Research Article
BibTex RIS Cite

DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları

Year 2019, Volume: 11 Issue: 1, 1 - 23, 01.01.2019

Abstract

Küresel ısınma sebebiyle tarım alanlarının ve meraların azalması ve iklim kuşaklarının değişmesi, birçok soruna gebe olmanın yanında ülkelerin tarım ve hayvancılık faaliyetlerini de olumsuz yönde etkilemektedir.

Değişen iklim koşullarında başta et ve süt olmak üzere besin ve ekonomik ihtiyacın verimli şekilde sağlanabilmesinde çiftlik hayvanları yetiştiriciliğinin önemi büyüktür. Çünkü bu hayvanlar kaliteli yemi yüksek kalitedeki hayvansal proteine çevirebilmekte ve geniş bir iklim yelpazesinde adaptasyon gösterebilmektedir.

Isı stresinin verim üzerindeki etkileri yaban hayvanlarının yanı sıra evcil çiftlik hayvanlarından özellikle ruminantlarda gözlemlenmektedir. Isı stresine karşı oluşan fizyolojik yanıtla ilgili birçok çalışma olmasına karşın hücresel ve genetik seviyedeki bilgiler henüz yeterli değildir. Hücresel yanıtın en önemli elemanlarından biri de Isı Şok Proteini (HSP) genleridir.

Bu çalışmada çiftlik hayvanlarında ısı stresinin genel özelliklerinden, ısı stresine karşı yanıt ve adaptasyonlardan ve hücresel yanıtın önemli elemanlarından biri olan HSPs (Heat Shock Proteins, Isı Stresi Proteinleri) ile ilgili çalışmalardan bahsedilecektir.

