Research Article
BibTex RIS Cite

Koridor Ortalama Hız İhlal Tespit Sistemlerinin (KOHİTS) Tasarımdan İşletmeye Genel Yapısı ve Çalışma Prensibi Üzerine Bir Araştırma: Toprakkale Örneği

Year 2020, Volume: 10 Issue: 1, 109 - 121, 15.01.2020
https://doi.org/10.17714/gumusfenbil.543769

Abstract

Trafikte aşırı hızdan kaynaklı trafik kazalarının çok
oluşu, Dünya’da ve Türkiye’de yetkilileri ve araştırmacıları çözüm önerileri
geliştirme konusunda daha da motive etmektedir. Son yıllarda, Türkiye dâhil
dünyanın birçok ülkesinde sürücülerin şehiriçi ve şehirlerarası yollarda hız
limitlerine riayet etmeden araç kullanmalarının önleyerek aşırı hızdan kaynaklı
trafik kazalarının sayısını azaltmak amacıyla, Akıllı Ulaşım Sistemleri (AUS)
olarak adlandırılan yeni sistemler geliştirilmektedir. Dünya genelinde olduğu
gibi Türkiye’de de aşırı hızdan kaynaklanan trafik kazalarının sayısını
azaltarak, yol güvenliğini artırmak ve sürücülerin hız limitlerinde hareket
etmesini sağlamak amacıyla geliştirilen ve bir AUS uygulaması olan Koridor
Ortalama Hız Tespit Sistemleri (KOHİTS) yaygın olarak uygulanmaya başlanmıştır.
Çalışma kapsamında son yıllarda yaygın olarak kullanılan ortalama hız tespit
sistemlerinin kurulumdan işletmeye açılıncaya kadar yapılan işlemler ve çalışma
prensibi bilimsel yöntemlerle irdelenmiştir. Çalışma kapsamında yapılan saha
ölçümü ve gözlemler ile belirlenen tüm hususlar hakkında detaylı bilgi
verebilmek amacıyla Toprakkale/Osmaniye çevreyolunda yer alan 2 farklı yol
güzergâhındaki KOHİTS uygulamalarının en baştan en sona kadar kurulum aşamaları
ile çalışma prensibi detaylı olarak incelenmiş ve adım adım açıklanmıştır. Elde
edilen sonuçlara göre bu tür sistemlerin kurulumundaki en önemli hususlar
kullanılan kameraların çözünürlük kalitesinin yüksek olması, sahadan merkeze
veri aktarımını sağlayan ağ alt yapısının hızlı ve kesintisiz olması ile
geliştirilen sistem yazılımının kapsamlı analiz imkânına sahip olması olarak
belirlenmiştir. Yine gözlem ve ölçümlerden sistemin başarılı bir şekilde
çalışmasında iyi bir yazılım ve teknolojik altyapısının olması ile uzman bir
ekip tarafından kurulmasının performans açısından oldukça önemli olduğu
görülmüştür.

