Research Article
BibTex RIS Cite

Soğuk plazma uygulamasının karışık meyve suyunun kalite ve antioksidan özelliklerine etkileri

Year 2024, , 711 - 719, 15.12.2024
https://doi.org/10.29050/harranziraat.1405216

Abstract

Bu çalışmada, soğuk plazma uygulamasının karışık meyve suyunun bazı kalite antioksidan özelliklerine etkilerinin araştırılması amaçlanmıştır. Taze karışık meyve suyu elma, siyah havuç ve çilek suyu kullanılarak hazırlanmış ve 10 (CP10) veya 20 dk (CP20) boyunca dielektrik bariyer boşaltım soğuk plazma (DBDCP) (40 kV) veya 95 °C'de 2 dk ısıl işlem (HT) uygulanmıştır. DBDCP veya ısıl işleme tabi tutulmayan örnekler kontrol olarak kullanılmıştır. Uygulanan işlemlerin ardından örneklerin titre edilebilir asitlik, pH, toplam çözünür katı madde, renk, mikrobiyal yük, toplam fenolik içerik (TPC) ve antioksidan aktivitesinde meydana gelen değişiklikler incelenmiştir. DBDCP işlemi titrasyon asitliği, pH, toplam çözünebilir katı madde içeriği ve TPC'de önemli bir farka neden olmazken, ısıl işlem sonucunda titrasyon asitliği ve TPC'de azalma görülmüştür. Ayrıca, toplam renk değişimi ısıl işlem uygulanmış örneklerde daha yüksek bulunmuştur. HT örneklerinin diğer örneklere göre daha düşük L* ve daha yüksek a*, b* ve C* değerlerine sahip olduğu görülmüştür. Ek olarak, DBDCP uygulanan örneklerin bakır iyonu indirgeyici antioksidan kapasitesinde (CUPRAC) bir değişiklik olmazken, 2,2-difenil-1-pikrilhidrazil (DPPH) radikal süpürücü aktivitesi CP20'de kontrol ve CP10’a göre daha düşük bulunmuştur. Dahası, HT örneklerinin kontrol ve DBDCP uygulanmış örneklerden daha düşük antioksidan aktivitesine sahip olduğu görülmüştür. Öte yandan, DBDCP maya-küf sayımında bir değişime neden olmazken ısıl işlem uygulanan örneklerde tespit limitinin altına düştüğü görülmüştür. Bu nedenle DBDCP uygulamasının karışık meyve sularında antioksidan aktiviteyi artırmada kullanılabileceği söylenebilir ancak mikrobiyal güvenliğin garanti altına alınması için daha fazla çalışmaya ihtiyaç vardır.

