Research Article
BibTex RIS Cite

A numerical aerodynamic analysis of a vertical axis wind turbine in a wind tunnel

Year 2025, Volume: 15 Issue: 2, 590 - 607, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1545187

Abstract

Within the framework of the global attempt towards reducing greenhouse gases and providing sustainable renewable energy to meet the growing energy demand, the research on the development of new renewable energy systems as well as on improving the efficiency of existing systems has gained great momentum over the recent decades. The applications and use of wind energy, a clean energy known and used since ancient times, have evolved in recent years. On the focus of several studies, either experimental or numerical, was developing novel wind turbines that offer greater efficiency. This research, in this respect, presents a numerical aerodynamic analysis of a helical blade vertical-axis wind turbine (VAWT) modeled in a wind tunnel in SOLIDWORKS and analyzed for its aerodynamic performance in ANSYS Fluent using the SST k-ω method. The stationary and rotary parts were meshed separately, and velocity and pressure contours were obtained and examined. The results of the numerical model suggested better performance of the hybrid helical blade turbine compared to Savonius or Darrieus turbines. The aerodynamic performance of a hybrid Savonius-Darrieus VAWT using numerical simulations in a three-dimensional wind tunnel revealed that the proposed design achieved a maximum torque of 2.05 Nm at a tip speed ratio (TSR) of 2.0, with a power coefficient (Cp) of 0.42, representing a 10% improvement over traditional Darrieus turbines. The hybrid design combines the high starting torque of the Savonius turbine with the efficiency of the Darrieus turbine, demonstrating superior performance in low-wind conditions. Numerical results were validated against experimental data from Castelli et al. (2011), showing good agreement with a maximum deviation of 10%. The findings highlight the potential of hybrid VAWTs for urban and low-wind environments, offering a sustainable and efficient energy solution.