References

  • 1. Hallam, A.,Wignall, P. B. ( Ed) (1997) Thestudy of massextinction. MassExtinctionsandTheirAftermath (s.1-23) ,Oxford, OUP
  • 2. Barnoski, D, A.,Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, B.T, Marshall, C., McGuire, J,L., Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A. ( 2011) Has theEarth‟sSixthMassExtinctionAlreadyArrived?. Nature, 471(7336), 51-57, doi:10.1038/nature09678
  • 3. Ceballos, Gerardo; Ehrlich, Paul R. (2018). "The misunderstood sixth mass extinction". Science. 360 (6393): 1080–1081. DOI: 10.1126/science.aau0191
  • 4. 4. Ripple, W.J., Wolf, C., Newsome, T.M., Galetti, M., Alamgir, M., Crist, E., Mahmoud, M.I., Laurance, W.F. (2017). World Scientists' Warning to Humanity: A Second Notice. BioScience. 67 (12): 1026–1028 doi: 10.1093/biosci/bix125
  • 5. IPCC, 2013: ClimateChange 2013: ThePhysicalScienceBasis. Contribution of WorkingGroup I totheFifthAssessment Report of theIntergovernmental Panel on ClimateChange [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bexand P.M. Midgley (eds.)]. Cambridge UniversityPress, Cambridge, United Kingdomand New York, USA
  • 6. Letcher, T. M. (2019) Why do we have global warming?. Letcher, T. M. (Ed), Managing Global Warming An Interface of Technology and Human Issues, (s:3-15), ABD, Academic Press
  • 7. Seijan, V., Bhatta, R., Gaughan, J., Malik P. K., Naqvi, S. M. K., Lal, R. (2017) Breeding for Climate Change Adaptation and Mitigation. Seijan, V., Bhatta, R., Gaughan, J.(Ed), Sheep Production Adapting to Climate Change, Singapur, Springer Nature Singapore Pte Ltd,( s:58-59), DOI 10.1007/978-981-10-4714-5
  • 8. Harris RB. (2010) Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes, Journal of Arid Envoriments(dergi), 74(1), 1-12, https://doi.org/10.1016/j.jaridenv.2009.06.014
  • 9. Vermeulen SJ, Campbell BM. (2012) Climate Change and Food Systems (2012), The Annual Review of Environment and Resources, 2012, 37, 195-222, 10.1146/annurev-environ-020411-130608
  • 10. United Nations (2017). 2 Temmuz tarihindehttps://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
  • 11. Sejien V., Bhatta, R., Goughan P., Malik, P.K., Nagvi, SMK, Lal R. ( 2017) Adapting Sheep Production to Climate Change. Sejian, V. ( Ed) Sheep Production Adapting to Climate Change içinde ( s.1-30), Singapur, Springer
  • 12. TUİK, (2018) .Hayvansal üretim istatistikleri. Erişim tarihi: 02.07.2019. Erişim adresi : http://www.tuik.gov.tr/UstMenu.do?metod=temelist
  • 13. Kadzere, C. T., (2002) Murphy, M. R., Silanikove, N., Maltz, E.(2002) Heat Stress in Lactating Dairy Cows: A review., Livestock Production Science, 77(1), 59-91, https://doi.org/10.1016/S0301-6226(01)00330-X
  • 14. Slimen, B., Najar, T., Graham, A., Abdrabba, M.(2016) Heat stres effects on livestock: molecumar and metabolic aspects, a rewiev. J. Anim. Physiol. Anim. Nutr. 10(3), 401-12
  • 15. Kerr, S. (2015) Livestock Heat stres: Recognation, Response and prevention. Washington State University Extension Fact Sheet. Erişim : http://pubs.wsu.edu
  • 16. Yorulmaz, E. (2014).Koyunlarda Stresle İlgili Bazı Fizyolojik Parametrelerin Mevsimsel Değişimi (Yükseklisans Tezi) Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, AYDIN.
  • 17. Kaykı, M. 2016. Farklı mevsimlerde saanen keçilerinde HSP60 ve HSP70 gen expresyon profili ve bazı parametrelerle ilişkisi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Yükseklisans Tezi, Aydın, ( Danışman: Doç. Dr. Murat Yılmaz)
  • 18. Slimen, I.B., Najar, T., Ghram, A., Dabbebi, H., Ben- Mrad, M., Abdrabbah, Mç (2014) Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Journal International Journal of Hyperthermia30 (7 ) , 513-523 DOI:10.3109/02656736.2014.971446
  • 19. Lallo, C., Smalling, S., Facey , A., Hughes , M. (2017) The Impact of Climate Change on Small Ruminant Performance in Caribbean Communities. Ganpat W., Isaac W.A. (Eds) Environmental Sustainability and Climate Change Adaptation Strategies içinde ( s.296-321 ) , USA , IGI Global DOI: 10.4018/978-1-5225-1607-1.ch011
  • 20. Marai, I.F.M., Ayyat, M.S., Abd El-Monem U.M. (2001) Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation, under Egyptian conditions. Trop Anim Health Prod 33 (6):457–462
  • 21. Erwin, K. L. (2009) Wetlands and global climate change: the role of wetland restoration in a changing World. Erwin, K. L. (Ed) Wetlands Ecology and Management. 17(71) Hollanda, Springer Netherlands, https://doi.org/10.1007/s11273-008-9119-1
  • 22. Silanikove, N. (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants.,Livestock Production Science, 2000, 67(1-2), 1-18, https://doi.org/10.1016/S0301-6226(00)00162-
  • 23. Romero, R.D., Montero,P. A., Montaldo, H.H., Rodríguez, A.D., Hernández, C. J. (2013)Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stres. Trop Anim Health Prod.45(8):1691-6. doi: 10.1007/s11250-013-0416-1.