Project Number

MYL-2021-43319

References

  • Ali, M., Cheng, J. H., & Sun, D. W. (2021). Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science & Technology, 56(1), 69-75. https://doi.org/10.1111/ijfs.14600
  • Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A., & Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science & Emerging Technologies, 32, 127-135. https://doi.org/10.1016/j.ifset.2015.09.001
  • Aneja, K. R. (2022). Experiments in Microbiology, Plant Pathology, Tissue Culture and Microbial Biotechnology. New Delhi: New Age International Limited.
  • AOAC (2005). Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC.
  • Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B., ... & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547. https://doi.org/10.3390/12071496
  • Bhardwaj, R. L., & Pandey, S. (2011). Juice blends—a way of utilization of under-utilized fruits, vegetables, and spices: a review. Critical Reviews in Food Science and Nutrition, 51(6), 563-570. https://doi.org/10.1080/10408391003710654
  • Bursać Kovačević, D., Gajdoš Kljusurić, J., Putnik, P., Vukušić, T., Herceg, Z., & Dragović-Uzelac, V. (2016). Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry, 212, 323–331. https://doi.org/10.1016/j.foodchem.2016.05.192
  • Devi Ramaiya, S., Bujang, J.S., Zakaria, M.H., King, W.S. and Shaffiq Sahrir, M.A. (2013), Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. Journal of the Science of Food and Agriculture, 93(5): 1198-1205. https://doi.org/10.1002/jsfa.5876
  • Farias, T. R., Rodrigues, S., & Fernandes, F. A. (2020). Effect of dielectric barrier discharge plasma excitation frequency on the enzymatic activity, antioxidant capacity and phenolic content of apple cubes and apple juice. Food Research International, 136, 109617. https://doi.org/10.1016/j.foodres.2020.109617
  • Farias, T. R., Rodrigues, S., & Fernandes, F. A. (2022). Comparative study of two cold plasma technologies on apple juice antioxidant capacity, phenolic contents, and enzymatic activity. Journal of Food Processing and Preservation, 46(10), e16871. https://doi.org/10.1111/jfpp.16871
  • Fernandes, F. A. N., & Rodrigues, S. (2021). Cold plasma processing on fruits and fruit juices: a review on the effects of plasma on nutritional quality. Processes, 9(12), 2098. https://doi.org/10.3390/pr9122098
  • Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450-458. https://doi.org/10.1128/AEM.02660-15
  • Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M., & Sun, A. (2019). Effect of cold plasma on blueberry juice quality. Food Chemistry, 290, 79-86. https://doi.org/10.1016/j.foodchem.2019.03.123
  • Illera, A. E., Chaple, S., Sanz, M. T., Ng, S., Lu, P., Jones, J., ... & Bourke, P. (2019). Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chemistry: X, 3, 100049. https://doi.org/10.1016/j.fochx.2019.100049
  • Kovačević, D. B., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Jambrak, A. R., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317-323. https://doi.org/10.1016/j.foodchem.2015.05.099
  • Kumar, S., Pipliya, S., & Srivastav, P. P. (2023). Effect of cold plasma on different polyphenol compounds: A review. Journal of Food Process Engineering, 46(1), e14203. https://doi.org/10.1111/jfpe.14203
  • Kumar, S., Pipliya, S., Srivastav, P. P., Srivastava, B., Battula, S. R., & Sen, R. (2024). Cold plasma processing of kiwifruit juice: Effect on physicochemical, nutritional, microstructure, rheological properties and sensory attributes. Journal of Food Science, 89(10), 6127-6141. https://doi.org/10.1111/1750-3841.17284
  • Kumaran, A. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114. https://doi.org/10.1016/j.foodchem.2005.03.032
  • Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, X., … Ding, T. (2018). Application of a dielectric barrier discharge atmospheric cold plasma (DBD-ACP) for Eshcerichia coli inactivation in apple juice. Journal of Food Science, 83(2), 401–408. https://doi.org/10.1111/1750-3841.14045
  • Mir, S. A., Siddiqui, M. W., Dar, B. N., Shah, M. A., Wani, M. H., Roohinejad, S., ... & Ali, A. (2020). Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. Journal of Applied Microbiology, 129(3), 474-485. https://doi.org/10.1111/jam.14541
  • Mravlje, J., Regvar, M., & Vogel-Mikuš, K. (2021). Development of cold plasma technologies for surface decontamination of seed fungal pathogens: Present status and perspectives. Journal of Fungi, 7(8), 650. https://doi.org/10.3390/jof7080650
  • Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3(1), 125–142. https://doi.org/10.1146/annurev-food-022811-101132
  • Noguera, N. H., Lima, D. C., Filho, E. G. A., Fonteles, T. V, & Rodrigues, S. (2021). Influence of different non-thermal processing on guava, orange, and tangerine juices and the food matrix effects. Food and Bioprocess Technology, 14, 1662-1672. https://doi.org/10.1007/s11947-021-02663-6
  • Ozen, E., & Singh, R. K. (2020). Atmospheric cold plasma treatment of fruit juices: A review. Trends in Food Science & Technology, 103, 144-151. https://doi.org/10.1016/j.tifs.2020.07.020
  • Paixão, L. M., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A., & Rodrigues, S. (2019). Cold plasma effects on functional compounds of siriguela juice. Food and Bioprocess Technology, 12, 110-121. https://doi.org/10.1007/s11947-018-2197-z
  • Pankaj, S. K., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016-4021. https://doi.org/10.1002/jsfa.8268
  • Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), 4. https://doi.org/10.3390/foods7010004
  • Schiassi, M. C. E. V., Lago, A. M. T., Souza, V. R. D., Meles, J. D. S., Resende, J. V. D., & Queiroz, F. (2018). Mixed fruit juices from Cerrado: Optimization based on sensory properties, bioactive compounds and antioxidant capacity. British Food Journal, 120(10), 2334-2348. https://doi.org/10.1108/BFJ-12-2017-0684
  • Sethi, S., Joshi, A., Arora, B., Bhowmik, A., Sharma, R. R., & Kumar, P. (2020). Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology, 246, 591-598. https://doi.org/10.1007/s00217-020-03432-z
  • Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591-1597. https://doi.org/10.1109/TPS.2011.2142012
  • Spanos, G. A., & Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565-1571. https://doi.org/10.1021/jf00097a030
  • Starek-Wójcicka, A., Sagan, A., Terebun, P., Kwiatkowski, M., Osmólska, E., Krajewska, M., ... & Pawlat, J. (2022). Quality of tomato juice as influenced by non-thermal air plasma treatment. Applied Sciences, 13(1), 578. https://doi.org/10.3390/app13010578
  • Waghmare, R. (2021). Cold plasma technology for fruit based beverages: A review. Trends in Food Science & Technology, 114, 60-69. https://doi.org/10.1016/j.tifs.2021.05.018