References

  • Abdelsattar, M., Hafez, W. A., Elbaset, A. A., Kamel, S., Kasem Alaboudy, A. H., Khan, B. Z., & Zaki Diab, A. A. (2022). Voltage Stability Improvement of an Egyptian Power Grid‐based Wind Energy System Using STATCOM. Wind Energy. https://doi.org/10.1002/we.2716
  • Altan, B. D., & Atılgan, M. (2008). An experimental and numerical study on the improvement of the performance of Savonius wind rotor. Energy Conversion and Management, 49(12), 3425–3432. https://doi.org/10.1016/j.enconman.2008.08.021
  • Arab Golarche, A., Moghiman, M., & MalAbad, S. M. J. (2016). Numerical simulation of darrieus wind turbine Using 6DOF model to consider the effect of inertia and the fluid-solid interaction. Modares Mechanical Engineering, 15(12), 143–152.
  • Bakkari, M. (2023). A Review of Wind Energy Potential in Morocco: New Challenges and Perspectives. Wind Engineering. https://doi.org/10.1177/0309524x231200582
  • Baqersad, J., Niezrecki, C., & Avitabile, P. (2015). Numerical and Experimental Analysis of the Boundary Conditions Effects on the Dynamics of Wind Turbines. Wind Engineering. https://doi.org/10.1260/0309-524x.39.4.437
  • Batista, N. C., Melício, R., Matias, J., & S. Catalào, J. P. (2024). Self-Start Performance Evaluation in Darrieus-Type Vertical Axis Wind Turbines: Methodology and Computational Tool Applied to Symmetrical Airfoils. Renewable Energy and Power Quality Journal. https://doi.org/10.24084/repqj09.302
  • Bortolotti, P., Ivanov, H., Johnson, N., Barter, G., Veers, P. S., & Namura, N. (2021). Challenges, Opportunities, and a Research Roadmap for Downwind Wind Turbines. Wind Energy. https://doi.org/10.1002/we.2676
  • Brandao, F. L., Bhatt, M., & Mahesh, K. (2020). Numerical study of cavitation regimes in flow over a circular cylinder. Journal of Fluid Mechanics, 885. https://doi.org/10.1017/jfm.2019.971
  • Brusca, S., Lanzafame, R., & Messina, M. (2014). Design of a Vertical-Axis Wind Turbine: How the Aspect Ratio Affects the Turbine’s Performance. International Journal of Energy and Environmental Engineering. https://doi.org/10.1007/s40095-014-0129-x
  • Buckney, N., Green, S., & Pirrera, A. (2012). On the Structural Topology of Wind Turbine Blades. Wind Energy. https://doi.org/10.1002/we.1504
  • Capps, S. B., Hall, A., & Hughes, M. (2012). Sensitivity of Southern California Wind Energy to Turbine Characteristics. Wind Energy. https://doi.org/10.1002/we.1570
  • Castellani, F., Astolfi, D., Peppoloni, M., Natili, F., Buttà, D., & Hirschl, A. (2019). Experimental Vibration Analysis of a Small Scale Vertical Wind Energy System for Residential Use. Machines, 7(2), 35. https://doi.org/10.3390/machines7020035
  • Castelli, M. R., Englaro, A., & Benini, E. (2011). The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy, 36(8), 4919–4934.
  • Chabane, F., Arif, A., & Barkat, M. A. (2022). Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine With Effect Number of Blades. Dyna. https://doi.org/10.15446/dyna.v89n220.94343
  • Chamorro, L. P., Tobin, N., A. Arndt, R. E., & Sotiropoulos, F. (2013). Variable‐sized Wind Turbines Are a Possibility for Wind Farm Optimization. Wind Energy. https://doi.org/10.1002/we.1646
  • Chatterjee, T., & Peet, Y. (2018). Exploring the Benefits of Vertically Staggered Wind Farms: Understanding the Power Generation Mechanisms of Turbines Operating at Different Scales. Wind Energy. https://doi.org/10.1002/we.2284
  • Dai, Y. M., Gardiner, N., & Lam, W.‑H. (2010). Cfd modeling strategy of a straight-bladed vertical axis marine current turbine. In The Twentieth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  • Dhunny, A. Z., Allam, Z., Lollchund, Dookhitram, K., & Rughooputh, S. (2019). A Decentralized Model of Wind Turbine Optimization. Wind Engineering. https://doi.org/10.1177/0309524x19849858
  • Erfort, G., Backström, T. W. von, & Venter, G. (2019). Reduction in the Torque Ripple of a Vertical Axis Wind Turbine Through Foil Pitching Optimization. Wind Engineering. https://doi.org/10.1177/0309524x19836711