  • 24. Baumgard, L. H., Rhoads Jr., R. P. (2012) Effects of Heat Stress on Postabsorptive Metabolism and Energetics, Annual Review of Animal Biosciences, 1, (311-337), https://doi.org/10.1146/annurev-animal-031412-103644
  • 25. Seijan, V., Bhatta, R., Gaughan, J., Malik P. K., Naqvi, S. M. K., Lal, R. ( Ed) (2017) Climate Change Impact on Immune Response in Sheep. Seijan V. ( Ed) Sheep Production Adapting to Climate Change.içinde (d.97) , Springer Nature Singapore Pte Ltd, Sİngapur DOI 10.1007/978-981-10-4714-5
  • 26. Li,F. K., Yang, Y., Jenna, K. Xia, , C. H., Lv, S. J., Wei, W. H. ( 2018 ) Effect of heat stress on the behavioral and physiological patterns of Small-tail Han sheep housed indoors. Tropical Animal Health and Production 2018, 50( 8), 1893–1901 DOI: 10.1007/s11250-018-1642-3
  • 27. Hayyan, M., Hashim, M.A., AlNashef, I.M. (2016).Superoxide Ion: Generation and Chemical Implication.Chem. Rev.116 (5) ,3029-3085DOI: 10.1021/acs.chemrev.5b00407
  • 28. Abdelnour, S.A., El-Hack, E.Abd., Khafaga, A. F., Arif, M., Taha, A. E., ENoreldin, A.E. (2019) Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. Journal of Thermal Biology 79, 120-134 DOI: 10.1016/j.jtherbio.2018.12.013
  • 29. 29. Guo, J., Gao, S., Quan, S., Zhang, Y., Bu, D., Wan, J. (2018) Blood amino acids profile responding to heat stress in dairy cows. Asian-Australas. J. Anim. Sci. 31 (1), 47–53 doi: 10.5713/ajas.16.0428
  • 30. Maibam, U., Hoodaa, O.K., Sharmab, P.S., Upadhyaya, R.C., Mohanty, A.K. (2018) Differential level of oxidative stress markers in skin tissue of zebu and crossbreed cattle during heat stress. Livest. Sci. 207, 45–50.
  • 31. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kaçmaz, K., Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39-85. DOI : 10.1146/annurev.biochem.73.011303.073723
  • 32. Sinha, K., Das, J., Pal, P.B., Sil, P.C. (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 87(7):1157-80. doi:10.1007/s00204-013-1034-4
  • 33. Schultz DR1, Harrington WJ Jr. (2003) Apoptosis: Programmed Cell Death at a Molecular Level. Semin Arthritis Rheum. 32(6):345-69 doi: 10.1053/sarh.2003.50005
  • 34. Evans M.D, Dizdaroğlu M, Cooke M.S. (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res. 567(1):1-61. DOI: 10.1016/j.mrrev.2003.11.001
  • 35. Onur E, Tuğrul B, Bozyiğit F.(2009) DNA hasarı ve onarım mekanizmaları. Türk Klinik Biyokimya Derg 2009; 7(2): 61-
  • 36. Bardaweel, S.K., Gul, M., Alzweiri, M., Ishaqat, A., ALSalamet, H.A., Bashatwak, R.M. (2018) Reactive oxygen species: the dual role in physiologycal and pathologycal conditions of the human body. Eurasian J Med.doi: 10.5152/eurasianjmed.2018.17397.
  • 37. Turrens, J.F. (2003) Mitochondrial formation of reactive oxygen species. J Physiol. 552( 2): 335–344. DOI: 10.1113/jphysiol.2003.049478
  • 38. Segal A.W, Abo, A. (1993) The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 18:43–47
  • 39. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G. (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell. 2006 Apr;17(4):1583-92. DOI: 10.1091/mbc.e05-09-0858
  • 40. Kurtdede E, Pekcan M, Karagül H. (2018) Florun Serbest Radikaller, Reaktif Oksijen Türleri ve Oksidatif Stres ile İlişkileri. Atatürk Üniversitesi Vet. Bil. Derg. 13(3): 373-379 DOI:10.17094/ataunivbd.326899
  • 41. Metindale, J.C., Holbrook, N.J. (2002) Cellular Response to Oxidative Stress: Signaling for Suicide and Survival. Journal of Cellular Physıology .192:1–15. DOI: 10.1002/jcp.10119
  • 42. Mujahid, A., Yoshiki, Y., Akiba, Y., Toyomizu, M. (2005) Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poult. Sci. 84, 307–314. DOI: 10.1093/ps/84.2.307
  • 43. Salama, A.A.K.,Caja, G., Hamzaoui,S., Badaoui, B., Castro-Costa, A., Façanha, D.A.E., Guilhermino, M.M., Bozzi, R. (2014) Different levels of response to heat stress in dairy goats. Small Ruminant Research 121(1), 73-79 DOI: 10.1016/j.smallrumres.2013.11.021
  • 44. Pavan, K. P., Purbey P.K., Sinha C.K., Notani, D., Limaye ,A., Jayani, R.S., Galande, S. (2006) Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Molecular Cell. 22 (2): 231–43. DOI: 10.1016/j.molcel.2006.03.010
  • 45. Sumegi, J., Barnes, M.G., Nestheide, S.V., Molleran-Lee, S., Villanueva, J., Zhang, K., Risma, K.A., Grom, A.A., Filipovich, A.H. (2011) Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood 117, 151–160. DOI: 10.1182/blood-2010-08-300046
  • 46. Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M . (2012) Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 13:10 DOI: 10.1186/1471-2156-
  • 47. Singh, KM., Sing, S., Ganguly, I., Nachiappon, RK., Ganguly, A., Venkatarraman, R., Chopra, A., Norula, H.K.(2017) Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell stres & chaperons, 22(5), 675-684