References

  • AASHTO, 2010. Highway Safety Manual, first ed. Washington, DC. AASHTO, 2011. A Policy on Geometric Design of Highways and Streets, sixth ed. Washington, DC.
  • Aydın, M.M. 2017. Şehiriçi kavşaklardaki geometrik disiplinsizliğin optimize edilerek irdelenmesi, Doktora Tezi, Fen Bilimleri Enstitüsü, Akdeniz Üniversitesi, Antalya.
  • Aydın, M. M., Köfteci, S., Akgöl, K. and Yıldırım, M. S. 2017. Utilization of a new methodology on performance measurements of red light violations detection systems. International Journal of Engineering and Applied Sciences, 9(1), 32–41.
  • Bella, F. 2013. Driver perception of roadside configurations on two-lane rural roads: Effects on speed and lateral placement. Accident Analysis & Prevention, 50(2013), 251–262.
  • Cameron M., Delaney A. and Diamantopoulou, K. (2003). Scientific basis for the strategic directions of the safety camera program in Victoria. Melbourne: Monash University Accident Research Centre Reports, 202, 78.
  • Collins, G. and McConnell, D. 2008. Speed harmonisation with average speed enforcement. Traffic Eng. Control, 49(1), 6–9.
  • De Pauw, E., Daniels, S., Brijs, T., Hermans, E. and Wets, G. 2014. Behavioural effects of fixed speed cameras on motorways: overall improved speed compliance or kangaroo jumps?. Accid. Anal. Prev. 73(2014), 132–140.
  • Donnell, E.T., Himes, S.C., Mahoney, K.M. and Porter, R.J. 2009. Understanding speed concepts: key definitions and case study examples. Transport. Res. Rec. 2120(2009), 3–11.
  • Duran, F. and Teke, M. (2019) Akıllı yol durum sensörü tasarımı, Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi. 11(1), 396–401.
  • Egele, C. 2013. Section Control (Abschnittsgeschwindigkeitskontrolle). Polizeitechnik im Wandel, Münster, Germany.
  • Emniyet Genel Müdürlüğü 2018. 2018 Yılı Trafik Kaza İstatistikleri, [Erişim Tarihi: 20 Ocak 2019]. http://www.trafik.gov.tr/sayfalar/istatistikler.aspx
  • Google 2019a. Google Maps. Retrieved from http://earth.google.com/S [Access Date: 20 January 2019].
  • Google 2019b. Google Maps. Retrieved from http://maps.google.com/S [Access Date: 20 January 2019].
  • Høye, A. 2015. Safety effects of section control – an empirical Bayes evaluation. Accid. Anal. Prev., 74(2015), 169–178.
  • Hu, W. and McCartt, A. T. 2016. Effects of automated speed enforcement in Montgomery County, Maryland, on vehicle speeds, public opinion, and crashes. Traffic Injury Prevention, 17(sup1), 53–58.
  • Ilgaz, A. and Saltan, M. (2017). Ortalama hız tespit sistemi ve yol güvenliği etkileri üzerine bir literatür taraması, Mühendislik Bilimleri ve Tasarım Dergisi, 5(3), 457–472.
  • Insurance Institute for Highway Safety 2016. Fatality Facts: Yearly Update, 2014. Arlington, VA, USA.
  • ISBAK 2019. Akıllı ulaşım sistemleri elektronik denetleme sistemi. [Erişim Tarihi: 20 Ocak 2019], http://isbak.istanbul/akilli-ulasim-sistemleri/elektronik-denetleme-sistemi/hiz-koridor-ihlal-tespit-sistemi/.
  • ISSD 2019. Koridor Hızı İhlal Tespit Sistemi, [Erişim Tarihi: 20 Ocak 2019]. http://www.issd.com.tr/tr/18924/Koridor-Hizi-Ihlal-Tespit-Sistemi.
  • Kapsch, 2010. Section Speed Enforcement: for road safety. [Access Date: 20 January 2019]. https://www.kapsch.net/ktc/downloads/ brochures/Kapsch-KTC-DS-Section_Speed_Enforc ement-EN-WEB?lang=en-US.
  • Kistler 2019. Sensor technology. [Access Date: 20 January 2019]. https://www.kistler.com/en/applications/sensor-technology/weigh-in-motion/.
  • Lynch, M., (2010). Forward design study: introduction of point to point speed cameras in the act. AECOM Australia, Canberra.
  • Lynch, M., White, M. and Napier, R. (2011). Investigation into the use of point-to-point speed cameras: NZ Transport Agency Research Report 465
  • Meriç, E. B. (2018). Akıllı ulaşım sistemleri (AUS) ve kalkınma ajansları. In International Conference on Intelligent Transportation Systems (BANU-ITSC’18), Bandırma, p.21.
  • Montella, A., Aria, M., D’Ambrosio, A., Galante, F., Mauriello, F. and Pernetti, M., 2010. Perceptual measures to influence operating speeds and reduce crashes at rural intersections: driving simulator experiment. Transport. Res. Rec., 2149(2010), 11–20.
  • Montella, A., Imbriani, L.L., Marzano, V. and Mauriello, F. 2015. Effects on speed and safety of point-to-point speed enforcement systems: evaluation on the urban motorway A56 Tangenziale di Napoli. Accid. Anal. Prev., 75 (2015), 164–178.
  • Montella, A., Persaud, B., D’Apuzzo, M. and Imbriani, L.L. 2012. Safety evaluation of an automated section speed enforcement system. Transport. Res. Rec., 2281(2012), 16–25.
  • Moxa, 2019. Intelligent transportation. [Access Date: 20 January 2019]. https://www.moxa.com/en/solutions/industry-focus/intelligent-transportation.
  • Ng, C. F. and Small, K. A. 2012. Tradeoffs among free-flow speed, capacity, cost, and environmental footprint in highway design. Transportation, 39(6), 1259–1280.
  • Persaud, B. and Lyon, C. 2007. Empirical bayes before–after studies: lessons learned from two decades of experience and future directions. Accid. Anal. Prev. 39(2007), 546–555.
  • Platar 2019. Trafik elektronik denetim sistemi. [Erişim Tarihi: 20 Ocak 2019]. http://www.platar.com.tr/tedes/. Soole, D.W., Watson, B.C. and Fleiter, J.J., 2012. Point-to-Point Speed Enforcement. Austroads Report AP-R415-12, Sydney.
  • Soole, D.W., Watson, B.C. and Fleiter, J.J., 2013. Effects of average speed enforcement on speed compliance and crashes: a review of the literature. Accid. Anal. Prev., 54(2013), 46–56.
  • Stefan, C., 2006. Section Control – Automatic Speed Enforcement in the Kaisermühlen Tunnel (Vienna, A22 Motorway). Austrian Road Safety Board (KvF), Vienna.
  • Taç, Ş. G. 2018. Karayolu ulaşımında meydana gelen trafik kazalarının önlenmesinde akıllı ulaşım sistemlerinin etkisi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 1(2), 12-22.
  • Tedesbilgi 2019. Hız koridoru. [Erişim Tarihi: 20 Ocak 2019]. http://www.tedesbilgi.com/cozumlerimiz/hiz-koridoru/.
  • Traffic Data Systems (TDS) 2019. Average speed enforcement, [Access Date: 20 January 2019], https://www.traffic-data-systems.net/.
  • Ünal, A., Aydin, M.M. ve Saplıoğlu, M. 2018. Türk sürücülerin facebook sosyal paylaşım sitesini trafik bilgilendirme amacıyla kullanımı üzerine bir araştırma. Mühendislik Bilimleri ve Tasarımı Dergisi, 6(2), 354-364.
  • Vaitkus, A., Čygas, D., Jasiūnienė, V., Jateikienė, L., Andriejauskas, T., Skrodenis, D. and Ratkevičiūtė, K. 2017. Traffic calming measures: an evaluation of the effect on driving speed. Promet-Traffic&Transportation, 29(3), 275-285.
  • Vendeka 2019. Akıllı ulaşım sistemleri, [Erişim Tarihi: 20 Ocak 2019], http://www.vendeka.com.tr/en/oursolutions/42-its-akll-ulam-sist.
  • WHO 2018. Global status report on road safety 2018. [Access Date: 20 January 2019], https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/.
  • Zainuddin, N. I., Adnan, M. A. and Md Diah, J. 2013. Optimization of speed hump geometric design: Case study on residential streets in Malaysia. Journal of Transportation Engineering, 140(3), 05013002.

