Research Article
BibTex RIS Cite

Krom III klorür tuzuna maruz kalan mayalara C vitamini katılarak mayaların antioksidan enzimlerine etkisinin araştırılması

Year 2021, , 1071 - 1081, 15.10.2021
https://doi.org/10.17714/gumusfenbil.909183

Abstract

Öz

Son zamanlarda biyokimyasal, biyoteknolojik ve toksikolojik çalışmalarda mayalar oldukça sık kullanılmaktadır. Bu çalışmada, maya (Saccharomyces cerevisiae) mikroorganizması iki farklı dozda (10 ve 40 µg/mL) krom III klorür (CrCl3.6H2O) tuzuna 12, 24 ve 36 saat boyunca maruz bırakılmıştır. Krom tuzuna maruz bırakılan maya örneklerine 10, 15 ve 20 µg/mL miktarlarında C vitamini eklenmiştir. Maya ve krom etkileşiminin mikroorganizmadaki bazı biyokimyasal parametrelere etkileri incelenmiştir. Öncelikle maya örneklerinin 12, 24 ve 36. saatteki canlılık oranları tespit edilmiştir. Ayrıca glutatyon peroksidaz (GSH-Px), Glutatyon redüktaz (GSH-Rd) ve Süperoksit dismutaz (SOD) antioksidan enzim aktivite miktarları ile total protein miktarları spektrofotometre ile ölçülerek belirlenmiştir. Çalışma sonucunda, maya örneklerinde artan krom dozu ve süreye bağlı olarak hücre sayıları ve protein miktarlarında azalmalar, artan C vitamini dozu ve süresine bağlı olarak da hücre sayıları ve protein miktarında artışların olduğu gözlemlenmiştir. Artan krom dozuna bağlı olarak maya örneklerinin GSH-Px, GSH-Rd ve SOD enzim aktivite miktarlarında artışların olduğu tespit edilmiştir. Kontrol ve diğer gruplar karşılaştırıldığında, kromun antioksidan enzim aktivite miktarlarını artırdığı belirlenmiştir. Fakat besi ortamına eklenen farklı konsantrasyonlardaki C vitamininin, enzim aktivite miktarlarını azalttığı tespit edilmiştir. Sonuç olarak; kromun maya mikroorganizmasında serbest radikal oluşumunu artırdığı, eklenen C vitaminin ise antioksidan özelliğinden dolayı serbest radikal oluşumunu azalttığı sonucuna varılmıştır.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projesi (FÜBAP)

Project Number

Fırat Üniversitesi Bilimsel Araştırma Projesi (FÜBAP) FF 11.01 nolu proje

Thanks

Fırat Üniversitesi Bilimsel Araştırma Projesi (FÜBAP) ve makalenin incelenmesi ve kabulündeki herkese teşekkür ederiz.

