Research Article
BibTex RIS Cite

GEANT4 Kodunu Kullanarak Gama ve Nötron Radyasyonu için Koruyucu Yeni Laterit Tuğla Örneklerinin Geliştirilmesi ve Üretilmesi

Year 2020, Volume: 10 Issue: 1, 1 - 6, 15.01.2020
https://doi.org/10.17714/gumusfenbil.571726

Abstract



Bu çalışmada, radyasyon zırhlamak için farlı yüzdelerde [silikon dioksit, krom oksit, alüminyum oksit, hematit, bizmut oksit, mangan oksit, baryum titanat oksit, titanyum oksit kalsiyum oksit gibi malzemeler içeren yüksek performanslı yeni tip tuğla numuneleri tasarlandı ve üretildi. Toplam makroskobik tesir kesit, ortalama serbest yol ve transmisyon sayıları gibi hızlı nötron zırhlama parametreleri, Monte Carlo Simulation Geant4 kodu kullanılarak hesaplandı. Nötron soğurma deneyleri 4.5 MeV enerji 241Am-Be hızlı nötron kaynağı ve BF3 gazlı nötron dedektörü kullanılarak yapıldı. Yeni tuğla örneklerinin radyasyon kalkanı kapasitesini belirlemek için elde edilen sonuçlar, parafin ve geleneksel beton ile karşılaştırıldı. Gama radyasyonu için kütle zayıflatma katsayısı ve yarı değer kalınlığı (HVL) gibi bazı etkileşim parametreleri WinXCom yazılımı kullanılarak hesaplandı, sonuçlar geleneksel ve basalt ağır beton ile karşılaştırıldı. Yeni tip tuğla numunelerinin hem nötron hem de gama radyasyonu için iyi zırhlama kapasitesi gösterdiği tespit edildi. Bu yeni tip tuğla numunelerinin, nükleer tıpta, radyoaktif atıkların depolanmasında ve nükleer enerji santrallerinde zırhlama malzemesi olarak kullanılabileceği belirlendi.



References

  • Agostinelli, S. et al., 2003. Geant4 simulation toolkit Nuclear Instruments and Methods in Physics Research A. 506, 250–303.
  • Awadallah M.I. and M. M. A. Imran., 2007. “Experimental investigation of 𝛾-ray attenuation in Jordanian building materials using Science and Technology of Nuclear Installations 5 HPGe-spectrometer,” Journal of Environmental Radioactivity, 94, 129–136.
  • Berger, M. J., Hubbell, J. H. 1987. XCOM: Photon Cross Sections Database, NBSIR.
  • Gerward, G., L. Guilbert., Jensen, N., Leyring, K.B. H., 2004. WinXCom—a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71-653.
  • Harjinder S. M., Gurdarshan S. B., Kulwinder S. M., Gurmel S. M., 2016. Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding, Nuclear Engineering and Technology, 48, 1230-1236.
  • Kharitonov, V.I., 2002. Radiation shielding bricks from metallurgical products, Industrial Ceramics, 22, 169–174.
  • Murray, R. L., Holbert, K. E., 2014. Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, 7th ed., Elsevier Butterworth-Heinemann.
  • Madbouly, A. M., Atta, E. R. 2016. Comparative Study between Lead Oxide and Lead Nitrate Polymer as Gamma-Radiation Shielding Materials. Journal of Environmental Protection 7, 268-276.
  • Neville, A.M., 1989. Properties of Concrete. ELBS.
  • Ott K. O., W A., 1989. Bezella Introductory Nuclear Reactor Statics. American Nuclear Society, Revised edition ISBN: 0 894, 48033-2.
  • Singh, K.J., Singh, N., Kaundal, R.S., Singh, K., 2008. Gamma-ray shielding and structural properties of PbO-SiO2 glasses. Nuclear Instruments and Methods in Physics Research B 266, 944-948.
  • Trends in Brick Plant Operations (TBPO)., 1992. The American Ceramic Society Bulletin. pp. 69-74.
  • United States Nuclear Regulatory Commission (US NRC), 2017. Uses of Radiation.
  • Van der Graaf, E. R. J. Limburg, R. L. Koomans, and M. Tijs., 2011. “Monte Carlo based calibration of scintillation detectors for laboratory and in situ gamma ray measurements,” Journal of Environmental Radioactivity, 102, 270–282.
  • Wandschneider, R.; Pick, R., 1982. Ver Concrete, Masonry, Screed and Plaster, Radiation Protection Techniques Concrete Information Verlag, 22, 47-50.

