Research Article
BibTex RIS Cite

Bazı makarnalık buğday genotiplerinde (Triticum durum L.) artan su stresinde morfolojik ve fizyolojik tepkilerin incelenmesi

Year 2021, , 265 - 278, 23.06.2021
https://doi.org/10.29050/harranziraat.915372

Abstract

Kuraklık, bitkisel üretimi ve verimi sınırlayan en önemli faktörlerden biridir. Bitkiler, kuraklık stresiyle mücadele etmek için çeşitli morfolojik, fizyolojik, biyokimyasal ve moleküler tepkiler gösterirler. Çalışmada, makarnalık buğdayda artan su stresi altında genotipik farklılıkların belirlenmesi, su kullanım etkinliği ve verimle ilişkili olabilecek morfolojik ve fizyolojik parametrelerin incelenmesi amaçlanmıştır. Deneme, Dicle Üniversitesi Ziraat Fakültesi araştırma serasında, saksılarda kontrollü koşullarda yürütülmüştür. Araştırmada 7 tane makarnalık buğday genotipi (DZ7-51, Fırat-93, Hat-300, Sena, Svevo, TBT16-7 ve TBT16-9) kullanılmıştır. Tarla kapasitesine göre belirlenen artan su stresinde (%100 Tarla Kapasitesi (TK), %75TK, %50TK ve %25TK) buğday genotiplerinin morfolojik, fizyolojik, verim öğeleri ve kalite değişimleri incelenmiştir. Yaprak kıvrılması tüm su kısıtlama seviyelerinde verimle olumsuz yönde ilişkili bulunmuştur. Su stresindeki artışa bağlı olarak mumsuluk artış göstermiş ve %50TK ve %25TK su kısıtlama seviyelerinde verimle ilişkili bulunmuştur. Artan kuraklık düzeyleri, genotiplerin morfolojik, fizyolojik, verim öğelerinde azalışa neden olurken, protein oranına pozitif bir etki yapmıştır. Tane verimi ve biyomas yönünden hesaplanan su kullanım etkinliği değerleri su stresi arttıkça önemli düzeyde artış göstermiştir. Çalışmada incelenen morfolojik ve fizyolojik özellikler içerisinde mumsuluğun kuraklığa dayanıklıkta morfolojik markör olarak kullanılma potansiyeline sahip olabileceğini göstermiştir. DZ7-51 ve Fırat-93 genotipleri su stresine en çok dayanıklı genotipler olarak belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

1919B01190331

Thanks

Bu çalışmayı, TÜBİTAK 1919B01190331 numaralı proje ile destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)’na teşekkür ederiz.