References

  • Bailey, J.E. and Ollis, D.F. (1986). Biochemical engineering fundamentals. 2nd Edition, Mc Graw Hill. Singapore.
  • Barnett, J.A. (1992). The taxonomy of the genus Saccharomyces Meyen ex Reess: A short review for nontaxonomists. Yeast, 81, 1-23.
  • Barnett, J.A., Payne, R.W. and Yarrow, D. (2000). Yeasts: characteristics and ıdentification, 3th Ed., Cambridge University Press, Cambridge p. 1139.
  • Beutler, E. (1984). Red cell metabolism. A manual of biochemical methods. 3th Ed. Grune & Stratton Orlando.72-73, 7475, 105-106. ed, USA.
  • Blanguet, S., Marul-Bonnin, S., Beyssac, E., Pompon, D., Renaud, M. and Alric M. (2001). The ‘biodrug’ concept: on ınnovative approach to therapy. Trends in Biotechnology, 19 (10), 393-400.
  • Boekhout, T., Robert, V. and Phaff, H., (2003). Yeast in food: beneficial and detrimental aspects. CRC Pres: Boca Raton,69-121.
  • Cabiscol, E., Pıulats, E., Echave, P., Herrero, E. and Ros, J. (2000). Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. Journal of Biological Chemistry, 275 (35), 27393-27398.
  • Costa, V. and Moradas-Ferreira, P. (2001). Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Molecular Aspects of Medicine, 22, 217-246.
  • Croce, C.D., Bronzettı, G., Cını, M., Caltavuturo, L. and Poı, G. (2003). Protective effect of lipoic acid against hydrogen peroxide in yeast cells. Toxicology in Vitro, 17, 753- 759.
  • Çabuk, A., Akar, T., Kotluk, Z. ve Şaşmaz, S. (2007). Saccharomyces cerevisiae hücreleri ile ağır metal giderimi ve metal toleransı. Orlab On-Line Microbiyoloji Dergisi, 05-3:1-7.
  • Davıes, M.J., Fu, S., Wang, H. and Dean, R.T. (1999). Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radical Biology and Medicine, 27(11-12), 1151-1163.
  • Droge, W. (2003). Oxidative stress and aging. Advances in Experimental Medicine and Biology, 543, 191-200.
  • Gokce, Z. (2020). The protective effect of pistacia vera L. (Pistachio) against to carbon tetrachloride (CCl4)-induced damage in saccharomyces cerevisiae. Progress in Nutrition, 22, 4. https://doi.org/ 10.23751/pn.v22i4.9901
  • Hamad, İ. (2007). Oksidatif stres uygulanmış Schızosaccharomyces pombe’de protein oksidasyonuna karşı doğal antioksidanların koruyucu etkisi. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Heves, M.D. (2008). Akyıldız (Ornithogalum sigmoideum Freyn Et Sint.)’ın antioksidan aktivitesi. Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Hierro, N., Gonzalez, A., Mas, A. and Guillamon, J.M. (2004). New PCR based methods for yeast identification. Journal of Applied Microbiology, 97, 792-801. https://doi.org/10.1111/j.13652672.2004.02369.x
  • Jakobsen, M. and Norvhus, J. (1996). Yeast and their possible beneficial and p. negative effects on the quality of dairy products. International Dairy Journal, 6, 755-768.
  • Jakubowskı, W. and Bartosz, G. (2000). 2,7-Dichlorofluorescin oxidation and reactive oxygen species: what does it measure?. Cell Biology International, 24 (10): 757-760. https://doi.org/10.1006 / cbir.2000.0556.
  • Jianlong, W., Zeyu, M. and Xuan, Z. (2004). Response of Saccharomyces cerevisiae to chromium stres. Process Biochemistry, 39, 1231–1235.
  • Kahvecioğlu, Ö., Kartal, G., Güven, A. ve Timur, S. (2004). Metallerin çevresel etkileri I-II, İTÜ Metalurji ve Malzeme Mühendisliği Bölümü (Seminer çalışması 24s).
  • Kireçci, O.A. (2018). Mn, Cd, Fe ve Mg metallerinin Saccharomyces cerevisiae mayasında antioksidan enzim aktiviteleri üzerine etkisi. KSÜ Tarım ve Doğa Dergisi, 21(4), 520-528. https://doi.org/10.18016/ksudobil.359165
  • Korhan, H., Halipçi, H.N., Kertmen, M. ve Dığrak, M. (2012). Saccharomyces cerevisiae biyokütlesi ile remazol navy blue boyar maddesinin biyosorpsiyonu. KSÜ Doğa Bilimleri Dergisi, 15 (3).
  • Lee, J.H., Choı, I.Y., Kıl, I.S., Kım, S.Y., Yang, E.S. and Park, J.W. (2001). Protective role of superoxide dismutases against ionizing radiation in yeast. Biochimica et Biophysica Acta, 1526, 191-198. https://doi.org/ 10.1016 /s0304-4165 (01) 00126-x
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Rondall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193 (1), 265-275.
  • Lu, F., Wang, Y., Bai, D. and Du, L. (2005). Adaptive response of Saccharomyces cerevisiae to hyperosmotic andoxidative stres, Process Biochemistry, 40, 3614–3618. https://doi.org/ 10.1016 / j.procbio.2005.03.061