An Investigation on General Structure and Working Principle of Corridor Average Speed Enforcement Systems (KOHİTS) from Design to Operation: Toprakkale Case

Year 2020, Volume: 10 Issue: 1, 109 - 121, 15.01.2020
https://doi.org/10.17714/gumusfenbil.543769

Abstract

High number of traffic accidents, caused by excessive vehicle speeds in traffic, motivate officials and researchers in Turkey and all around the World to develop solutions. For this purpose in recent years, new systems, called as Smart Transport Systems (AUS), are being developed in many countries in order to prevent driving at high speeds without taking into account speed limits in urban and rural roads and to reduce the number of speed related accidents. Corridor Average Speed Enforcement Systems (KOHİTS), which is an AUS application, was developed to reduce the number of traffic accidents caused by excessive speeds and increase road safety and enable drivers to move at speed limits in Turkey as well as in the overall World,. With this study, it is aimed to inform all relevant stakeholders technically by examining all the important working principles and all important issues to be taken into consideration by using scientific methods until they are activated from the beginning of system configuration. For this purpose, in order to give detailed information about the field measurement and observations made within the scope of the study, the configuration steps of KOHİTS in 2 different road routes in Toprakkale / Osmaniye ring road from the beginning to the end are examined and explained step by step in detail. From the obtained results, the most important points in the configuration process of such systems determined as high resolution quality cameras’ utilization, fast and uninterrupted network infrastructure enabling the transfer of data from the field to the center and comprehensive analysis opportunity of the developed software. It was also observed from the field observations and measurements that the configuration of the system by an expert team, development of a good software and utilization of a good technological infrastructure in the system are other very important parameters for the performance of the system.