References

  • Akram H M., Iqbal M S. (2004). Drought tolerance studies of wheat genotypes. Pak. J. Biol. Sci., 7 (1): 90-92.
  • Araus JL., Slafer GA., Reynolds MP., Royo C. (2002). Plant breeding and drought in C3 cereals : what should we breed for ? Ann of Bot. 2002; 89(7):925–940.
  • Bahar B., Yıldırım M., Barutcular C. (2009). Relationships between stomatal conductance and yield components in spring durum wheat under Mediterranean conditions. Not. Bot. Hort. Agrobot. Cluj 37 (2): 45-48.
  • Bayhan, M., Özkan, R., Ozberk, I. (2020). Physiological, morphological, phenological and yield evaluation of durum wheat lines under rainfed conditions. International Journal of Scientific and Technological Research. 6. 31-43. 10.7176/JSTR/6-04-05.
  • Bilski J J., Foy C D. (1987). Differential tolerance of oat cultivars to aluminium in nutrient solutions and in acid soil of Poland. J. Plant Nutr., 10: 129-141.
  • Blum, A. (2007). The mitigation of drought stress Dr. Abraham Blum Web sitesi. http://www.plantstress.com. (Erişim Tarihi: 08.11.2020).
  • Blum, A. (2011). Plant water relations, plant stress and plant production. NY: Springer. 10.1007/978-1-4419-7491-4_2.
  • Bohrani, M., Habili, N. (1992). Physiology of Plants and Their Cells. Translation. Chamran University publication. pp. 20-34.
  • Borojevic, S., Williams, W. A. (1982). Genotype x Environment Interactions for Leaf Area Parameters and Yield Components and Their Effects on Wheat Yield, Crop Sci. 22, 1020-1025, 1982.
  • Dakheel, A., Makdis, F. (1991). The role of glaucousness as a selection criterion for drought tolerance in durum wheat. Cereal Improvement Program. Annual Report, 120-121. ICARDA, Aleppo.
  • Dencic, S., Kastori, R., Kobiljski, B., Duggan, B. (2000). Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113: 43-52.
  • Fahad, S., Hussain, S., Saud, S., Tanveer,M., Bajwa, A. A., Hassan, S. (2015). A biochar application protects rice pollen from high-temperature stress. Plant Physiol. Biochem. 96, 281–287. Doi: 10.1016/j.plaphy.2015.08.009.
  • FAO, FAOSTAT, (2011). Food and agriculture organization. Available online at: http://faostat.fao.org/site/291/default.aspx Erişim tarihi: 10.10.2020.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, SMA. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustainable Dev. 29, 185–212. Doi: 10.1051/agro:2008021.
  • Foulkes, MJ., Scott, RK., Brandley, SR. (2002). The ability of wheat cultivars to withstand drought in UK conditions, Journal of Agr. Sci., 138:153-169, http://cat.inist.fr/?aModele=afficheN&cpsidt=1131229 (erişim tarihi, 17.10.2020).
  • Gebeyehou, G., Knott, D. R., Baker, R. J. (1982). Relationships Among Durations of Vegetative and Grain Filling Phases, Yield Components, and Grain Yield in Durum Wheat Cultivars, Crop Sci. 22, 287-290, 1982.
  • Guttieri, MJ., Stark, JC., O’Brien. K,, Souza. E. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Univ. Of Idaho Research and Extension Center, P.O. Box AA, Aberdeen, ID 83210. Crop Sci., 41: 327-335.
  • Haider, N. (2013). The origin of the B-genome of bread wheat (Triticum aestivum L.). Russian J. Genetics, 49, 263–274. Doi: 10.1134/S1022795413030071.
  • Hossain, A., Sarker, M., Saifuzzaman, M., Teixeira da Silva, J., Lozovskaya, M., and Akhter, M. (2013). Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. Int. J. Plant Prod. 7, 615–636.
  • Innes, P., Quarrie, SA. (1987). Water Relations. Wheat Breeding. Cambridge Uni. 313-334.
  • Khayatnezhad, M., Zaefizadeh, M., Gholamin, R., Jamaati-e somarein Sh. (2010). Study of genetic diversity and path analysis for yield in durum wheat genotypes under water and dry conditions. World Appl. Sci. J., 9(6): 655-665.
  • Kirda, C,, Kanber, R., Tulucu, K. (1999). Yield response of cotton, maize, soybean, sugar beet, sunflower, and wheat to deficit irrigation. In: Crop Yield Response to Deficit Irrigations. Dordrecht, The Netherlands: Kluwer Academic. 21-38.
  • Li, F.M., Zhao, S.L., Duan, SS. (1995). The strategy for limited irrigation of spring wheat in semiarid Loess Plateau, China. Chin. J. Appl. Ecol. 6 (3), 259–264 (in Chinese).