  • Lushchak, V., Semchyshyn, H., Lushchak, O. and Mandryk, S. (2005). Diethyldithiocarbamate inhibits in vivo Cu, Zn superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Biochemical and Biophysical Research Communications, 338 (4), 1739–1744. https://doi.org/ 10.1016/ j.bbrc.2005.10.147
  • Lushchak, O.V., Kubrak, O.L., Torous, I.M., Nazarchuk, T.Y., Storey, K.B. and Lushchak, V.I. (2009). Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere, 75 (1), 56-62. https://doi.org/10.1016/j.chemosphere.2008.11.052
  • Mandavıllı, B.S., Santos, J.H. and Van Houten, B. (2002). Mitochondrial DNA repair and aging, Mutation Research, 509 (1-2), 127-151. https://doi.org/10.1016/s0027-5107(02)00220-8
  • Öcal, E. (2008). Saccharomyces cerevisiae 4 ve Saccharomyces cerevisiae 2S1 TP (3-2) suşlarının ağır metal dirençlilikleri ve hücresel total protein miktarlarının araştırılması. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Öztürk, H. (2003). In-vitro-studien zum Einfluss von topinamburmehl und Saccharomyces boulardii auf den mikrobiellen vormagenstoffwechsel. Diss, Tierarztliche Hochschule Hannover, Germany, 91.
  • Paglia D.E. and Valetine, W.N. (1967). Studies on the quantitative and qualitative characterization of erytrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70,158-169.
  • Parapouli, M., Vasileiadis, A., Afendra, A.S. and Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6 (1), 1-31. https://doi.org/ 10.3934/microbiol.2020001
  • Patring, J.D., Jastrebova, J.A., Hjortmo, S.B., Andlid, T.A. and Jägerstad, I.M. (2005). Development of a simplified method for the determination of folates in baker’s yeast by HPLC with ultraviolet and fluorescence detection. Journal of Agricultural Food Chemistry, 53, 2406–2411.
  • Pekmez, M., (2004). Oksidatif stres uygulanmış Schızosaccharomyces pombe’de moleküler çalışmalar, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Piotrowska, A., Mlyni, K., Siwek, A., Dybala, M., Opoka, W., Poleszak, E. and Nowak, G. (2008). Antidepressant like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors. Pharmacological Reports, 60 (6), 991–995.
  • Saegusa, S., Totsuka, M., Kaminogawa, S. and Hasai, T. (2004). Candida albicans and Saccharomyces cerevisiae ınduce ınterleukin-8 production from ıntestinal epithelial- like caco-2 cells in the presence of butyric acid. FEMS Immunology and Medical Microbiology, 41, 227-235.
  • Sheng, L., Zheng, X., Tong, H., Lıu, S., Du, J. and Lıu, Q. (2004). Purification and characterization of cytosolic ısoenzyme III of Cu, Zn- Superoxide dismutase from tobacco leaves. Plant Science, 167 (6), 1235-1241.
  • Sun, Y., Oberley, L.W. and Lı, Y. (1988). A simple method for clinical assay of Superoxide Dismutase. Clinical Chemistry, 34(3), 497–500.
  • Swiecilo, A., Krawiec, Z., Wawryn, J., Bartosz, G. and Bilinski, T. (2000). Effect of stress on the life span of the yeast Saccharomyces cerevisiae. Acta Biochimica Polonica, 47 (2), 355–364.
  • Szaleczky, E., Prechl, J., Fehér, J. and Somogyi, A. (1999). Alterations in enzymatic antioxidant defence in diabetes mellitus-a rational approach. Postgraduate Medical Journal, 75 (879), 13-17. https://doi.org/10.1136/pgmj.75.879.13
  • Walker, G.M. (1998). Yeast Physiology and Biotechnology, John Wiley & Sons, England, 0-471-964468. Walker, G.M. (2000). Yeast physiology and biotechnology, Wiley and Sons, England.
  • Wawryn, J., Krzepilko, A., Myszka, A. and Bilinski, T. (1999). Deficiency in superoxide dismutases shortens life span of yeast cells. Acta Biochimica Polonica, 46 (2), 249–353.
  • Wawryn, J., Swiecilo, A., Bartosz, G. and Bilinski, T. (2002). Effect of superoxide dismutases deficiency on the life span of the yeast Saccharomyces cerevisiae. An oxygen-independent role of Cu, Zn superoxide dismutase. Biochimica et Biophysica Acta, 1570 (3), 199–202. https://doi.org/10.1016/s03044165(02)00197-6
  • Yağmur, G. (2006). Mitokondriyal mutantların bira fermantasyonu üzerine etkisi. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Adana.
  • Yang, L. and Chen, J.P. (2007). Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresource Technology, 99 (2), 297-307. https://doi.org/10.1016 / j.biortech.2006.12.021
  • Zouboulis, A.I. and Katsoyiannis, I.A. (2004). Recent advances for the bioremediation of arsenic from contaminated groundwater sources. In: 6th Intern. Conf. On “Metallurgy, Refractories and Environment” (invited lecture), organized by T.U. Kosice (Slovakia) and Slovak Metallurgical Society in High Tatras (Slovakia), Proceedings published by the Organizers (E. Vircikova, ed.), 267-274.