  • 48. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G.(2001) Heat shock proteins: endogenous modulators of apoptotic cell death.Biochemical and Biophysical Research Communications, 286(3), 433-42 doi:10.1006/bbrc.2001.542
  • 49. Kalmar B, Greensmith L (2009) .Induction of Heat Shock Proteins for Protection against Oxidative Stress.Adv Drug Deliv Rev. 61(4):310-18. doi: 10.1016/j.addr.2009.02.003
  • 50. Öztürk, E., Kahveci ,N., Özlük ,K., Yılmazlar, T. (2009) Isı şok proteinleri. Ulusal Cerrahi Dergisi 25(4): 131-136
  • 51. Du,J., Di, He-Shuang., Guo, L., Li, Z.H, Wang, G.L. (2008) Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. Journal of Thermal Biology33 ,37–47 doi:10.1016/j.jtherbio.2007.06.002
  • 52. Reactome (2019). 3.07.2019 tarihinde erişilmiştir. Erişim adresi:https://reactome.org/
  • 53. Fujimoto, M., Nakai, A.(2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 277, 4112–4125.
  • 54. Archana, P., Aleena, J., Pragna, P., Vidya, M., Niyas, A., Bagath, M., Krishnan, G., Manimaran, A., Beena, V., Kurien, E.(2017) Role of heat shock proteins in livestock adaptation to heat stress. J. Dairy Vet. Anim. Res. 5(1), 13-19 DOI: 10.15406/jdvar.2017.05.00127
  • 55. Katschinski D, Boos K, Schindler S, Fandrey J. (2000) Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 28:21094–8 DOI: 10.1074/jbc.M001629200
  • 56. Adachi M., Liu Y., Fujii K, Calderwood S.K., Nakai, A., Imai ,K., Shinomura, Y. (2009) Oxidative Stress Impairs the Heat Stress Response and Delays Unfolded Protein Recovery. PLoS One. 11;4(11):7719 DOI: 10.1371/journal.pone.0007719
  • 57. Kampinga H.H, Vos M, Tanguay R.M, Bruford E. A. (2008) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress and Chaperones (2009) 14:105–111. DOI 10.1007/s12192-008-0068-7
  • 58. Jee H. (2016) Size dependent classification of heat shock proteins: a mini-review. Journal of Exercise Rehabilitation, 12(4):255-259. doi: 10.12965/jer.1632642.321
  • 59. Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motokı T, Tomono Y, Fukazawa T, Shırakawa Y, Yamatsujı T, Matsuoka J, Takaoka M. (2010) HSP90 and its inhibitors (Review). Oncology Reports 23: 1483-1492 DOI: 10.3892/or_00000787
  • 60. Collier, R. J., Stiening,C.M., Pollard,B.C., VanBaale ,M.J., Baumgard,L.H., Gentry, P.C., Coussens ,P.M. (2006) Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science, 84, 1–13 DOI: 10.2527/2006.8413_supple1x
  • 61. Csermeley, P., Schnaider, T, Soti, C., Prohaszka, Z., and Nardai, G. (1998) The 90-Kda molecular chaperone family: structure, function and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168 doi: 10.1016/S0163-7258(98)00013-8
  • 62. Wayne N , Mishra P , N. Bolon D. (2011) Chapter 8: Hsp90 and Client protein maturation. Methods Mol Biol. 787: 33–44. doi: 10.1007/978-1-61779-295-3_3
  • 63. Zhang ,X.H., Wu , H., Tang ,S., Li ,Q.N., Xu ,J., Zhang , M., Su , Y.N., Yin , B., Zhao , Q.L., Kemper , N., Hartung , J., Bao, E.D. (2017) Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro. J Vet Sci. 18(2): 129–140. doi: 10.4142/jvs.2017.18.2.129
  • 64. Oner ,Y., Calvo, JH., Elmaci, C. (2013) Investigation of the genetic diversity among native Turkish sheep breeds using mtDNA polymorphisms. Trop Anim Health Prod 45:947–951 DOI:10.1007/s11250-012-0313-z
  • 65. Ortiz, J.S., González, C., Martínez, M., Mayoral, T., Calvo, J.H., Serrano, M.M. (2015) Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evolutionary Biology 15:7 doi: 10.1186/s12862-015-0280-x
  • 66. Gorniak, T., Meyer, U., Südekum, K.H., Danicke, S. (2014) Impact of mild heat stress on dry matter intake, milk yield and composition in mid-lactation Holstein dairy cows in a temperate climate. Achives of animal nutrition 68(5):1-12 doi: 10.1080/1745039X.2014.950451.
  • 67. Chauhan, S.S., Celi, P., Leury, B.J., Clarke, I.J., Dunshea, F.R.,( 2014). Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J. Anim. Sci. 92, 3364–3374. doi: 10.2527/jas.2014-7714.
  • 68. Tian, H., Zheng, N., Wang, W., Cheng, J., Li, S., Zhang, Y., Wang, J., (2016) Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci. Rep. 6, 24208 DOI: 10.1038/srep24208
  • 69. Liu, Z., Ezernieks, V., Wang, J., Arachchillage, N.W., Garner, J.B., Wales, W.J., Cocks, B.G., Rochfort, S., 2017. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 7, 961. DOI:10.1038/s41598-017-01120-9
  • 70. Sejian, V., Bagath, M., Krishnan, G., Rashamol, V.P., Pragna, P., Devaraj, C., Bhatta, R. (2019) Genes for resilience to heat stress in small ruminants: A review, Small Ruminant Research, 173, 42-53
  • 71. Varela, M., Golder, M., Farenna, A., de las Heras, M., Leroux, C.,Palmarini, M. (2008) A large animal model to evaluate the effects of HSP90 inhibitors for the treatment of lung adenocarcinoma. Virology, 371 (1), 206-210. doi:10.1016/j.virol.2007.09.041