  • Maleki, A., Babaei, F., Amin, HC., Ahmadi, J., Dizaji, AA. (2008). The study of seed yield stability and drought tolerance indices of bread wheat genotypes under irrigated and non-irrigated conditions. Research Journal of Biological Sci., 3 (8): 841-844, http://www.medwellpublishing.com/abstract/?doi=rjbsci.2008.841.844.
  • Nass, H. G. (1973). Determination of Characters for Yield Selection in Spring Wheat, Can. J. Plant Sci. 53, 755-762, 1973.
  • Omarova, EI., Bogdanova, ED., Polimbetova, FA. (1995). Regulation of water-loss by the leaves of soft winter-wheat with different organization of leaf structure. Russian Journal of Plant Physiology 42(3):383-385.
  • Özkan, R., Ozberk, I., Özberk, F., Bayhan, M., 2018. Response to nitrogen and profitable variety preference in wheat. DUFED 7(2) 50-60.
  • Öztürk, İ., Korkut, K. (2018). Ekmeklik buğday (Triticum aestivum L) genotiplerinde farklı gelişme dönemlerindeki kuraklığın verim ve verim unsurlarına etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 15 (2), 128-137. Retrieved from https://dergipark.org.tr/tr/pub/jotaf/issue/37314/357122.
  • Pierre, CS., Peterson, CJ., Ross, AS., Ohm, JB., Verhoeven, LM., Hoefer, B. (2008). White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agron. Journal, 100: 414-420, http://agron.scijournals.org/cgi/content/abstract/100/2/414 (Erişim tarihi: 17.11.2020).
  • Pireivatlou, SA., Yazdansepas, A. (2007). Mobilization of dry matter and its relations with drought stres in wheat genotypes. http://ses.library.usyd.edu.au/bitstream/2123/3309/1/P208.pdf (Erişim tarihi: 21.11.2020).
  • Poudel, M.R., Poudel, H., Pandey, M., Thapa, D., Dhakal, K. (2020). Evaluation of Wheat Genotypes under Irrigated, Heat Stress and Drought Conditions. J Biol Today's World 2020; 9(1): 212.
  • Richards, RA., Condon, AG., Rebetzke, GJ. (2001). Traits to improve yield in dry environments. application of physiology in wheat breeding, International Maize and Wheat Improvement Center Mexico, D.F, CIMMYT.
  • Rijsberman, FR., 2006. Water scarcity: fact or fiction? Agric. Water Manag. 80, 5–22. Doi: 10.1016/j.agwat.2005.07.001.
  • Siralut, XRR. (2005). Leaf Rolling in wheat. PhD thesis. The Australian National University.
  • Skovmand, B., Reynolds, MP., Delacy, IH. (2001). Searching genetic resources for physiological traits with potential for increasing yield. application of physiology in wheat breeding. International Maize and Wheat Improvement Center Mexico, D.F, CIMMYT. P: 17-28.
  • Slafer, G. A., Miralles, D. J. (1992). Green Area Duration During the Grain Filling Period of an Argentine Wheat Cultivar as Unfluenced by Sowing Date, Temperature and Sink Strength, J. Agron. and Crop Sci. 168, 191-200, 1992.
  • Spiertz, J. H. J., Hag, B. A., Kupers, L. J. P. (1971). Relation Between Green Area Duration and Grain Yield in Some Varieties of Spring Wheat, Neth. J. Agric. Sci. 19, 211-222, 1971.
  • Tatar, Ö. (2009). Buğdayda (Triticum aestivum L.) sapa kalkma döneminde meydana gelen kuraklığın başak oluşumu ve bazı fizyolojik parametreler üzerine etkisi. Türkiye VIII. Tarla Bitkileri Kongresi, 19-22 Ekim, Hatay.
  • Tosun, M., Yüce, S., Erkul, A., Ege, H. (2006). Kuru ve sulu koşullarda yetiştirilen buğdayın bazı agronomik ve kalite özelliklerinin direkt seleksiyona karşı indirekt seleksiyon etkinliği. Ege Üniv. Ziraat Fak. Derg., 43(2):53-62.
  • Turhan, H., Bager, Ġ., Önemli, F. (2000). Bazı ayçiçeği çeşitlerinin in vitro ve in vivo koşullarında kuraklık performansının belirlenmesi. Trakya Üniversitesi Araştırma Fonu, TÜAF-268, 25s.
  • Turral, H., Burke, J. J., and Faurès, J. M. (2011). Climate Change, Water and Food Security. Rome: Food and Agriculture Organization of the United Nations Rome.
  • Waddington, SR., Ransom, JK., Osmanzai, M., Saunders, DA. (1986). Improvement in the yield potential of bread wheat adapted to Northwest Mexico. Crop Sci., 26: 698-703, http://crop.scijournals.org/cgi/content/abstract/26/4/698.(erişim tarihi, 17.11.2020).
  • Yazar, A., F. Gokcel, ve Sezen, MS. (2009). Corn yield response to partial rootzone drying and deficit irrigation strategies applied with drip system. Plant Soil Environ., 55, (11): 494–503pp.