The research of the effects on antioxidant enzymes of yeasts exposed to chromium III chloride salt by adding vitamin C

Year 2021, , 1071 - 1081, 15.10.2021
https://doi.org/10.17714/gumusfenbil.909183

Abstract

Recently, yeast are used frequently in biochemical, biotechnological and toxicological studies. In this study, yeast (Saccharomyces cerevisiae) microorganism was exposed to chromium III chloride (CrCl3.6H2O) salt in two different doses (10 and 40 µg/mL) for 12, 24 and 36 hours. 10, 15 and 20 µg/mL of vitamin C was added to the yeast samples exposed to chromium salt. The effect of yeast and chromium interaction on some biochemical parameters in microorganism were investigated. Firstly, the survival rates of yeast samples at 12, 24 and 36 hours were determined. In addition, the amount of antioxidant enzyme activity of Glutathione peroxidase (GSH-Px), Glutathione reductase (GSH-Rd) and Superoxide dismutase (SOD) and amounts of total protein were measured by spectrophotometer. It was observed that the number microorganism and amounts of protein decreased depending on increasing chromium dose and time in yeast samples, on the other hand, with the introduction of vitamin C, increase the number of microorganism along with amount of protein. Depending on the increasing chromium dose, the activity enzyme GSH-Px, GSH-Rd and SOD of yeast samples were found to be increased. When the control and other groups were compared, it was observed that chromium increased the amounts of antioxidant enzyme activity. However, it has been obtained that different concentrations vitamin C added to the nutrient medium reduces the amounts of enzyme activity. As a result; it was concluded that while chromium increases the formation of free radicals in yeast microorganism, vitamin C, reduces the formation of free radicals due to its antioxidant properties.