Genetic Adaptation Mechanisms Against Changing Climate Conditions on Farm Animals

Year 2019, Volume: 11 Issue: 1, 1 - 23, 01.01.2019

Abstract

Decreasing cultivated and farge areas and changing climatic zones hence on climate change cause a trouble besides affect countries agricultural and livestock breeding activities negatively. Livestock breeding has an importance to meet the nutritional and economical requirement notably milk and meet in changing climate conditions. Because theese animals can convert low quality roughage to high quality animal protein and can adapt to a wide climate range. The effects of heat stres on yields are observed on wild animals along livestock animals, especially ruminants. Although there are several researches about phsiologycal responds against heat stress, knowladges on cellular and genetic levels are not enough yet. Heat Shock Protein ( HSP) genes are one of the most important cellular respond members. In this study we aimed to mention reports about general heat stres properties on farm animals, heat stres response , adaptaion and one of the important cellular respond members HSPs (Heat Shock Proteins).

References

  • 1. Hallam, A.,Wignall, P. B. ( Ed) (1997) Thestudy of massextinction. MassExtinctionsandTheirAftermath (s.1-23) ,Oxford, OUP
  • 2. Barnoski, D, A.,Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, B.T, Marshall, C., McGuire, J,L., Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A. ( 2011) Has theEarth‟sSixthMassExtinctionAlreadyArrived?. Nature, 471(7336), 51-57, doi:10.1038/nature09678
  • 3. Ceballos, Gerardo; Ehrlich, Paul R. (2018). "The misunderstood sixth mass extinction". Science. 360 (6393): 1080–1081. DOI: 10.1126/science.aau0191
  • 4. 4. Ripple, W.J., Wolf, C., Newsome, T.M., Galetti, M., Alamgir, M., Crist, E., Mahmoud, M.I., Laurance, W.F. (2017). World Scientists' Warning to Humanity: A Second Notice. BioScience. 67 (12): 1026–1028 doi: 10.1093/biosci/bix125
  • 5. IPCC, 2013: ClimateChange 2013: ThePhysicalScienceBasis. Contribution of WorkingGroup I totheFifthAssessment Report of theIntergovernmental Panel on ClimateChange [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bexand P.M. Midgley (eds.)]. Cambridge UniversityPress, Cambridge, United Kingdomand New York, USA
  • 6. Letcher, T. M. (2019) Why do we have global warming?. Letcher, T. M. (Ed), Managing Global Warming An Interface of Technology and Human Issues, (s:3-15), ABD, Academic Press
  • 7. Seijan, V., Bhatta, R., Gaughan, J., Malik P. K., Naqvi, S. M. K., Lal, R. (2017) Breeding for Climate Change Adaptation and Mitigation. Seijan, V., Bhatta, R., Gaughan, J.(Ed), Sheep Production Adapting to Climate Change, Singapur, Springer Nature Singapore Pte Ltd,( s:58-59), DOI 10.1007/978-981-10-4714-5
  • 8. Harris RB. (2010) Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes, Journal of Arid Envoriments(dergi), 74(1), 1-12, https://doi.org/10.1016/j.jaridenv.2009.06.014
  • 9. Vermeulen SJ, Campbell BM. (2012) Climate Change and Food Systems (2012), The Annual Review of Environment and Resources, 2012, 37, 195-222, 10.1146/annurev-environ-020411-130608
  • 10. United Nations (2017). 2 Temmuz tarihindehttps://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
  • 11. Sejien V., Bhatta, R., Goughan P., Malik, P.K., Nagvi, SMK, Lal R. ( 2017) Adapting Sheep Production to Climate Change. Sejian, V. ( Ed) Sheep Production Adapting to Climate Change içinde ( s.1-30), Singapur, Springer
  • 12. TUİK, (2018) .Hayvansal üretim istatistikleri. Erişim tarihi: 02.07.2019. Erişim adresi : http://www.tuik.gov.tr/UstMenu.do?metod=temelist
  • 13. Kadzere, C. T., (2002) Murphy, M. R., Silanikove, N., Maltz, E.(2002) Heat Stress in Lactating Dairy Cows: A review., Livestock Production Science, 77(1), 59-91, https://doi.org/10.1016/S0301-6226(01)00330-X
  • 14. Slimen, B., Najar, T., Graham, A., Abdrabba, M.(2016) Heat stres effects on livestock: molecumar and metabolic aspects, a rewiev. J. Anim. Physiol. Anim. Nutr. 10(3), 401-12
  • 15. Kerr, S. (2015) Livestock Heat stres: Recognation, Response and prevention. Washington State University Extension Fact Sheet. Erişim : http://pubs.wsu.edu
  • 16. Yorulmaz, E. (2014).Koyunlarda Stresle İlgili Bazı Fizyolojik Parametrelerin Mevsimsel Değişimi (Yükseklisans Tezi) Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, AYDIN.
  • 17. Kaykı, M. 2016. Farklı mevsimlerde saanen keçilerinde HSP60 ve HSP70 gen expresyon profili ve bazı parametrelerle ilişkisi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Yükseklisans Tezi, Aydın, ( Danışman: Doç. Dr. Murat Yılmaz)
  • 18. Slimen, I.B., Najar, T., Ghram, A., Dabbebi, H., Ben- Mrad, M., Abdrabbah, Mç (2014) Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Journal International Journal of Hyperthermia30 (7 ) , 513-523 DOI:10.3109/02656736.2014.971446
  • 19. Lallo, C., Smalling, S., Facey , A., Hughes , M. (2017) The Impact of Climate Change on Small Ruminant Performance in Caribbean Communities. Ganpat W., Isaac W.A. (Eds) Environmental Sustainability and Climate Change Adaptation Strategies içinde ( s.296-321 ) , USA , IGI Global DOI: 10.4018/978-1-5225-1607-1.ch011