Developed and Produced New Laterite Refractory Brick Samples Protective for Gamma and Neutron Radiation Using GEANT4 Code

Year 2020, Volume: 10 Issue: 1, 1 - 6, 15.01.2020
https://doi.org/10.17714/gumusfenbil.571726

Abstract

In this study, high performance for radiation shielding, new type brick samples have been designed and produced, these  containing in different percentages materials such as  [silicon dioxide, chromium oxide, aluminium oxide, hematite, bismuth oxide, manganese oxide, barium titanate oxide, titanium oxide calcium oxide, nickel oxide, zirconium oxide, lead oxide)]. Fast neutron shielding parameters, such as total macroscopic cross section effect, mean free path and transmission number have been calculated by using Monte Carlo Simulation Geant4 code. Neutron absorbed dose experiments have been carried out by using 4.5 MeV energy 241Am-Be fast neutron source and BF3 gas neutron detector. The obtained results have been compared with paraffin and conventional concrete, to determine the radiation shielding capacity of new brick samples. Some interaction parameters for gamma radiation, such as the mass attenuation coefficient and half-value layer (HVL) have been calculated by using WinXCom software, the results have been compared with conventional and basalt heavy concrete. It is found that, the new type brick samples show good shielding capacity for both neutron and gamma radiation. These new type brick samples can use has been determined for shielding material, in nuclear medicine, in the storage of radioactive waste and nuclear power plants.

References

  • Agostinelli, S. et al., 2003. Geant4 simulation toolkit Nuclear Instruments and Methods in Physics Research A. 506, 250–303.
  • Awadallah M.I. and M. M. A. Imran., 2007. “Experimental investigation of 𝛾-ray attenuation in Jordanian building materials using Science and Technology of Nuclear Installations 5 HPGe-spectrometer,” Journal of Environmental Radioactivity, 94, 129–136.
  • Berger, M. J., Hubbell, J. H. 1987. XCOM: Photon Cross Sections Database, NBSIR.
  • Gerward, G., L. Guilbert., Jensen, N., Leyring, K.B. H., 2004. WinXCom—a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71-653.
  • Harjinder S. M., Gurdarshan S. B., Kulwinder S. M., Gurmel S. M., 2016. Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding, Nuclear Engineering and Technology, 48, 1230-1236.
  • Kharitonov, V.I., 2002. Radiation shielding bricks from metallurgical products, Industrial Ceramics, 22, 169–174.
  • Murray, R. L., Holbert, K. E., 2014. Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, 7th ed., Elsevier Butterworth-Heinemann.
  • Madbouly, A. M., Atta, E. R. 2016. Comparative Study between Lead Oxide and Lead Nitrate Polymer as Gamma-Radiation Shielding Materials. Journal of Environmental Protection 7, 268-276.
  • Neville, A.M., 1989. Properties of Concrete. ELBS.
  • Ott K. O., W A., 1989. Bezella Introductory Nuclear Reactor Statics. American Nuclear Society, Revised edition ISBN: 0 894, 48033-2.
  • Singh, K.J., Singh, N., Kaundal, R.S., Singh, K., 2008. Gamma-ray shielding and structural properties of PbO-SiO2 glasses. Nuclear Instruments and Methods in Physics Research B 266, 944-948.
  • Trends in Brick Plant Operations (TBPO)., 1992. The American Ceramic Society Bulletin. pp. 69-74.
  • United States Nuclear Regulatory Commission (US NRC), 2017. Uses of Radiation.
  • Van der Graaf, E. R. J. Limburg, R. L. Koomans, and M. Tijs., 2011. “Monte Carlo based calibration of scintillation detectors for laboratory and in situ gamma ray measurements,” Journal of Environmental Radioactivity, 102, 270–282.
  • Wandschneider, R.; Pick, R., 1982. Ver Concrete, Masonry, Screed and Plaster, Radiation Protection Techniques Concrete Information Verlag, 22, 47-50.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bünyamin Aygün 0000-0002-9384-1540

Publication Date January 15, 2020
Submission Date May 29, 2019
Acceptance Date September 23, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Aygün, B. (2020). Developed and Produced New Laterite Refractory Brick Samples Protective for Gamma and Neutron Radiation Using GEANT4 Code. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 1-6. https://doi.org/10.17714/gumusfenbil.571726