Quality and antioxidant properties of mixed fruit juice as affected by cold plasma treatment

Year 2024, , 711 - 719, 15.12.2024
https://doi.org/10.29050/harranziraat.1405216

Abstract

This study aimed to assess the effects of cold plasma treatment on some quality and antioxidant properties of mixed fruit juices. Fresh mixed juice of apple, black carrot, and strawberry was subjected to dielectric barrier discharge cold plasma (DBDCP) treatment (40 kV) for 10 (CP10), or 20 min (CP20) or heat treated (HT) at 95 °C for 2 min. The samples which were not DBDCP- or heat-treated were used as the control. The changes in the titratable acidity, pH, total soluble solids, color, natural microbial load, total phenolic content (TPC), and antioxidant activity upon the treatments were evaluated. The DBDCP treatment did not cause any significant differences in the titratable acidity, pH, total soluble solids content and TPC, while the heat treatment led to a decrease in the titratable acidity and TPC. Also, the total color difference was higher upon the heat treatment than the DBDCP treatment. The HT samples demonstrated lower L* value and higher a*, b*, and C* values than the other samples. Furthermore, there was no change in the cupric ion-reducing antioxidant capacity (CUPRAC) of DBDCP-treated samples, but the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was lower in CP20 than that was in the control and CP10. On the other hand, HT samples demonstrated lower antioxidant activity than the control and DBDCP-treated samples. On the other hand, the yeast-mold count was not changed by the DBDCP treatment but reduced to below the detection limit upon the heat treatment. Thus, it can be said that DBDCP treatment of mixed fruit juice can be used to enhance the antioxidant activity, but more studies are required to guarantee microbial safety.