  • 20. Marai, I.F.M., Ayyat, M.S., Abd El-Monem U.M. (2001) Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation, under Egyptian conditions. Trop Anim Health Prod 33 (6):457–462
  • 21. Erwin, K. L. (2009) Wetlands and global climate change: the role of wetland restoration in a changing World. Erwin, K. L. (Ed) Wetlands Ecology and Management. 17(71) Hollanda, Springer Netherlands, https://doi.org/10.1007/s11273-008-9119-1
  • 22. Silanikove, N. (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants.,Livestock Production Science, 2000, 67(1-2), 1-18, https://doi.org/10.1016/S0301-6226(00)00162-
  • 23. Romero, R.D., Montero,P. A., Montaldo, H.H., Rodríguez, A.D., Hernández, C. J. (2013)Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stres. Trop Anim Health Prod.45(8):1691-6. doi: 10.1007/s11250-013-0416-1.
  • 24. Baumgard, L. H., Rhoads Jr., R. P. (2012) Effects of Heat Stress on Postabsorptive Metabolism and Energetics, Annual Review of Animal Biosciences, 1, (311-337), https://doi.org/10.1146/annurev-animal-031412-103644
  • 25. Seijan, V., Bhatta, R., Gaughan, J., Malik P. K., Naqvi, S. M. K., Lal, R. ( Ed) (2017) Climate Change Impact on Immune Response in Sheep. Seijan V. ( Ed) Sheep Production Adapting to Climate Change.içinde (d.97) , Springer Nature Singapore Pte Ltd, Sİngapur DOI 10.1007/978-981-10-4714-5
  • 26. Li,F. K., Yang, Y., Jenna, K. Xia, , C. H., Lv, S. J., Wei, W. H. ( 2018 ) Effect of heat stress on the behavioral and physiological patterns of Small-tail Han sheep housed indoors. Tropical Animal Health and Production 2018, 50( 8), 1893–1901 DOI: 10.1007/s11250-018-1642-3
  • 27. Hayyan, M., Hashim, M.A., AlNashef, I.M. (2016).Superoxide Ion: Generation and Chemical Implication.Chem. Rev.116 (5) ,3029-3085DOI: 10.1021/acs.chemrev.5b00407
  • 28. Abdelnour, S.A., El-Hack, E.Abd., Khafaga, A. F., Arif, M., Taha, A. E., ENoreldin, A.E. (2019) Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. Journal of Thermal Biology 79, 120-134 DOI: 10.1016/j.jtherbio.2018.12.013
  • 29. 29. Guo, J., Gao, S., Quan, S., Zhang, Y., Bu, D., Wan, J. (2018) Blood amino acids profile responding to heat stress in dairy cows. Asian-Australas. J. Anim. Sci. 31 (1), 47–53 doi: 10.5713/ajas.16.0428
  • 30. Maibam, U., Hoodaa, O.K., Sharmab, P.S., Upadhyaya, R.C., Mohanty, A.K. (2018) Differential level of oxidative stress markers in skin tissue of zebu and crossbreed cattle during heat stress. Livest. Sci. 207, 45–50.
  • 31. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kaçmaz, K., Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39-85. DOI : 10.1146/annurev.biochem.73.011303.073723
  • 32. Sinha, K., Das, J., Pal, P.B., Sil, P.C. (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 87(7):1157-80. doi:10.1007/s00204-013-1034-4
  • 33. Schultz DR1, Harrington WJ Jr. (2003) Apoptosis: Programmed Cell Death at a Molecular Level. Semin Arthritis Rheum. 32(6):345-69 doi: 10.1053/sarh.2003.50005
  • 34. Evans M.D, Dizdaroğlu M, Cooke M.S. (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res. 567(1):1-61. DOI: 10.1016/j.mrrev.2003.11.001
  • 35. Onur E, Tuğrul B, Bozyiğit F.(2009) DNA hasarı ve onarım mekanizmaları. Türk Klinik Biyokimya Derg 2009; 7(2): 61-
  • 36. Bardaweel, S.K., Gul, M., Alzweiri, M., Ishaqat, A., ALSalamet, H.A., Bashatwak, R.M. (2018) Reactive oxygen species: the dual role in physiologycal and pathologycal conditions of the human body. Eurasian J Med.doi: 10.5152/eurasianjmed.2018.17397.
  • 37. Turrens, J.F. (2003) Mitochondrial formation of reactive oxygen species. J Physiol. 552( 2): 335–344. DOI: 10.1113/jphysiol.2003.049478
  • 38. Segal A.W, Abo, A. (1993) The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 18:43–47
  • 39. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G. (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell. 2006 Apr;17(4):1583-92. DOI: 10.1091/mbc.e05-09-0858
  • 40. Kurtdede E, Pekcan M, Karagül H. (2018) Florun Serbest Radikaller, Reaktif Oksijen Türleri ve Oksidatif Stres ile İlişkileri. Atatürk Üniversitesi Vet. Bil. Derg. 13(3): 373-379 DOI:10.17094/ataunivbd.326899
  • 41. Metindale, J.C., Holbrook, N.J. (2002) Cellular Response to Oxidative Stress: Signaling for Suicide and Survival. Journal of Cellular Physıology .192:1–15. DOI: 10.1002/jcp.10119
  • 42. Mujahid, A., Yoshiki, Y., Akiba, Y., Toyomizu, M. (2005) Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poult. Sci. 84, 307–314. DOI: 10.1093/ps/84.2.307
  • 43. Salama, A.A.K.,Caja, G., Hamzaoui,S., Badaoui, B., Castro-Costa, A., Façanha, D.A.E., Guilhermino, M.M., Bozzi, R. (2014) Different levels of response to heat stress in dairy goats. Small Ruminant Research 121(1), 73-79 DOI: 10.1016/j.smallrumres.2013.11.021
  • 44. Pavan, K. P., Purbey P.K., Sinha C.K., Notani, D., Limaye ,A., Jayani, R.S., Galande, S. (2006) Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Molecular Cell. 22 (2): 231–43. DOI: 10.1016/j.molcel.2006.03.010
  • 45. Sumegi, J., Barnes, M.G., Nestheide, S.V., Molleran-Lee, S., Villanueva, J., Zhang, K., Risma, K.A., Grom, A.A., Filipovich, A.H. (2011) Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood 117, 151–160. DOI: 10.1182/blood-2010-08-300046