References

  • AASHTO, 2010. Highway Safety Manual, first ed. Washington, DC. AASHTO, 2011. A Policy on Geometric Design of Highways and Streets, sixth ed. Washington, DC.
  • Aydın, M.M. 2017. Şehiriçi kavşaklardaki geometrik disiplinsizliğin optimize edilerek irdelenmesi, Doktora Tezi, Fen Bilimleri Enstitüsü, Akdeniz Üniversitesi, Antalya.
  • Aydın, M. M., Köfteci, S., Akgöl, K. and Yıldırım, M. S. 2017. Utilization of a new methodology on performance measurements of red light violations detection systems. International Journal of Engineering and Applied Sciences, 9(1), 32–41.
  • Bella, F. 2013. Driver perception of roadside configurations on two-lane rural roads: Effects on speed and lateral placement. Accident Analysis & Prevention, 50(2013), 251–262.
  • Cameron M., Delaney A. and Diamantopoulou, K. (2003). Scientific basis for the strategic directions of the safety camera program in Victoria. Melbourne: Monash University Accident Research Centre Reports, 202, 78.
  • Collins, G. and McConnell, D. 2008. Speed harmonisation with average speed enforcement. Traffic Eng. Control, 49(1), 6–9.
  • De Pauw, E., Daniels, S., Brijs, T., Hermans, E. and Wets, G. 2014. Behavioural effects of fixed speed cameras on motorways: overall improved speed compliance or kangaroo jumps?. Accid. Anal. Prev. 73(2014), 132–140.
  • Donnell, E.T., Himes, S.C., Mahoney, K.M. and Porter, R.J. 2009. Understanding speed concepts: key definitions and case study examples. Transport. Res. Rec. 2120(2009), 3–11.
  • Duran, F. and Teke, M. (2019) Akıllı yol durum sensörü tasarımı, Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi. 11(1), 396–401.
  • Egele, C. 2013. Section Control (Abschnittsgeschwindigkeitskontrolle). Polizeitechnik im Wandel, Münster, Germany.
  • Emniyet Genel Müdürlüğü 2018. 2018 Yılı Trafik Kaza İstatistikleri, [Erişim Tarihi: 20 Ocak 2019]. http://www.trafik.gov.tr/sayfalar/istatistikler.aspx
  • Google 2019a. Google Maps. Retrieved from http://earth.google.com/S [Access Date: 20 January 2019].
  • Google 2019b. Google Maps. Retrieved from http://maps.google.com/S [Access Date: 20 January 2019].
  • Høye, A. 2015. Safety effects of section control – an empirical Bayes evaluation. Accid. Anal. Prev., 74(2015), 169–178.
  • Hu, W. and McCartt, A. T. 2016. Effects of automated speed enforcement in Montgomery County, Maryland, on vehicle speeds, public opinion, and crashes. Traffic Injury Prevention, 17(sup1), 53–58.
  • Ilgaz, A. and Saltan, M. (2017). Ortalama hız tespit sistemi ve yol güvenliği etkileri üzerine bir literatür taraması, Mühendislik Bilimleri ve Tasarım Dergisi, 5(3), 457–472.
  • Insurance Institute for Highway Safety 2016. Fatality Facts: Yearly Update, 2014. Arlington, VA, USA.
  • ISBAK 2019. Akıllı ulaşım sistemleri elektronik denetleme sistemi. [Erişim Tarihi: 20 Ocak 2019], http://isbak.istanbul/akilli-ulasim-sistemleri/elektronik-denetleme-sistemi/hiz-koridor-ihlal-tespit-sistemi/.
  • ISSD 2019. Koridor Hızı İhlal Tespit Sistemi, [Erişim Tarihi: 20 Ocak 2019]. http://www.issd.com.tr/tr/18924/Koridor-Hizi-Ihlal-Tespit-Sistemi.
  • Kapsch, 2010. Section Speed Enforcement: for road safety. [Access Date: 20 January 2019]. https://www.kapsch.net/ktc/downloads/ brochures/Kapsch-KTC-DS-Section_Speed_Enforc ement-EN-WEB?lang=en-US.
  • Kistler 2019. Sensor technology. [Access Date: 20 January 2019]. https://www.kistler.com/en/applications/sensor-technology/weigh-in-motion/.
  • Lynch, M., (2010). Forward design study: introduction of point to point speed cameras in the act. AECOM Australia, Canberra.
  • Lynch, M., White, M. and Napier, R. (2011). Investigation into the use of point-to-point speed cameras: NZ Transport Agency Research Report 465