Supporting Institution

Istanbul Technical University

Project Number

MYL-2021-43319

References

  • Ali, M., Cheng, J. H., & Sun, D. W. (2021). Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science & Technology, 56(1), 69-75. https://doi.org/10.1111/ijfs.14600
  • Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A., & Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science & Emerging Technologies, 32, 127-135. https://doi.org/10.1016/j.ifset.2015.09.001
  • Aneja, K. R. (2022). Experiments in Microbiology, Plant Pathology, Tissue Culture and Microbial Biotechnology. New Delhi: New Age International Limited.
  • AOAC (2005). Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC.
  • Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B., ... & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547. https://doi.org/10.3390/12071496
  • Bhardwaj, R. L., & Pandey, S. (2011). Juice blends—a way of utilization of under-utilized fruits, vegetables, and spices: a review. Critical Reviews in Food Science and Nutrition, 51(6), 563-570. https://doi.org/10.1080/10408391003710654
  • Bursać Kovačević, D., Gajdoš Kljusurić, J., Putnik, P., Vukušić, T., Herceg, Z., & Dragović-Uzelac, V. (2016). Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry, 212, 323–331. https://doi.org/10.1016/j.foodchem.2016.05.192
  • Devi Ramaiya, S., Bujang, J.S., Zakaria, M.H., King, W.S. and Shaffiq Sahrir, M.A. (2013), Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. Journal of the Science of Food and Agriculture, 93(5): 1198-1205. https://doi.org/10.1002/jsfa.5876
  • Farias, T. R., Rodrigues, S., & Fernandes, F. A. (2020). Effect of dielectric barrier discharge plasma excitation frequency on the enzymatic activity, antioxidant capacity and phenolic content of apple cubes and apple juice. Food Research International, 136, 109617. https://doi.org/10.1016/j.foodres.2020.109617
  • Farias, T. R., Rodrigues, S., & Fernandes, F. A. (2022). Comparative study of two cold plasma technologies on apple juice antioxidant capacity, phenolic contents, and enzymatic activity. Journal of Food Processing and Preservation, 46(10), e16871. https://doi.org/10.1111/jfpp.16871
  • Fernandes, F. A. N., & Rodrigues, S. (2021). Cold plasma processing on fruits and fruit juices: a review on the effects of plasma on nutritional quality. Processes, 9(12), 2098. https://doi.org/10.3390/pr9122098
  • Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450-458. https://doi.org/10.1128/AEM.02660-15
  • Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M., & Sun, A. (2019). Effect of cold plasma on blueberry juice quality. Food Chemistry, 290, 79-86. https://doi.org/10.1016/j.foodchem.2019.03.123
  • Illera, A. E., Chaple, S., Sanz, M. T., Ng, S., Lu, P., Jones, J., ... & Bourke, P. (2019). Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chemistry: X, 3, 100049. https://doi.org/10.1016/j.fochx.2019.100049
  • Kovačević, D. B., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Jambrak, A. R., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317-323. https://doi.org/10.1016/j.foodchem.2015.05.099
  • Kumar, S., Pipliya, S., & Srivastav, P. P. (2023). Effect of cold plasma on different polyphenol compounds: A review. Journal of Food Process Engineering, 46(1), e14203. https://doi.org/10.1111/jfpe.14203
  • Kumar, S., Pipliya, S., Srivastav, P. P., Srivastava, B., Battula, S. R., & Sen, R. (2024). Cold plasma processing of kiwifruit juice: Effect on physicochemical, nutritional, microstructure, rheological properties and sensory attributes. Journal of Food Science, 89(10), 6127-6141. https://doi.org/10.1111/1750-3841.17284
  • Kumaran, A. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114. https://doi.org/10.1016/j.foodchem.2005.03.032
  • Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, X., … Ding, T. (2018). Application of a dielectric barrier discharge atmospheric cold plasma (DBD-ACP) for Eshcerichia coli inactivation in apple juice. Journal of Food Science, 83(2), 401–408. https://doi.org/10.1111/1750-3841.14045
  • Mir, S. A., Siddiqui, M. W., Dar, B. N., Shah, M. A., Wani, M. H., Roohinejad, S., ... & Ali, A. (2020). Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. Journal of Applied Microbiology, 129(3), 474-485. https://doi.org/10.1111/jam.14541
  • Mravlje, J., Regvar, M., & Vogel-Mikuš, K. (2021). Development of cold plasma technologies for surface decontamination of seed fungal pathogens: Present status and perspectives. Journal of Fungi, 7(8), 650. https://doi.org/10.3390/jof7080650
  • Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3(1), 125–142. https://doi.org/10.1146/annurev-food-022811-101132
  • Noguera, N. H., Lima, D. C., Filho, E. G. A., Fonteles, T. V, & Rodrigues, S. (2021). Influence of different non-thermal processing on guava, orange, and tangerine juices and the food matrix effects. Food and Bioprocess Technology, 14, 1662-1672. https://doi.org/10.1007/s11947-021-02663-6
  • Ozen, E., & Singh, R. K. (2020). Atmospheric cold plasma treatment of fruit juices: A review. Trends in Food Science & Technology, 103, 144-151. https://doi.org/10.1016/j.tifs.2020.07.020
  • Paixão, L. M., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A., & Rodrigues, S. (2019). Cold plasma effects on functional compounds of siriguela juice. Food and Bioprocess Technology, 12, 110-121. https://doi.org/10.1007/s11947-018-2197-z
  • Pankaj, S. K., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016-4021. https://doi.org/10.1002/jsfa.8268
  • Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), 4. https://doi.org/10.3390/foods7010004
  • Schiassi, M. C. E. V., Lago, A. M. T., Souza, V. R. D., Meles, J. D. S., Resende, J. V. D., & Queiroz, F. (2018). Mixed fruit juices from Cerrado: Optimization based on sensory properties, bioactive compounds and antioxidant capacity. British Food Journal, 120(10), 2334-2348. https://doi.org/10.1108/BFJ-12-2017-0684
  • Sethi, S., Joshi, A., Arora, B., Bhowmik, A., Sharma, R. R., & Kumar, P. (2020). Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology, 246, 591-598. https://doi.org/10.1007/s00217-020-03432-z
  • Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591-1597. https://doi.org/10.1109/TPS.2011.2142012
  • Spanos, G. A., & Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565-1571. https://doi.org/10.1021/jf00097a030
  • Starek-Wójcicka, A., Sagan, A., Terebun, P., Kwiatkowski, M., Osmólska, E., Krajewska, M., ... & Pawlat, J. (2022). Quality of tomato juice as influenced by non-thermal air plasma treatment. Applied Sciences, 13(1), 578. https://doi.org/10.3390/app13010578
  • Waghmare, R. (2021). Cold plasma technology for fruit based beverages: A review. Trends in Food Science & Technology, 114, 60-69. https://doi.org/10.1016/j.tifs.2021.05.018
There are 33 citations in total.

Details

Primary Language English
Subjects Food Technology
Journal Section Araştırma Makaleleri
Authors

Ecre Şahinoğlu 0009-0004-1424-1929

Celale Kırkın Gözükırmızı 0000-0003-0736-4213

Project Number MYL-2021-43319
Early Pub Date December 14, 2024
Publication Date December 15, 2024
Submission Date December 15, 2023
Acceptance Date November 28, 2024
Published in Issue Year 2024

Cite

APA Şahinoğlu, E., & Kırkın Gözükırmızı, C. (2024). Quality and antioxidant properties of mixed fruit juice as affected by cold plasma treatment. Harran Tarım Ve Gıda Bilimleri Dergisi, 28(4), 711-719. https://doi.org/10.29050/harranziraat.1405216

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.