  • 46. Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M . (2012) Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 13:10 DOI: 10.1186/1471-2156-
  • 47. Singh, KM., Sing, S., Ganguly, I., Nachiappon, RK., Ganguly, A., Venkatarraman, R., Chopra, A., Norula, H.K.(2017) Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell stres & chaperons, 22(5), 675-684
  • 48. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G.(2001) Heat shock proteins: endogenous modulators of apoptotic cell death.Biochemical and Biophysical Research Communications, 286(3), 433-42 doi:10.1006/bbrc.2001.542
  • 49. Kalmar B, Greensmith L (2009) .Induction of Heat Shock Proteins for Protection against Oxidative Stress.Adv Drug Deliv Rev. 61(4):310-18. doi: 10.1016/j.addr.2009.02.003
  • 50. Öztürk, E., Kahveci ,N., Özlük ,K., Yılmazlar, T. (2009) Isı şok proteinleri. Ulusal Cerrahi Dergisi 25(4): 131-136
  • 51. Du,J., Di, He-Shuang., Guo, L., Li, Z.H, Wang, G.L. (2008) Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. Journal of Thermal Biology33 ,37–47 doi:10.1016/j.jtherbio.2007.06.002
  • 52. Reactome (2019). 3.07.2019 tarihinde erişilmiştir. Erişim adresi:https://reactome.org/
  • 53. Fujimoto, M., Nakai, A.(2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 277, 4112–4125.
  • 54. Archana, P., Aleena, J., Pragna, P., Vidya, M., Niyas, A., Bagath, M., Krishnan, G., Manimaran, A., Beena, V., Kurien, E.(2017) Role of heat shock proteins in livestock adaptation to heat stress. J. Dairy Vet. Anim. Res. 5(1), 13-19 DOI: 10.15406/jdvar.2017.05.00127
  • 55. Katschinski D, Boos K, Schindler S, Fandrey J. (2000) Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 28:21094–8 DOI: 10.1074/jbc.M001629200
  • 56. Adachi M., Liu Y., Fujii K, Calderwood S.K., Nakai, A., Imai ,K., Shinomura, Y. (2009) Oxidative Stress Impairs the Heat Stress Response and Delays Unfolded Protein Recovery. PLoS One. 11;4(11):7719 DOI: 10.1371/journal.pone.0007719
  • 57. Kampinga H.H, Vos M, Tanguay R.M, Bruford E. A. (2008) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress and Chaperones (2009) 14:105–111. DOI 10.1007/s12192-008-0068-7
  • 58. Jee H. (2016) Size dependent classification of heat shock proteins: a mini-review. Journal of Exercise Rehabilitation, 12(4):255-259. doi: 10.12965/jer.1632642.321
  • 59. Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motokı T, Tomono Y, Fukazawa T, Shırakawa Y, Yamatsujı T, Matsuoka J, Takaoka M. (2010) HSP90 and its inhibitors (Review). Oncology Reports 23: 1483-1492 DOI: 10.3892/or_00000787
  • 60. Collier, R. J., Stiening,C.M., Pollard,B.C., VanBaale ,M.J., Baumgard,L.H., Gentry, P.C., Coussens ,P.M. (2006) Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science, 84, 1–13 DOI: 10.2527/2006.8413_supple1x
  • 61. Csermeley, P., Schnaider, T, Soti, C., Prohaszka, Z., and Nardai, G. (1998) The 90-Kda molecular chaperone family: structure, function and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168 doi: 10.1016/S0163-7258(98)00013-8
  • 62. Wayne N , Mishra P , N. Bolon D. (2011) Chapter 8: Hsp90 and Client protein maturation. Methods Mol Biol. 787: 33–44. doi: 10.1007/978-1-61779-295-3_3
  • 63. Zhang ,X.H., Wu , H., Tang ,S., Li ,Q.N., Xu ,J., Zhang , M., Su , Y.N., Yin , B., Zhao , Q.L., Kemper , N., Hartung , J., Bao, E.D. (2017) Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro. J Vet Sci. 18(2): 129–140. doi: 10.4142/jvs.2017.18.2.129
  • 64. Oner ,Y., Calvo, JH., Elmaci, C. (2013) Investigation of the genetic diversity among native Turkish sheep breeds using mtDNA polymorphisms. Trop Anim Health Prod 45:947–951 DOI:10.1007/s11250-012-0313-z
  • 65. Ortiz, J.S., González, C., Martínez, M., Mayoral, T., Calvo, J.H., Serrano, M.M. (2015) Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evolutionary Biology 15:7 doi: 10.1186/s12862-015-0280-x
  • 66. Gorniak, T., Meyer, U., Südekum, K.H., Danicke, S. (2014) Impact of mild heat stress on dry matter intake, milk yield and composition in mid-lactation Holstein dairy cows in a temperate climate. Achives of animal nutrition 68(5):1-12 doi: 10.1080/1745039X.2014.950451.
  • 67. Chauhan, S.S., Celi, P., Leury, B.J., Clarke, I.J., Dunshea, F.R.,( 2014). Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J. Anim. Sci. 92, 3364–3374. doi: 10.2527/jas.2014-7714.
  • 68. Tian, H., Zheng, N., Wang, W., Cheng, J., Li, S., Zhang, Y., Wang, J., (2016) Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci. Rep. 6, 24208 DOI: 10.1038/srep24208
  • 69. Liu, Z., Ezernieks, V., Wang, J., Arachchillage, N.W., Garner, J.B., Wales, W.J., Cocks, B.G., Rochfort, S., 2017. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 7, 961. DOI:10.1038/s41598-017-01120-9
  • 70. Sejian, V., Bagath, M., Krishnan, G., Rashamol, V.P., Pragna, P., Devaraj, C., Bhatta, R. (2019) Genes for resilience to heat stress in small ruminants: A review, Small Ruminant Research, 173, 42-53
  • 71. Varela, M., Golder, M., Farenna, A., de las Heras, M., Leroux, C.,Palmarini, M. (2008) A large animal model to evaluate the effects of HSP90 inhibitors for the treatment of lung adenocarcinoma. Virology, 371 (1), 206-210. doi:10.1016/j.virol.2007.09.041
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Article
Authors