  • Gebreel Abdalrahman, Mohamed A Daoud, William W Melek, Fue-Sang Lien, & Eugene Yee. (2019). Design and Implementation of an Intelligent Blade Pitch Control System and Stability Analysis for a Small Darrieus Vertical-Axis Wind Turbine. https://doi.org/10.13140/RG.2.2.35190.24642
  • Gupta, R., Das, R., & Sharma, K. (2006). Experimental study of a Savonius-Darrieus wind machine. In Proceedings of the International Conference on Renewable Energy for Developing Countries. University of Columbia.
  • Hameed, Z., Vatn, J., & Heggset, J. (2011). Challenges in the reliability and maintainability data collection for offshore wind turbines. Renewable Energy, 36(8), 2154–2165. https://doi.org/10.1016/j.renene.2011.01.008
  • Hossain, J., Sharma, D., Mishra, N. K., Ansari, M. Z., & Kishore, V. (2016). Re-Assessment of Wind Energy Potential With New Technology in India. Wind Engineering. https://doi.org/10.1177/0309524x16651176
  • Hu, Y., Wang, T., Jin, H., Cao, X [Xianfeng], & Zhang, C. (2017). Experimental Study on Aerodynamic Characteristics of Vertical-Axis Wind Turbine. International Journal of Smart Grid and Clean Energy. https://doi.org/10.12720/sgce.6.2.104-113
  • Huang, S., Shukla, A., Pekny, J. F., Venkatasubramanian, V., & Reklaitis, G. V. (2011). The Effects of Vehicle‐to‐grid Systems on Wind Power Integration. Wind Energy. https://doi.org/10.1002/we.520
  • Islam, M. (2008). Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils [PhD Thesis, University of Windsor, Ontario].
  • Islam, M., Ting, D. S.‑K., & Fartaj, A. (2008). Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4), 1087–1109.
  • Ji, X., & Schluter, J. (2011). Design and analysis of small-scale vertical axis wind turbine. In Renewable power generation [electronic resource]: 6 - 8 September 2011, Raddison Blu, Edinburgh, UK (P17-P17). IET. https://doi.org/10.1049/cp.2011.0214
  • Kadhim H. Suffer, R. Usubamatov, G. Quadir, & K. Ismail. (2014). Modeling and Numerical Simulation of a Vertical Axis Wind Turbine Having Cavity Vanes. In Fifth International Conference on Intelligent Systems, Modelling and Simulation (pp. 479–484).
  • Kanno, S., & Ikeda, H. (2017). Next-generation Energy Solutions Aimed at Symbiosis with the Global Environment : Hitachi Review. Hitachi Review, 66(5), 460–465. https://www.hitachihyoron.com/rev/archive/2017/r2017_05/R5-01/index.html
  • Khalaji, M. N., Aliihsan, K., & Kotcioglu, I. (2019). Investigation of numerical analysis velocity contours k-ε model of RNG, standard and realizable turbulence for different geometries. International Journal of Innovative Research and Reviews, 3(2), 29–34.
  • Khammas, F. A., Suffer, K. H., Usubamatov, R., & Mustaffa, M. T. (2015). Overview of Vertical Axis Wind Turbine (VAWT) Is One of the Wind Energy Application. Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/amm.793.388
  • Kumar, N., & Prakash, O. (2023). Wind Energy Potential and Its Current Status in India. Wind Engineering. https://doi.org/10.1177/0309524x231183373
  • Kyozuka, Y. (2008). An experimental study on the Darrieus-Savonius turbine for the tidal current power generation. Journal of Fluid Science and Technology, 3(3), 439–449.
  • Li, Z., Liu, M., Cao, X [Xin], Gao, M., Cheng, L., & Sun, H. (2022). Aerodynamic Performance Analysis and Power Generation Characteristics Experiment of Vertical Axis Wind Turbine. Engineering Reports. https://doi.org/10.1002/eng2.12500
  • Liu, F., Li, C., Xu, Y., Tang, G., & Xie, Y. (2020). A New Lower and Upper Bound Estimation Model Using Gradient Descend Training Method for Wind Speed Interval Prediction. Wind Energy. https://doi.org/10.1002/we.2574
  • Ma, S. (2024). Coal-Fired Power Plants Using Ammonia for Flexibility Enhancement Under Carbon Control Strategies: Status, Development, and Perspectives. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.3c05091
  • MacPhee, D., & Beyene, A. (2012). Recent Advances in Rotor Design of Vertical Axis Wind Turbines. Wind Engineering. https://doi.org/10.1260/0309-524x.36.6.647
  • Morgulis, N., & Seifert, A. (2015). Fluidic Flow Control Applied for Improved Performance of Darrieus Wind Turbines. Wind Energy. https://doi.org/10.1002/we.1938