Project Number

Fırat Üniversitesi Bilimsel Araştırma Projesi (FÜBAP) FF 11.01 nolu proje

References

  • Bailey, J.E. and Ollis, D.F. (1986). Biochemical engineering fundamentals. 2nd Edition, Mc Graw Hill. Singapore.
  • Barnett, J.A. (1992). The taxonomy of the genus Saccharomyces Meyen ex Reess: A short review for nontaxonomists. Yeast, 81, 1-23.
  • Barnett, J.A., Payne, R.W. and Yarrow, D. (2000). Yeasts: characteristics and ıdentification, 3th Ed., Cambridge University Press, Cambridge p. 1139.
  • Beutler, E. (1984). Red cell metabolism. A manual of biochemical methods. 3th Ed. Grune & Stratton Orlando.72-73, 7475, 105-106. ed, USA.
  • Blanguet, S., Marul-Bonnin, S., Beyssac, E., Pompon, D., Renaud, M. and Alric M. (2001). The ‘biodrug’ concept: on ınnovative approach to therapy. Trends in Biotechnology, 19 (10), 393-400.
  • Boekhout, T., Robert, V. and Phaff, H., (2003). Yeast in food: beneficial and detrimental aspects. CRC Pres: Boca Raton,69-121.
  • Cabiscol, E., Pıulats, E., Echave, P., Herrero, E. and Ros, J. (2000). Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. Journal of Biological Chemistry, 275 (35), 27393-27398.
  • Costa, V. and Moradas-Ferreira, P. (2001). Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Molecular Aspects of Medicine, 22, 217-246.
  • Croce, C.D., Bronzettı, G., Cını, M., Caltavuturo, L. and Poı, G. (2003). Protective effect of lipoic acid against hydrogen peroxide in yeast cells. Toxicology in Vitro, 17, 753- 759.
  • Çabuk, A., Akar, T., Kotluk, Z. ve Şaşmaz, S. (2007). Saccharomyces cerevisiae hücreleri ile ağır metal giderimi ve metal toleransı. Orlab On-Line Microbiyoloji Dergisi, 05-3:1-7.
  • Davıes, M.J., Fu, S., Wang, H. and Dean, R.T. (1999). Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radical Biology and Medicine, 27(11-12), 1151-1163.
  • Droge, W. (2003). Oxidative stress and aging. Advances in Experimental Medicine and Biology, 543, 191-200.
  • Gokce, Z. (2020). The protective effect of pistacia vera L. (Pistachio) against to carbon tetrachloride (CCl4)-induced damage in saccharomyces cerevisiae. Progress in Nutrition, 22, 4. https://doi.org/ 10.23751/pn.v22i4.9901
  • Hamad, İ. (2007). Oksidatif stres uygulanmış Schızosaccharomyces pombe’de protein oksidasyonuna karşı doğal antioksidanların koruyucu etkisi. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Heves, M.D. (2008). Akyıldız (Ornithogalum sigmoideum Freyn Et Sint.)’ın antioksidan aktivitesi. Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Hierro, N., Gonzalez, A., Mas, A. and Guillamon, J.M. (2004). New PCR based methods for yeast identification. Journal of Applied Microbiology, 97, 792-801. https://doi.org/10.1111/j.13652672.2004.02369.x
  • Jakobsen, M. and Norvhus, J. (1996). Yeast and their possible beneficial and p. negative effects on the quality of dairy products. International Dairy Journal, 6, 755-768.
  • Jakubowskı, W. and Bartosz, G. (2000). 2,7-Dichlorofluorescin oxidation and reactive oxygen species: what does it measure?. Cell Biology International, 24 (10): 757-760. https://doi.org/10.1006 / cbir.2000.0556.
  • Jianlong, W., Zeyu, M. and Xuan, Z. (2004). Response of Saccharomyces cerevisiae to chromium stres. Process Biochemistry, 39, 1231–1235.
  • Kahvecioğlu, Ö., Kartal, G., Güven, A. ve Timur, S. (2004). Metallerin çevresel etkileri I-II, İTÜ Metalurji ve Malzeme Mühendisliği Bölümü (Seminer çalışması 24s).
  • Kireçci, O.A. (2018). Mn, Cd, Fe ve Mg metallerinin Saccharomyces cerevisiae mayasında antioksidan enzim aktiviteleri üzerine etkisi. KSÜ Tarım ve Doğa Dergisi, 21(4), 520-528. https://doi.org/10.18016/ksudobil.359165
  • Korhan, H., Halipçi, H.N., Kertmen, M. ve Dığrak, M. (2012). Saccharomyces cerevisiae biyokütlesi ile remazol navy blue boyar maddesinin biyosorpsiyonu. KSÜ Doğa Bilimleri Dergisi, 15 (3).
  • Lee, J.H., Choı, I.Y., Kıl, I.S., Kım, S.Y., Yang, E.S. and Park, J.W. (2001). Protective role of superoxide dismutases against ionizing radiation in yeast. Biochimica et Biophysica Acta, 1526, 191-198. https://doi.org/ 10.1016 /s0304-4165 (01) 00126-x
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Rondall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193 (1), 265-275.
  • Lu, F., Wang, Y., Bai, D. and Du, L. (2005). Adaptive response of Saccharomyces cerevisiae to hyperosmotic andoxidative stres, Process Biochemistry, 40, 3614–3618. https://doi.org/ 10.1016 / j.procbio.2005.03.061
  • Lushchak, V., Semchyshyn, H., Lushchak, O. and Mandryk, S. (2005). Diethyldithiocarbamate inhibits in vivo Cu, Zn superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Biochemical and Biophysical Research Communications, 338 (4), 1739–1744. https://doi.org/ 10.1016/ j.bbrc.2005.10.147