Aras Şenel This is me

Esra Duman

Ömer O. Türel This is me

Publication Date January 1, 2019
Published in Issue Year 2019 Volume: 11 Issue: 1

Cite

APA Şenel, A., Duman, E., & Türel, Ö. O. (2019). DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları. Gaziosmanpaşa Üniversitesi Tıp Fakültesi Dergisi, 11(1), 1-23.
AMA Şenel A, Duman E, Türel ÖO. DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları. Gaziosmanpaşa Tıp Dergisi. January 2019;11(1):1-23.
Chicago Şenel, Aras, Esra Duman, and Ömer O. Türel. “DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları”. Gaziosmanpaşa Üniversitesi Tıp Fakültesi Dergisi 11, no. 1 (January 2019): 1-23.
EndNote Şenel A, Duman E, Türel ÖO (January 1, 2019) DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları. Gaziosmanpaşa Üniversitesi Tıp Fakültesi Dergisi 11 1 1–23.
IEEE A. Şenel, E. Duman, and Ö. O. Türel, “DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları”, Gaziosmanpaşa Tıp Dergisi, vol. 11, no. 1, pp. 1–23, 2019.
ISNAD Şenel, Aras et al. “DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları”. Gaziosmanpaşa Üniversitesi Tıp Fakültesi Dergisi 11/1 (January 2019), 1-23.
JAMA Şenel A, Duman E, Türel ÖO. DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları. Gaziosmanpaşa Tıp Dergisi. 2019;11:1–23.
MLA Şenel, Aras et al. “DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları”. Gaziosmanpaşa Üniversitesi Tıp Fakültesi Dergisi, vol. 11, no. 1, 2019, pp. 1-23.
Vancouver Şenel A, Duman E, Türel ÖO. DeğiĢen Ġklim KoĢullarına KarĢı Çiftlik Hayvanlarında Genetik Adaptasyon Mekanizmaları. Gaziosmanpaşa Tıp Dergisi. 2019;11(1):1-23.

-