  • Niziolek, A. M., Onel, O., Guzman, Y. A., & Floudas, C. A. (2016). Biomass-Based Production of Benzene, Toluene, and Xylenes via Methanol: Process Synthesis and Deterministic Global Optimization. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.6b00619
  • Pan, L., Zhu, Z., Shi, Z., & Wang, L. (2021). Modeling and Investigation of Blade Trailing Edge of Vertical Axis Offshore Wind Turbine. Sustainability. https://doi.org/10.3390/su131910905
  • Ponta, F., & Dutt, G. S. (2000). An improved vertical-axis water-current turbine incorporating a channelling device. Renewable Energy, 20(2), 223–241.
  • Porté-Agel, F., Bastankhah, M., & Shamsoddin, S. (2020). Wind-Turbine and Wind-Farm Flows: A Review. Boundary-Layer Meteorology, 174(1), 1–59. https://doi.org/10.1007/s10546-019-00473-0
  • Sankar, T. L., & Tiryakioğlu, M. (2008). Design and Power Characterization of a Novel Vertical Axis Wind Energy Conversion System (VAWECS). Wind Engineering. https://doi.org/10.1260/030952408787548884
  • Scott, R., Viggiano, B., Dib, T., Ali, N., Hölling, M., Peinke, J., & Cal, R. B. (2020). Wind Turbine Partial Wake Merging Description and Quantification. Wind Energy. https://doi.org/10.1002/we.2504
  • Shiono, M., Suzuki, K., & Kiho, S. (2002). Output characteristics of Darrieus water turbine with helical blades for tidal current generations. İn The twelfth international offshore and polar engineering conference. In Twelfth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  • Sokolov, P., Jin, J. Y., & Virk, M. S. (2018). Accreted Ice Mass Ratio (k‐factor) for Rotating Wind Turbine Blade Profile and Circular Cylinder. Wind Energy. https://doi.org/10.1002/we.2298
  • Sun, X., Chen, Y., Cao, Y., Wu, G., Zheng, Z. C., & Huang, D. (2016). Research on the Aerodynamic Characteristics of a Lift Drag Hybrid Vertical Axis Wind Turbine. Advances in Mechanical Engineering. https://doi.org/10.1177/1687814016629349
  • Takamatsu, Y. (1991). Experimental studies on a preferable blade profile for high efficiency and the blade characteristics of Darrieus-type cross-flow water turbines. JSME İnternational Journal. Ser, 34(2), 149–156.
  • Takao, M [M.] (2008). A straight-bladed vertical axis wind turbine with a directed guide vane row. Journal of Fluid Science and Technology, 3(3), 379–386.
  • Takao, M [Manabu], Kuma, H., Maeda, T., Kamada, Y., Oki, M., & Minoda, A. (2009). A straight-bladed vertical axis wind turbine with a directed guide vane row — Effect of guide vane geometry on the performance —. Journal of Thermal Science, 18(1), 54–57. https://doi.org/10.1007/s11630-009-0054-0
  • Takenouchi, K., & Furukawa, A. (2005). Self-starting characteristics of ducted Darrieus turbine for extra-low head power. In Proc. of Expo World Conf. on Wind Energy, Renewable Energy, Fuel Cell & Exhibition.
  • Tawi, K., Yaakob, O., & Sunanto, D. T. (2010). Computer simulation studies on the effect overlap ratio for savonius type vertical axis marine current turbine. International Journal of Engineering, 23(1), 79–88.
  • Tong, X. (2023). Research on Key Technologies of Large-Scale Wind-Solar Hybrid Grid Energy Storage Capacity Big Data Configuration Optimization. Wind Engineering. https://doi.org/10.1177/0309524x231188951
  • Toptaş, E., Bayrak, M. A., & Boz, T. (2020). Vertical Axis Hybrid Wind Turbine Design. Journal of Mechatronics and Artificial Intelligence in Engineering. https://doi.org/10.21595/jmai.2020.21508
  • Xie, S., & Archer, C. L. (2014). Self‐similarity and Turbulence Characteristics of Wind Turbine Wakes via Large‐eddy Simulation. Wind Energy. https://doi.org/10.1002/we.1792
  • Yan, P., Li, Y., Gao, Q., Lian, S., & Wu, Q. (2023). Design and Analysis of an Adaptive Dual-Drive Lift–Drag Composite Vertical-Axis Wind Turbine Generator. Energies. https://doi.org/10.3390/en16227529
  • Zhang, J., Wang, C., Liu, W., Zhu, J., Yan, Y., & Zhao, H. (2023). Optimization of the Energy Capture Performance of the Lift-Drag Hybrid Vertical-Axis Wind Turbine Based on the Taguchi Experimental Method and CFD Simulation. Sustainability. https://doi.org/10.3390/su15118848

