distribution series of the form

we define two power series and Afterwards, we develop sufficient conditions for these series to be in the class USTN(β) of analytic functions.

References

  • Altınkaya, Ş. and Yalçın, S. (2017). Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Annals of Oradea Universty Mathematics Fascicola, 24(2), 5-8.
  • Bulboaca, T. and Murugusundaramoorthy, G. (2020). Univalent functions with positive coefficients involving Pascal distribution series. Communications of the Korean Mathematical Society, 35(3), 867-877. https://doi.org/10.4134/CKMS.c190413
  • El-Deeb, S., Bulboaca, T. and Dziok, J. (2019). Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Mathematical Journal, 59(2), 301-314. https://doi.org/10.5666/KMJ.2019.59.2.301
  • Frasin, B. (2020). Subclasses of analytic functions associated with Pascal distribution series. Advances in the Theory of Nonlinear Analysis and its Applications, 4(2), 92-99. https://doi.org/10.31197/atnaa.692948
  • Goodman, A. (1991). On uniformly starlike functions. Journal of Mathematical Analysis and Applications, 155(2), 364-370.
  • Murugusundaramoorthy, G., Vijaya, K. and Porwal, S. (2016). Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacettepe Journal of Mathematics and Statistics, 45(4), 1101-1107.
  • Porwal, S. (2014). An application of a Poisson distribution series on certain analytic functions. Journal of Complex Analysis, 2014, 1-3. http://dx.doi.org/10.1155/2014/984135
  • Porwal, S., Magesh, N. and Abirami, C. (2020). Certain subclasses of analytic functions associated with Mittag–Lefflertype Poisson distribution series. Boletín de la Sociedad Matemática Mexicana, 26(3), 1035-104. https://doi.org/10.1007/s40590-020-00288-x
  • Silverman, H. (1975). Univalent functions with negative coefficients. Proceedings of the American Mathematical Society, 51(1), 109-116.
  • Subramanian, K., Murugusundaramoorthy, G., Balasubrahmanyam, P. and Silverman, H. (1995). Subclasses of uniformly convex and uniformly starlike functions. Mathematica Japonicae, 42(3), 517–522.
There are 10 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Şahsene Altınkaya 0000-0002-7950-8450

Publication Date January 15, 2021
Submission Date March 28, 2020
Acceptance Date December 30, 2020
Published in Issue Year 2021

Cite

APA Altınkaya, Ş. (2021). Analitik fonksiyonlar teorisinde Pascal tipi dağılım serileri ile uygulamaları üzerine bir çalışma. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 229-234. https://doi.org/10.17714/gumusfenbil.710716