  • Meriç, E. B. (2018). Akıllı ulaşım sistemleri (AUS) ve kalkınma ajansları. In International Conference on Intelligent Transportation Systems (BANU-ITSC’18), Bandırma, p.21.
  • Montella, A., Aria, M., D’Ambrosio, A., Galante, F., Mauriello, F. and Pernetti, M., 2010. Perceptual measures to influence operating speeds and reduce crashes at rural intersections: driving simulator experiment. Transport. Res. Rec., 2149(2010), 11–20.
  • Montella, A., Imbriani, L.L., Marzano, V. and Mauriello, F. 2015. Effects on speed and safety of point-to-point speed enforcement systems: evaluation on the urban motorway A56 Tangenziale di Napoli. Accid. Anal. Prev., 75 (2015), 164–178.
  • Montella, A., Persaud, B., D’Apuzzo, M. and Imbriani, L.L. 2012. Safety evaluation of an automated section speed enforcement system. Transport. Res. Rec., 2281(2012), 16–25.
  • Moxa, 2019. Intelligent transportation. [Access Date: 20 January 2019]. https://www.moxa.com/en/solutions/industry-focus/intelligent-transportation.
  • Ng, C. F. and Small, K. A. 2012. Tradeoffs among free-flow speed, capacity, cost, and environmental footprint in highway design. Transportation, 39(6), 1259–1280.
  • Persaud, B. and Lyon, C. 2007. Empirical bayes before–after studies: lessons learned from two decades of experience and future directions. Accid. Anal. Prev. 39(2007), 546–555.
  • Platar 2019. Trafik elektronik denetim sistemi. [Erişim Tarihi: 20 Ocak 2019]. http://www.platar.com.tr/tedes/. Soole, D.W., Watson, B.C. and Fleiter, J.J., 2012. Point-to-Point Speed Enforcement. Austroads Report AP-R415-12, Sydney.
  • Soole, D.W., Watson, B.C. and Fleiter, J.J., 2013. Effects of average speed enforcement on speed compliance and crashes: a review of the literature. Accid. Anal. Prev., 54(2013), 46–56.
  • Stefan, C., 2006. Section Control – Automatic Speed Enforcement in the Kaisermühlen Tunnel (Vienna, A22 Motorway). Austrian Road Safety Board (KvF), Vienna.
  • Taç, Ş. G. 2018. Karayolu ulaşımında meydana gelen trafik kazalarının önlenmesinde akıllı ulaşım sistemlerinin etkisi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 1(2), 12-22.
  • Tedesbilgi 2019. Hız koridoru. [Erişim Tarihi: 20 Ocak 2019]. http://www.tedesbilgi.com/cozumlerimiz/hiz-koridoru/.
  • Traffic Data Systems (TDS) 2019. Average speed enforcement, [Access Date: 20 January 2019], https://www.traffic-data-systems.net/.
  • Ünal, A., Aydin, M.M. ve Saplıoğlu, M. 2018. Türk sürücülerin facebook sosyal paylaşım sitesini trafik bilgilendirme amacıyla kullanımı üzerine bir araştırma. Mühendislik Bilimleri ve Tasarımı Dergisi, 6(2), 354-364.
  • Vaitkus, A., Čygas, D., Jasiūnienė, V., Jateikienė, L., Andriejauskas, T., Skrodenis, D. and Ratkevičiūtė, K. 2017. Traffic calming measures: an evaluation of the effect on driving speed. Promet-Traffic&Transportation, 29(3), 275-285.
  • Vendeka 2019. Akıllı ulaşım sistemleri, [Erişim Tarihi: 20 Ocak 2019], http://www.vendeka.com.tr/en/oursolutions/42-its-akll-ulam-sist.
  • WHO 2018. Global status report on road safety 2018. [Access Date: 20 January 2019], https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/.
  • Zainuddin, N. I., Adnan, M. A. and Md Diah, J. 2013. Optimization of speed hump geometric design: Case study on residential streets in Malaysia. Journal of Transportation Engineering, 140(3), 05013002.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Metin Mutlu Aydın 0000-0001-9470-716X

Sevil Köfteci 0000-0002-5096-2545

Publication Date January 15, 2020
Submission Date March 23, 2019
Acceptance Date October 22, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Aydın, M. M., & Köfteci, S. (2020). Koridor Ortalama Hız İhlal Tespit Sistemlerinin (KOHİTS) Tasarımdan İşletmeye Genel Yapısı ve Çalışma Prensibi Üzerine Bir Araştırma: Toprakkale Örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 109-121. https://doi.org/10.17714/gumusfenbil.543769