Dikey eksenli bir rüzgar türbininin rüzgar tünelinde sayısal aerodinamik analizi

Year 2025, Volume: 15 Issue: 2, 590 - 607, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1545187

Abstract

Sera gazlarını azaltma ve artan enerji talebini karşılamak için sürdürülebilir yenilenebilir enerji sağlama yönündeki küresel çabalar çerçevesinde, yeni yenilenebilir enerji sistemlerinin geliştirilmesi ve mevcut sistemlerin verimliliğinin artırılması üzerine yapılan araştırmalar son yıllarda büyük bir ivme kazanmıştır. Antik çağlardan beri bilinen ve kullanılan temiz bir enerji olan rüzgar enerjisinin uygulamaları ve kullanımı da son yıllarda gelişmiştir. Deneysel veya sayısal olmak üzere birçok çalışmanın odak noktasında, daha fazla verimlilik sunan yeni rüzgar türbinleri geliştirmek yer almıştır. Bu araştırma, bu bağlamda, SOLIDWORKS’te bir rüzgar tünelinde modellenen ve k-ω yöntemi kullanılarak ANSYS Fluent’te aerodinamik performansı analiz edilen helisel kanatlı dikey eksenli rotorlu rüzgar türbininin (VAWT) sayısal aerodinamik analizini sunmaktadır. Sabit ve döner parçalar ayrı ayrı ağa bağlanarak hız ve basınç konturları elde edilmiş ve incelenmiştir. Sayısal modelin sonuçları, hibrit helisel kanatlı türbinin Savonius veya Darrieus türbinlerine kıyasla daha iyi performans gösterdiğini ortaya koymuştur. Üç boyutlu bir rüzgar tünelinde sayısal simülasyonlar kullanılarak hibrit Savonius-Darrieus VAWT'nin aerodinamik performansı, önerilen tasarımın TSR 2 değerinde ve 0,42 güç katsayısında 2,05 Nm maksimum torka ulaştığını göstermiştir; bu da geleneksel Darrieus türbinlerine göre %10'luk bir iyileştirme sağlandığını göstermektedir. Hibrit tasarım, Savonius türbininin yüksek başlangıç torkunu Darrieus türbininin verimliliğiyle birleştirerek düşük rüzgar koşullarında üstün performans gösteriyor. Sayısal sonuçlar, literatürde elde edilen deneysel verilerle doğrulanmış ve %10'luk maksimum sapma ile iyi bir uyum göstermiştir. Bulgular, hibrit VAWT'lerin kentsel ve düşük rüzgarlı ortamlar için potansiyelini vurgulayarak sürdürülebilir ve verimli bir enerji çözümü sunduğunu göstermektedir.