An assessment on morphological and physiological response to increasing water stress for some of durum wheat (Triticum durum L.) genotypes

Year 2021, , 265 - 278, 23.06.2021
https://doi.org/10.29050/harranziraat.915372

Abstract

One of the most significant factors restricting crop production and yield is drought. Plants may be able to adapt through several morphological, physiological, biochemical, and molecular responses while under drought stress. The aim of this experiment was to investigate the genetic differences in durum wheat under water stresses and to review their morphological and physiological parameters. 7 durum wheat genotypes (DZ7-51, Fırat-93, Hat-300, Sena, Svevo, TBT16-7 and TBT16-9) were used in the study. The experiment was performed under controlled conditions in a research greenhouse at Dicle University's Faculty of Agriculture. Morphological, physiological, yield components and quality changes of wheat genotypes with increased water stress (100% Field Capasity (FC), 75FC%, 50FC% and 25FC%) determined by field capacity were examined. Leaf rolling was, however, negatively correlated with yield at all level of water stress. Due to the rise in water stress, waxiness increased and was found to be correlated with yield at 50FC% and 25FC% levels of water stress. Although increasing drought levels triggered a decrease in the morphological, physiological and yield components of the genotypes, they had a positive impact on the protein ratio. As water stress increased, water use efficiency values calculated according to grain yield and biomass weight increased significantly. Among the morphological and physiological characteristics examined in the study, it has shown that glaucousity can have the potential to be used as a morphological marker in drought resistance Genotypes of the DZ7-51 and Fırat-93 wheat genotypes were found to be most resilient to water stress.

