Research Article
BibTex RIS Cite

Zeytinyağı tağşişinin belirlenmesinde kromatografik yöntemlerin kullanılması

Year 2019, Volume: 23 Issue: 3, 335 - 344, 19.09.2019
https://doi.org/10.29050/harranziraat.478010

Abstract





Bu araştırma çalışmasında, zeytin pirina yağı karıştırılarak yapılan zeytinyağı tağşişi, yağ asitleri, ECN42 değerleri ve sterol analizleri ile izlenmiştir. Bu amaçla, Kilis yağlık (KY) çeşidinden elde edilen yağlar farklı oranlarda (% 1, 5 ve 10) pirina yağı ile karıştırılmıştır. Yağ asidi ve sterol bileşimlerini analiz etmek için Gaz Kromatografisi (GC) kullanılmıştır. Tağşişi belirlemek için, saf ve katkılı yağların Eşdeğer Karbon Sayısı 42 (ECN42) ve deltaECN42 değerleri de kullanılmıştır. Yağ asidi analizinin sonuçları dikkate alındığında, pirina yağı karıştırılan zeytinyağlarında oleik asit ve palmitik asit oranları azalmıştır. Hileli yağlarda teorik ve deneysel ECN42 değerlerinin farkı (ΔECN42) artmıştır. Sterol bileşimi içinde önemli bir bileşik olan beta-sitosterol oranı, % 10 pirina yağı karıştırıldığında % 81.42'ye kadar yükselmiştir. Yağ örneklerinin Rmar değerleri dikkate alındığında, katkılı yağlar saf yağdan daha yüksek bir değer sergilemiştir. PCA analizlerine göre, yağ numuneleri yağ asitlerine ve TAG profiline göre üç farklı gruba ayrılırken, sterol bileşimine göre dört farklı grupta yer almıştır. Tüm PCA analizlerinde saf KY yağı, tağşişli yağlardan belirgin bir şekilde ayrılmıştır.







References

  • Azadmard-Damirchi, S., 2010. Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil. Food Additives & Contaminants, 27: 1–10.
  • Christopoulou, E., Lazaraki, M., Komaitis, M., Kaselimis, K., 2004. Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils. Food Chemistry, 84: 463–474.
  • Continas, A., Martinez, S., Carballo, J., Franco, I., 2008. Detection of contaminations and/or adulterations of the extra virgin olive oil with seeds oils (sunflower and soybean) and olive pomace oil. Grasas y Aceites, 59: 97–103.
  • IOOC, 2001a. Method of analysis, preparation of the fatty acid methyl esters from olive oil and olive pomace oil. International Olive Oil Council, COI/T.20/Doc.no. 24. (http://www.internationaloliveoil.org). Access date: 10.10.2018.
  • IOOC, 2001b. Method of analysis, determination of the trans unsaturated fatty acids by capillary column gas chromatography. International Olive Oil Council, COI/T.20/Doc.no. 17. (http://www.internationaloliveoil.org). Access date: 10.10.2018.
  • IOOC, 2016. Trade standard applying to olive oil and olive pomace oil. International Olive Oil Council, COI/T.15/NC No 3/Rev. 11 (http://www.internationaloliveoil.org). Access date: 01.10.2018.
  • IOOC, 2017a. Method of analysis, determination of the difference between actual and theoretical content of triacyglycerols with ECN 42. International Olive Oil Council, COI/T.20/Doc. No 20 /Rev. 4 (http://www.internationaloliveoil.org). Access date: 02.10.2018.
  • IOOC, 2017b. Method of analysis, determination of the composition and content of sterols and triterpene dialcohols by capillary column gas chromatography. International Olive Oil Council, COI/T.20/Doc. No 30/Rev. 2 (http://www.internationaloliveoil.org). Access date: 15.10.2018.
  • Jabeur, H., Zribi, A., Makni, J., Rebai, A., Abdelhedi, R., Bouaziz, M., 2014. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. Journal of Agricultural and Food Chemistry, 62: 4893−4904.
  • Jha, S.N., Jaiswal, P., Grewal, M.K., Gupta, M., Bhardwaj, R., 2016. Detection of adulterants and contaminants in liquid foods—A Review. Critical Reviews in Food Science and Nutrition, 56: 1662–1684.
  • Jimenez-Carvelo, A.M., Osorio, M.T., Koidis, A., Gonzalez-Casado, A., Cuadros-Rodríguez, L., 2017. Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR−ATR and Raman spectroscopy. LWT - Food Science and Technology, 86: 174–184.
  • Kelebek, H., Kesen, S., Selli, S., 2014. Comparative study of bioactive constituents in Turkish olive oils by LC–ESI/MS/MS. International Journal of Food Properties, 18: 2231–2245.
  • Li, Y., Fang, T., Zhu, S., Huang, F., Chen, Z., Wang, Y., 2018. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 189: 37–43.
  • Mariani, C., Bellan, G., Morchio, G., Pellegrino, A., 1999. Free and esterified minor components of olive and hazelnut oils: Their potential utilisation in checking oil blend. Rivista Italiana Delle Sostanze Grasse, 76: 297−305.
  • Meras, I.D., Manzano, J.D., Rodriguez, D.A., De la Pena, A.M., 2018. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification. Talanta, 178: 751–762.
  • Ozulku, G., Yildirim, R.M., Toker, O.S., Karasu, S., Durak, M.Z., 2017. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control, 82: 212–216.
  • Shi, T., Zhu, M.T., Chen, Y., Yan, X.L., Chen, Q., Wu, X.L., Lin, J., Xie, M., 2018. 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils. Food Chemistry, 242: 308–315.
  • Tsopelas, F., Konstantopoulos, D., Kakoulidou, A.T., 2018. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration. Analytica Chimica Acta, 1015: 8−19.