References

  • Abdelsattar, M., Hafez, W. A., Elbaset, A. A., Kamel, S., Kasem Alaboudy, A. H., Khan, B. Z., & Zaki Diab, A. A. (2022). Voltage Stability Improvement of an Egyptian Power Grid‐based Wind Energy System Using STATCOM. Wind Energy. https://doi.org/10.1002/we.2716
  • Altan, B. D., & Atılgan, M. (2008). An experimental and numerical study on the improvement of the performance of Savonius wind rotor. Energy Conversion and Management, 49(12), 3425–3432. https://doi.org/10.1016/j.enconman.2008.08.021
  • Arab Golarche, A., Moghiman, M., & MalAbad, S. M. J. (2016). Numerical simulation of darrieus wind turbine Using 6DOF model to consider the effect of inertia and the fluid-solid interaction. Modares Mechanical Engineering, 15(12), 143–152.
  • Bakkari, M. (2023). A Review of Wind Energy Potential in Morocco: New Challenges and Perspectives. Wind Engineering. https://doi.org/10.1177/0309524x231200582
  • Baqersad, J., Niezrecki, C., & Avitabile, P. (2015). Numerical and Experimental Analysis of the Boundary Conditions Effects on the Dynamics of Wind Turbines. Wind Engineering. https://doi.org/10.1260/0309-524x.39.4.437
  • Batista, N. C., Melício, R., Matias, J., & S. Catalào, J. P. (2024). Self-Start Performance Evaluation in Darrieus-Type Vertical Axis Wind Turbines: Methodology and Computational Tool Applied to Symmetrical Airfoils. Renewable Energy and Power Quality Journal. https://doi.org/10.24084/repqj09.302
  • Bortolotti, P., Ivanov, H., Johnson, N., Barter, G., Veers, P. S., & Namura, N. (2021). Challenges, Opportunities, and a Research Roadmap for Downwind Wind Turbines. Wind Energy. https://doi.org/10.1002/we.2676
  • Brandao, F. L., Bhatt, M., & Mahesh, K. (2020). Numerical study of cavitation regimes in flow over a circular cylinder. Journal of Fluid Mechanics, 885. https://doi.org/10.1017/jfm.2019.971
  • Brusca, S., Lanzafame, R., & Messina, M. (2014). Design of a Vertical-Axis Wind Turbine: How the Aspect Ratio Affects the Turbine’s Performance. International Journal of Energy and Environmental Engineering. https://doi.org/10.1007/s40095-014-0129-x
  • Buckney, N., Green, S., & Pirrera, A. (2012). On the Structural Topology of Wind Turbine Blades. Wind Energy. https://doi.org/10.1002/we.1504
  • Capps, S. B., Hall, A., & Hughes, M. (2012). Sensitivity of Southern California Wind Energy to Turbine Characteristics. Wind Energy. https://doi.org/10.1002/we.1570
  • Castellani, F., Astolfi, D., Peppoloni, M., Natili, F., Buttà, D., & Hirschl, A. (2019). Experimental Vibration Analysis of a Small Scale Vertical Wind Energy System for Residential Use. Machines, 7(2), 35. https://doi.org/10.3390/machines7020035
  • Castelli, M. R., Englaro, A., & Benini, E. (2011). The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy, 36(8), 4919–4934.
  • Chabane, F., Arif, A., & Barkat, M. A. (2022). Aerodynamic Shape Optimization of a Vertical-Axis Wind Turbine With Effect Number of Blades. Dyna. https://doi.org/10.15446/dyna.v89n220.94343
  • Chamorro, L. P., Tobin, N., A. Arndt, R. E., & Sotiropoulos, F. (2013). Variable‐sized Wind Turbines Are a Possibility for Wind Farm Optimization. Wind Energy. https://doi.org/10.1002/we.1646
  • Chatterjee, T., & Peet, Y. (2018). Exploring the Benefits of Vertically Staggered Wind Farms: Understanding the Power Generation Mechanisms of Turbines Operating at Different Scales. Wind Energy. https://doi.org/10.1002/we.2284
  • Dai, Y. M., Gardiner, N., & Lam, W.‑H. (2010). Cfd modeling strategy of a straight-bladed vertical axis marine current turbine. In The Twentieth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  • Dhunny, A. Z., Allam, Z., Lollchund, Dookhitram, K., & Rughooputh, S. (2019). A Decentralized Model of Wind Turbine Optimization. Wind Engineering. https://doi.org/10.1177/0309524x19849858
  • Erfort, G., Backström, T. W. von, & Venter, G. (2019). Reduction in the Torque Ripple of a Vertical Axis Wind Turbine Through Foil Pitching Optimization. Wind Engineering. https://doi.org/10.1177/0309524x19836711
  • Gebreel Abdalrahman, Mohamed A Daoud, William W Melek, Fue-Sang Lien, & Eugene Yee. (2019). Design and Implementation of an Intelligent Blade Pitch Control System and Stability Analysis for a Small Darrieus Vertical-Axis Wind Turbine. https://doi.org/10.13140/RG.2.2.35190.24642