Project Number

1919B01190331

References

  • Akram H M., Iqbal M S. (2004). Drought tolerance studies of wheat genotypes. Pak. J. Biol. Sci., 7 (1): 90-92.
  • Araus JL., Slafer GA., Reynolds MP., Royo C. (2002). Plant breeding and drought in C3 cereals : what should we breed for ? Ann of Bot. 2002; 89(7):925–940.
  • Bahar B., Yıldırım M., Barutcular C. (2009). Relationships between stomatal conductance and yield components in spring durum wheat under Mediterranean conditions. Not. Bot. Hort. Agrobot. Cluj 37 (2): 45-48.
  • Bayhan, M., Özkan, R., Ozberk, I. (2020). Physiological, morphological, phenological and yield evaluation of durum wheat lines under rainfed conditions. International Journal of Scientific and Technological Research. 6. 31-43. 10.7176/JSTR/6-04-05.
  • Bilski J J., Foy C D. (1987). Differential tolerance of oat cultivars to aluminium in nutrient solutions and in acid soil of Poland. J. Plant Nutr., 10: 129-141.
  • Blum, A. (2007). The mitigation of drought stress Dr. Abraham Blum Web sitesi. http://www.plantstress.com. (Erişim Tarihi: 08.11.2020).
  • Blum, A. (2011). Plant water relations, plant stress and plant production. NY: Springer. 10.1007/978-1-4419-7491-4_2.
  • Bohrani, M., Habili, N. (1992). Physiology of Plants and Their Cells. Translation. Chamran University publication. pp. 20-34.
  • Borojevic, S., Williams, W. A. (1982). Genotype x Environment Interactions for Leaf Area Parameters and Yield Components and Their Effects on Wheat Yield, Crop Sci. 22, 1020-1025, 1982.
  • Dakheel, A., Makdis, F. (1991). The role of glaucousness as a selection criterion for drought tolerance in durum wheat. Cereal Improvement Program. Annual Report, 120-121. ICARDA, Aleppo.
  • Dencic, S., Kastori, R., Kobiljski, B., Duggan, B. (2000). Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113: 43-52.
  • Fahad, S., Hussain, S., Saud, S., Tanveer,M., Bajwa, A. A., Hassan, S. (2015). A biochar application protects rice pollen from high-temperature stress. Plant Physiol. Biochem. 96, 281–287. Doi: 10.1016/j.plaphy.2015.08.009.
  • FAO, FAOSTAT, (2011). Food and agriculture organization. Available online at: http://faostat.fao.org/site/291/default.aspx Erişim tarihi: 10.10.2020.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, SMA. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustainable Dev. 29, 185–212. Doi: 10.1051/agro:2008021.
  • Foulkes, MJ., Scott, RK., Brandley, SR. (2002). The ability of wheat cultivars to withstand drought in UK conditions, Journal of Agr. Sci., 138:153-169, http://cat.inist.fr/?aModele=afficheN&cpsidt=1131229 (erişim tarihi, 17.10.2020).
  • Gebeyehou, G., Knott, D. R., Baker, R. J. (1982). Relationships Among Durations of Vegetative and Grain Filling Phases, Yield Components, and Grain Yield in Durum Wheat Cultivars, Crop Sci. 22, 287-290, 1982.
  • Guttieri, MJ., Stark, JC., O’Brien. K,, Souza. E. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Univ. Of Idaho Research and Extension Center, P.O. Box AA, Aberdeen, ID 83210. Crop Sci., 41: 327-335.
  • Haider, N. (2013). The origin of the B-genome of bread wheat (Triticum aestivum L.). Russian J. Genetics, 49, 263–274. Doi: 10.1134/S1022795413030071.
  • Hossain, A., Sarker, M., Saifuzzaman, M., Teixeira da Silva, J., Lozovskaya, M., and Akhter, M. (2013). Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. Int. J. Plant Prod. 7, 615–636.
  • Innes, P., Quarrie, SA. (1987). Water Relations. Wheat Breeding. Cambridge Uni. 313-334.
  • Khayatnezhad, M., Zaefizadeh, M., Gholamin, R., Jamaati-e somarein Sh. (2010). Study of genetic diversity and path analysis for yield in durum wheat genotypes under water and dry conditions. World Appl. Sci. J., 9(6): 655-665.
  • Kirda, C,, Kanber, R., Tulucu, K. (1999). Yield response of cotton, maize, soybean, sugar beet, sunflower, and wheat to deficit irrigation. In: Crop Yield Response to Deficit Irrigations. Dordrecht, The Netherlands: Kluwer Academic. 21-38.
  • Li, F.M., Zhao, S.L., Duan, SS. (1995). The strategy for limited irrigation of spring wheat in semiarid Loess Plateau, China. Chin. J. Appl. Ecol. 6 (3), 259–264 (in Chinese).
  • Maleki, A., Babaei, F., Amin, HC., Ahmadi, J., Dizaji, AA. (2008). The study of seed yield stability and drought tolerance indices of bread wheat genotypes under irrigated and non-irrigated conditions. Research Journal of Biological Sci., 3 (8): 841-844, http://www.medwellpublishing.com/abstract/?doi=rjbsci.2008.841.844.
  • Nass, H. G. (1973). Determination of Characters for Yield Selection in Spring Wheat, Can. J. Plant Sci. 53, 755-762, 1973.