  • Lushchak, O.V., Kubrak, O.L., Torous, I.M., Nazarchuk, T.Y., Storey, K.B. and Lushchak, V.I. (2009). Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere, 75 (1), 56-62. https://doi.org/10.1016/j.chemosphere.2008.11.052
  • Mandavıllı, B.S., Santos, J.H. and Van Houten, B. (2002). Mitochondrial DNA repair and aging, Mutation Research, 509 (1-2), 127-151. https://doi.org/10.1016/s0027-5107(02)00220-8
  • Öcal, E. (2008). Saccharomyces cerevisiae 4 ve Saccharomyces cerevisiae 2S1 TP (3-2) suşlarının ağır metal dirençlilikleri ve hücresel total protein miktarlarının araştırılması. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Öztürk, H. (2003). In-vitro-studien zum Einfluss von topinamburmehl und Saccharomyces boulardii auf den mikrobiellen vormagenstoffwechsel. Diss, Tierarztliche Hochschule Hannover, Germany, 91.
  • Paglia D.E. and Valetine, W.N. (1967). Studies on the quantitative and qualitative characterization of erytrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70,158-169.
  • Parapouli, M., Vasileiadis, A., Afendra, A.S. and Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6 (1), 1-31. https://doi.org/ 10.3934/microbiol.2020001
  • Patring, J.D., Jastrebova, J.A., Hjortmo, S.B., Andlid, T.A. and Jägerstad, I.M. (2005). Development of a simplified method for the determination of folates in baker’s yeast by HPLC with ultraviolet and fluorescence detection. Journal of Agricultural Food Chemistry, 53, 2406–2411.
  • Pekmez, M., (2004). Oksidatif stres uygulanmış Schızosaccharomyces pombe’de moleküler çalışmalar, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Piotrowska, A., Mlyni, K., Siwek, A., Dybala, M., Opoka, W., Poleszak, E. and Nowak, G. (2008). Antidepressant like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors. Pharmacological Reports, 60 (6), 991–995.
  • Saegusa, S., Totsuka, M., Kaminogawa, S. and Hasai, T. (2004). Candida albicans and Saccharomyces cerevisiae ınduce ınterleukin-8 production from ıntestinal epithelial- like caco-2 cells in the presence of butyric acid. FEMS Immunology and Medical Microbiology, 41, 227-235.
  • Sheng, L., Zheng, X., Tong, H., Lıu, S., Du, J. and Lıu, Q. (2004). Purification and characterization of cytosolic ısoenzyme III of Cu, Zn- Superoxide dismutase from tobacco leaves. Plant Science, 167 (6), 1235-1241.
  • Sun, Y., Oberley, L.W. and Lı, Y. (1988). A simple method for clinical assay of Superoxide Dismutase. Clinical Chemistry, 34(3), 497–500.
  • Swiecilo, A., Krawiec, Z., Wawryn, J., Bartosz, G. and Bilinski, T. (2000). Effect of stress on the life span of the yeast Saccharomyces cerevisiae. Acta Biochimica Polonica, 47 (2), 355–364.
  • Szaleczky, E., Prechl, J., Fehér, J. and Somogyi, A. (1999). Alterations in enzymatic antioxidant defence in diabetes mellitus-a rational approach. Postgraduate Medical Journal, 75 (879), 13-17. https://doi.org/10.1136/pgmj.75.879.13
  • Walker, G.M. (1998). Yeast Physiology and Biotechnology, John Wiley & Sons, England, 0-471-964468. Walker, G.M. (2000). Yeast physiology and biotechnology, Wiley and Sons, England.
  • Wawryn, J., Krzepilko, A., Myszka, A. and Bilinski, T. (1999). Deficiency in superoxide dismutases shortens life span of yeast cells. Acta Biochimica Polonica, 46 (2), 249–353.
  • Wawryn, J., Swiecilo, A., Bartosz, G. and Bilinski, T. (2002). Effect of superoxide dismutases deficiency on the life span of the yeast Saccharomyces cerevisiae. An oxygen-independent role of Cu, Zn superoxide dismutase. Biochimica et Biophysica Acta, 1570 (3), 199–202. https://doi.org/10.1016/s03044165(02)00197-6
  • Yağmur, G. (2006). Mitokondriyal mutantların bira fermantasyonu üzerine etkisi. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Adana.
  • Yang, L. and Chen, J.P. (2007). Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresource Technology, 99 (2), 297-307. https://doi.org/10.1016 / j.biortech.2006.12.021
  • Zouboulis, A.I. and Katsoyiannis, I.A. (2004). Recent advances for the bioremediation of arsenic from contaminated groundwater sources. In: 6th Intern. Conf. On “Metallurgy, Refractories and Environment” (invited lecture), organized by T.U. Kosice (Slovakia) and Slovak Metallurgical Society in High Tatras (Slovakia), Proceedings published by the Organizers (E. Vircikova, ed.), 267-274.
There are 46 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ebru Çöteli 0000-0002-9473-0914

Fikret Karataş 0000-0002-0884-027X

Project Number Fırat Üniversitesi Bilimsel Araştırma Projesi (FÜBAP) FF 11.01 nolu proje
Publication Date October 15, 2021
Submission Date April 3, 2021
Acceptance Date July 5, 2021
Published in Issue Year 2021

Cite

APA Çöteli, E., & Karataş, F. (2021). Krom III klorür tuzuna maruz kalan mayalara C vitamini katılarak mayaların antioksidan enzimlerine etkisinin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1071-1081. https://doi.org/10.17714/gumusfenbil.909183