  • Gupta, R., Das, R., & Sharma, K. (2006). Experimental study of a Savonius-Darrieus wind machine. In Proceedings of the International Conference on Renewable Energy for Developing Countries. University of Columbia.
  • Hameed, Z., Vatn, J., & Heggset, J. (2011). Challenges in the reliability and maintainability data collection for offshore wind turbines. Renewable Energy, 36(8), 2154–2165. https://doi.org/10.1016/j.renene.2011.01.008
  • Hossain, J., Sharma, D., Mishra, N. K., Ansari, M. Z., & Kishore, V. (2016). Re-Assessment of Wind Energy Potential With New Technology in India. Wind Engineering. https://doi.org/10.1177/0309524x16651176
  • Hu, Y., Wang, T., Jin, H., Cao, X [Xianfeng], & Zhang, C. (2017). Experimental Study on Aerodynamic Characteristics of Vertical-Axis Wind Turbine. International Journal of Smart Grid and Clean Energy. https://doi.org/10.12720/sgce.6.2.104-113
  • Huang, S., Shukla, A., Pekny, J. F., Venkatasubramanian, V., & Reklaitis, G. V. (2011). The Effects of Vehicle‐to‐grid Systems on Wind Power Integration. Wind Energy. https://doi.org/10.1002/we.520
  • Islam, M. (2008). Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils [PhD Thesis, University of Windsor, Ontario].
  • Islam, M., Ting, D. S.‑K., & Fartaj, A. (2008). Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4), 1087–1109.
  • Ji, X., & Schluter, J. (2011). Design and analysis of small-scale vertical axis wind turbine. In Renewable power generation [electronic resource]: 6 - 8 September 2011, Raddison Blu, Edinburgh, UK (P17-P17). IET. https://doi.org/10.1049/cp.2011.0214
  • Kadhim H. Suffer, R. Usubamatov, G. Quadir, & K. Ismail. (2014). Modeling and Numerical Simulation of a Vertical Axis Wind Turbine Having Cavity Vanes. In Fifth International Conference on Intelligent Systems, Modelling and Simulation (pp. 479–484).
  • Kanno, S., & Ikeda, H. (2017). Next-generation Energy Solutions Aimed at Symbiosis with the Global Environment : Hitachi Review. Hitachi Review, 66(5), 460–465. https://www.hitachihyoron.com/rev/archive/2017/r2017_05/R5-01/index.html
  • Khalaji, M. N., Aliihsan, K., & Kotcioglu, I. (2019). Investigation of numerical analysis velocity contours k-ε model of RNG, standard and realizable turbulence for different geometries. International Journal of Innovative Research and Reviews, 3(2), 29–34.
  • Khammas, F. A., Suffer, K. H., Usubamatov, R., & Mustaffa, M. T. (2015). Overview of Vertical Axis Wind Turbine (VAWT) Is One of the Wind Energy Application. Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/amm.793.388
  • Kumar, N., & Prakash, O. (2023). Wind Energy Potential and Its Current Status in India. Wind Engineering. https://doi.org/10.1177/0309524x231183373
  • Kyozuka, Y. (2008). An experimental study on the Darrieus-Savonius turbine for the tidal current power generation. Journal of Fluid Science and Technology, 3(3), 439–449.
  • Li, Z., Liu, M., Cao, X [Xin], Gao, M., Cheng, L., & Sun, H. (2022). Aerodynamic Performance Analysis and Power Generation Characteristics Experiment of Vertical Axis Wind Turbine. Engineering Reports. https://doi.org/10.1002/eng2.12500
  • Liu, F., Li, C., Xu, Y., Tang, G., & Xie, Y. (2020). A New Lower and Upper Bound Estimation Model Using Gradient Descend Training Method for Wind Speed Interval Prediction. Wind Energy. https://doi.org/10.1002/we.2574
  • Ma, S. (2024). Coal-Fired Power Plants Using Ammonia for Flexibility Enhancement Under Carbon Control Strategies: Status, Development, and Perspectives. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.3c05091
  • MacPhee, D., & Beyene, A. (2012). Recent Advances in Rotor Design of Vertical Axis Wind Turbines. Wind Engineering. https://doi.org/10.1260/0309-524x.36.6.647
  • Morgulis, N., & Seifert, A. (2015). Fluidic Flow Control Applied for Improved Performance of Darrieus Wind Turbines. Wind Energy. https://doi.org/10.1002/we.1938
  • Niziolek, A. M., Onel, O., Guzman, Y. A., & Floudas, C. A. (2016). Biomass-Based Production of Benzene, Toluene, and Xylenes via Methanol: Process Synthesis and Deterministic Global Optimization. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.6b00619
  • Pan, L., Zhu, Z., Shi, Z., & Wang, L. (2021). Modeling and Investigation of Blade Trailing Edge of Vertical Axis Offshore Wind Turbine. Sustainability. https://doi.org/10.3390/su131910905