  • Omarova, EI., Bogdanova, ED., Polimbetova, FA. (1995). Regulation of water-loss by the leaves of soft winter-wheat with different organization of leaf structure. Russian Journal of Plant Physiology 42(3):383-385.
  • Özkan, R., Ozberk, I., Özberk, F., Bayhan, M., 2018. Response to nitrogen and profitable variety preference in wheat. DUFED 7(2) 50-60.
  • Öztürk, İ., Korkut, K. (2018). Ekmeklik buğday (Triticum aestivum L) genotiplerinde farklı gelişme dönemlerindeki kuraklığın verim ve verim unsurlarına etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 15 (2), 128-137. Retrieved from https://dergipark.org.tr/tr/pub/jotaf/issue/37314/357122.
  • Pierre, CS., Peterson, CJ., Ross, AS., Ohm, JB., Verhoeven, LM., Hoefer, B. (2008). White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agron. Journal, 100: 414-420, http://agron.scijournals.org/cgi/content/abstract/100/2/414 (Erişim tarihi: 17.11.2020).
  • Pireivatlou, SA., Yazdansepas, A. (2007). Mobilization of dry matter and its relations with drought stres in wheat genotypes. http://ses.library.usyd.edu.au/bitstream/2123/3309/1/P208.pdf (Erişim tarihi: 21.11.2020).
  • Poudel, M.R., Poudel, H., Pandey, M., Thapa, D., Dhakal, K. (2020). Evaluation of Wheat Genotypes under Irrigated, Heat Stress and Drought Conditions. J Biol Today's World 2020; 9(1): 212.
  • Richards, RA., Condon, AG., Rebetzke, GJ. (2001). Traits to improve yield in dry environments. application of physiology in wheat breeding, International Maize and Wheat Improvement Center Mexico, D.F, CIMMYT.
  • Rijsberman, FR., 2006. Water scarcity: fact or fiction? Agric. Water Manag. 80, 5–22. Doi: 10.1016/j.agwat.2005.07.001.
  • Siralut, XRR. (2005). Leaf Rolling in wheat. PhD thesis. The Australian National University.
  • Skovmand, B., Reynolds, MP., Delacy, IH. (2001). Searching genetic resources for physiological traits with potential for increasing yield. application of physiology in wheat breeding. International Maize and Wheat Improvement Center Mexico, D.F, CIMMYT. P: 17-28.
  • Slafer, G. A., Miralles, D. J. (1992). Green Area Duration During the Grain Filling Period of an Argentine Wheat Cultivar as Unfluenced by Sowing Date, Temperature and Sink Strength, J. Agron. and Crop Sci. 168, 191-200, 1992.
  • Spiertz, J. H. J., Hag, B. A., Kupers, L. J. P. (1971). Relation Between Green Area Duration and Grain Yield in Some Varieties of Spring Wheat, Neth. J. Agric. Sci. 19, 211-222, 1971.
  • Tatar, Ö. (2009). Buğdayda (Triticum aestivum L.) sapa kalkma döneminde meydana gelen kuraklığın başak oluşumu ve bazı fizyolojik parametreler üzerine etkisi. Türkiye VIII. Tarla Bitkileri Kongresi, 19-22 Ekim, Hatay.
  • Tosun, M., Yüce, S., Erkul, A., Ege, H. (2006). Kuru ve sulu koşullarda yetiştirilen buğdayın bazı agronomik ve kalite özelliklerinin direkt seleksiyona karşı indirekt seleksiyon etkinliği. Ege Üniv. Ziraat Fak. Derg., 43(2):53-62.
  • Turhan, H., Bager, Ġ., Önemli, F. (2000). Bazı ayçiçeği çeşitlerinin in vitro ve in vivo koşullarında kuraklık performansının belirlenmesi. Trakya Üniversitesi Araştırma Fonu, TÜAF-268, 25s.
  • Turral, H., Burke, J. J., and Faurès, J. M. (2011). Climate Change, Water and Food Security. Rome: Food and Agriculture Organization of the United Nations Rome.
  • Waddington, SR., Ransom, JK., Osmanzai, M., Saunders, DA. (1986). Improvement in the yield potential of bread wheat adapted to Northwest Mexico. Crop Sci., 26: 698-703, http://crop.scijournals.org/cgi/content/abstract/26/4/698.(erişim tarihi, 17.11.2020).
  • Yazar, A., F. Gokcel, ve Sezen, MS. (2009). Corn yield response to partial rootzone drying and deficit irrigation strategies applied with drip system. Plant Soil Environ., 55, (11): 494–503pp.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Botany, Agricultural Engineering, Agricultural, Veterinary and Food Sciences, Agronomy
Journal Section Araştırma Makaleleri
Authors

Büşra Akın 0000-0001-6996-0649

Merve Bayhan 0000-0002-3220-4548

Remzi Özkan 0000-0002-6457-5802

Prof. Dr. Cuma Akıncı 0000-0002-3514-1052

Project Number 1919B01190331
Publication Date June 23, 2021
Submission Date April 13, 2021
Published in Issue Year 2021

Cite

APA Akın, B., Bayhan, M., Özkan, R., Akıncı, P. D. C. (2021). Bazı makarnalık buğday genotiplerinde (Triticum durum L.) artan su stresinde morfolojik ve fizyolojik tepkilerin incelenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 25(2), 265-278. https://doi.org/10.29050/harranziraat.915372

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.