Using chromatographic methods in detection of olive oil adulteration

Year 2019, Volume: 23 Issue: 3, 335 - 344, 19.09.2019
https://doi.org/10.29050/harranziraat.478010

Abstract

In research study, olive oil adulteration with olive pomace oil was monitored by fatty acids, ΔECN42 values and sterol analysis.  To this end, virgin olive oil obtained from cv. Kilis Yaglik (KY) was mixed with olive pomace oil at different proportion (1, 5 and 10 %). Gas Chromatography (GC) was used to analyse fatty acid and sterol compositions. The fatty acids with Equivalent Carbon Number 42 (ECN42) and ΔECN42 values of pure and adulterated oils were also used to determine adulteration. Considering the results of fatty acids analysis, when olive pomace oil was mixed, the ratios of oleic acid and palmitic acid in olive oil, was decreased. The difference of theoretical and experimental ECN42 values (ΔECN42) were increased in adulterated oils.  Beta-sitosterol which is important compound in the sterol composition, increased up to 81.42 % when mixed with 10 % olive pomace oil. Taking into account the Rmar values of the oil samples, adulterated oils displayed higher value than of pure oil. According to PCA analyses, oil samples took placed in three different groups according to fatty acids and TAGs profile, while in four different groups due to sterol composition. In all of the PCA analyzes, pure KY oil was clearly separated from the adulterated oils. 


References

  • Azadmard-Damirchi, S., 2010. Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil. Food Additives & Contaminants, 27: 1–10.
  • Christopoulou, E., Lazaraki, M., Komaitis, M., Kaselimis, K., 2004. Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils. Food Chemistry, 84: 463–474.
  • Continas, A., Martinez, S., Carballo, J., Franco, I., 2008. Detection of contaminations and/or adulterations of the extra virgin olive oil with seeds oils (sunflower and soybean) and olive pomace oil. Grasas y Aceites, 59: 97–103.
  • IOOC, 2001a. Method of analysis, preparation of the fatty acid methyl esters from olive oil and olive pomace oil. International Olive Oil Council, COI/T.20/Doc.no. 24. (http://www.internationaloliveoil.org). Access date: 10.10.2018.
  • IOOC, 2001b. Method of analysis, determination of the trans unsaturated fatty acids by capillary column gas chromatography. International Olive Oil Council, COI/T.20/Doc.no. 17. (http://www.internationaloliveoil.org). Access date: 10.10.2018.
  • IOOC, 2016. Trade standard applying to olive oil and olive pomace oil. International Olive Oil Council, COI/T.15/NC No 3/Rev. 11 (http://www.internationaloliveoil.org). Access date: 01.10.2018.
  • IOOC, 2017a. Method of analysis, determination of the difference between actual and theoretical content of triacyglycerols with ECN 42. International Olive Oil Council, COI/T.20/Doc. No 20 /Rev. 4 (http://www.internationaloliveoil.org). Access date: 02.10.2018.
  • IOOC, 2017b. Method of analysis, determination of the composition and content of sterols and triterpene dialcohols by capillary column gas chromatography. International Olive Oil Council, COI/T.20/Doc. No 30/Rev. 2 (http://www.internationaloliveoil.org). Access date: 15.10.2018.
  • Jabeur, H., Zribi, A., Makni, J., Rebai, A., Abdelhedi, R., Bouaziz, M., 2014. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. Journal of Agricultural and Food Chemistry, 62: 4893−4904.
  • Jha, S.N., Jaiswal, P., Grewal, M.K., Gupta, M., Bhardwaj, R., 2016. Detection of adulterants and contaminants in liquid foods—A Review. Critical Reviews in Food Science and Nutrition, 56: 1662–1684.
  • Jimenez-Carvelo, A.M., Osorio, M.T., Koidis, A., Gonzalez-Casado, A., Cuadros-Rodríguez, L., 2017. Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR−ATR and Raman spectroscopy. LWT - Food Science and Technology, 86: 174–184.
  • Kelebek, H., Kesen, S., Selli, S., 2014. Comparative study of bioactive constituents in Turkish olive oils by LC–ESI/MS/MS. International Journal of Food Properties, 18: 2231–2245.
  • Li, Y., Fang, T., Zhu, S., Huang, F., Chen, Z., Wang, Y., 2018. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 189: 37–43.
  • Mariani, C., Bellan, G., Morchio, G., Pellegrino, A., 1999. Free and esterified minor components of olive and hazelnut oils: Their potential utilisation in checking oil blend. Rivista Italiana Delle Sostanze Grasse, 76: 297−305.
  • Meras, I.D., Manzano, J.D., Rodriguez, D.A., De la Pena, A.M., 2018. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification. Talanta, 178: 751–762.
  • Ozulku, G., Yildirim, R.M., Toker, O.S., Karasu, S., Durak, M.Z., 2017. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control, 82: 212–216.
  • Shi, T., Zhu, M.T., Chen, Y., Yan, X.L., Chen, Q., Wu, X.L., Lin, J., Xie, M., 2018. 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils. Food Chemistry, 242: 308–315.
  • Tsopelas, F., Konstantopoulos, D., Kakoulidou, A.T., 2018. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration. Analytica Chimica Acta, 1015: 8−19.
There are 18 citations in total.

Details

Primary Language English
Subjects Food Engineering, Agricultural Engineering
Journal Section Araştırma Makaleleri
Authors

Songül Kesen 0000-0003-0587-1721

Publication Date September 19, 2019
Submission Date November 2, 2018
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Kesen, S. (2019). Using chromatographic methods in detection of olive oil adulteration. Harran Tarım Ve Gıda Bilimleri Dergisi, 23(3), 335-344. https://doi.org/10.29050/harranziraat.478010

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.