  • Ponta, F., & Dutt, G. S. (2000). An improved vertical-axis water-current turbine incorporating a channelling device. Renewable Energy, 20(2), 223–241.
  • Porté-Agel, F., Bastankhah, M., & Shamsoddin, S. (2020). Wind-Turbine and Wind-Farm Flows: A Review. Boundary-Layer Meteorology, 174(1), 1–59. https://doi.org/10.1007/s10546-019-00473-0
  • Sankar, T. L., & Tiryakioğlu, M. (2008). Design and Power Characterization of a Novel Vertical Axis Wind Energy Conversion System (VAWECS). Wind Engineering. https://doi.org/10.1260/030952408787548884
  • Scott, R., Viggiano, B., Dib, T., Ali, N., Hölling, M., Peinke, J., & Cal, R. B. (2020). Wind Turbine Partial Wake Merging Description and Quantification. Wind Energy. https://doi.org/10.1002/we.2504
  • Shiono, M., Suzuki, K., & Kiho, S. (2002). Output characteristics of Darrieus water turbine with helical blades for tidal current generations. İn The twelfth international offshore and polar engineering conference. In Twelfth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  • Sokolov, P., Jin, J. Y., & Virk, M. S. (2018). Accreted Ice Mass Ratio (k‐factor) for Rotating Wind Turbine Blade Profile and Circular Cylinder. Wind Energy. https://doi.org/10.1002/we.2298
  • Sun, X., Chen, Y., Cao, Y., Wu, G., Zheng, Z. C., & Huang, D. (2016). Research on the Aerodynamic Characteristics of a Lift Drag Hybrid Vertical Axis Wind Turbine. Advances in Mechanical Engineering. https://doi.org/10.1177/1687814016629349
  • Takamatsu, Y. (1991). Experimental studies on a preferable blade profile for high efficiency and the blade characteristics of Darrieus-type cross-flow water turbines. JSME İnternational Journal. Ser, 34(2), 149–156.
  • Takao, M [M.] (2008). A straight-bladed vertical axis wind turbine with a directed guide vane row. Journal of Fluid Science and Technology, 3(3), 379–386.
  • Takao, M [Manabu], Kuma, H., Maeda, T., Kamada, Y., Oki, M., & Minoda, A. (2009). A straight-bladed vertical axis wind turbine with a directed guide vane row — Effect of guide vane geometry on the performance —. Journal of Thermal Science, 18(1), 54–57. https://doi.org/10.1007/s11630-009-0054-0
  • Takenouchi, K., & Furukawa, A. (2005). Self-starting characteristics of ducted Darrieus turbine for extra-low head power. In Proc. of Expo World Conf. on Wind Energy, Renewable Energy, Fuel Cell & Exhibition.
  • Tawi, K., Yaakob, O., & Sunanto, D. T. (2010). Computer simulation studies on the effect overlap ratio for savonius type vertical axis marine current turbine. International Journal of Engineering, 23(1), 79–88.
  • Tong, X. (2023). Research on Key Technologies of Large-Scale Wind-Solar Hybrid Grid Energy Storage Capacity Big Data Configuration Optimization. Wind Engineering. https://doi.org/10.1177/0309524x231188951
  • Toptaş, E., Bayrak, M. A., & Boz, T. (2020). Vertical Axis Hybrid Wind Turbine Design. Journal of Mechatronics and Artificial Intelligence in Engineering. https://doi.org/10.21595/jmai.2020.21508
  • Xie, S., & Archer, C. L. (2014). Self‐similarity and Turbulence Characteristics of Wind Turbine Wakes via Large‐eddy Simulation. Wind Energy. https://doi.org/10.1002/we.1792
  • Yan, P., Li, Y., Gao, Q., Lian, S., & Wu, Q. (2023). Design and Analysis of an Adaptive Dual-Drive Lift–Drag Composite Vertical-Axis Wind Turbine Generator. Energies. https://doi.org/10.3390/en16227529
  • Zhang, J., Wang, C., Liu, W., Zhu, J., Yan, Y., & Zhao, H. (2023). Optimization of the Energy Capture Performance of the Lift-Drag Hybrid Vertical-Axis Wind Turbine Based on the Taguchi Experimental Method and CFD Simulation. Sustainability. https://doi.org/10.3390/su15118848
There are 58 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Articles
Authors

Muhammet Kaan Yeşilyurt 0000-0002-7207-1743

Mansur Mustafaoğlu (nasiri Khalaji) 0000-0003-2976-0196

Publication Date June 15, 2025
Submission Date September 7, 2024
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Yeşilyurt, M. K., & Mustafaoğlu (nasiri Khalaji), M. (2025). A numerical aerodynamic analysis of a vertical axis wind turbine in a wind tunnel. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(2), 590-607. https://doi.org/10.17714/gumusfenbil.1545187