Research Article
BibTex RIS Cite

Classification of Users' Behavioral Approaches in E-Commerce and Customer Segmentation Using Machine Learning Methods

Year 2025, Volume: 18 Issue: 2, 314 - 329, 31.08.2025
https://doi.org/10.17218/hititsbd.1637810

Abstract

The rapid growth of e-commerce and increasing consumer expectations have intensified the need for efficient customer segmentation methods. Traditional segmentation techniques, which often rely on manual and rule-based approaches, fail to address the complexity and scalability required in modern e-commerce. Machine learning algorithms provide a powerful alternative, offering data-driven insights that enable personalized marketing strategies and targeted customer engagement. This study aims to analyze and compare the effectiveness of K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest algorithms in the classification of customer segments in e-commerce. Existing literature suggests various approaches for customer segmentation, but a direct comparison of these machine learning models in an e-commerce context remains limited. This research seeks to fill this gap by evaluating the classification performance of these models and determining their suitability for segmenting online shoppers. The dataset utilized in this study was obtained from Kaggle and contains consumer behavior-related features, including shopping frequency, promotional engagement, spending habits, and security concerns. To determine the optimal number of clusters, Elbow and Silhouette methods were employed. Once the clustering structure was established, the K-Means algorithm was applied to segment customers into distinct groups based on their behavioral patterns. These clusters were then classified using KNN, SVM, and Random Forest, and their performance was assessed using standard classification metrics such as Accuracy, Precision, Recall, and F1-Score. The results revealed that SVM achieved the highest accuracy (95%), making it the most reliable model for customer segmentation. Random Forest closely followed with an accuracy of 93%, demonstrating strong performance while offering higher scalability and lower computational costs. KNN, on the other hand, showed the lowest accuracy (78%), indicating that it may not be the most suitable choice for high-dimensional or large datasets. In addition, SVM and Random Forest consistently outperformed KNN in terms of Precision, Recall, and F1-Score, confirming their superior classification capabilities. In conclusion, this study highlights the importance of selecting the right machine learning model for customer segmentation in e-commerce. SVM is recommended for applications requiring the highest classification accuracy, while Random Forest is better suited for large datasets with high scalability demands. KNN, despite its simplicity, is more appropriate for small-scale segmentation tasks. The findings provide valuable insights for e-commerce businesses seeking to optimize their segmentation strategies through machine learning, ultimately enhancing customer targeting, engagement, and retention.

References

  • Ahmad, I., Basheri, M., Iqbal, M. J., & Rahim, A. (2018). Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE ACCESS, 6, 33789-33795. https://doi.org/10.1109/ACCESS.2018.2841987
  • Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(1), 1-12. https://doi.org/10.3390/electronics9081295
  • Asar, Ç. A. (2024). eBay’de Satılan İlk Ürünün Ne Olduğunu Öğrenince ‘Şaka Herhalde?’ Diyeceksiniz. Erişim adresi: https://www.webtekno.com/ebay-satilan-ilk-urun-h151745.html
  • Chunduru, A., Kishore, A. R., Sasapu, B. K., & Seepana, K. (2024). Multi chronic disease prediction system using CNN and random forest. SN Computer Science, 5(157), 1-13. https://doi.org/10.1007/s42979-023-02521-6
  • Akbulut S. (2006). Veri Madenciliği Teknikleri ile Bir Kozmetik Markanın Ayrılan Müşteri Analizi ve Müşteri Segmentasyonu (Yüksek Lisans Tezi), Gazi Üniversitesi Fen Bilimleri Enstitüsü Endüstri Mühendisliği, Ankara. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=lgu6rrVmt1RZ_Ntn3lVpPw&no=OCDd8HOhVAwmqA4VBI6lGg
  • Cui, M. (2020). Introduction to the K-Means clustering algorithm based on the Elbow method. Accounting, Auditing and Finance, 1, 5-8. https://doi.org/10.23977/accaf.2020.010102
  • Denli, İ. (2021). Görevinden Ayrılan Jeff Bezos’ın İlham Verici Amazon’u Kurma Hikâyesi. Erişim adresi: https://www.webtekno.com/jeff-bezos-amazon-kurulusu-h113225.html
  • Doğanlı B. (2025). Müşteri segmentasyonu ve davranış analizi: Random forest algoritması kullanılarak gelir ve harcama davranışlarının incelenmesi. Business, Economics and Management Research Journal, 8(1), 52-66. https://doi.org/10.58308/bemarej.1646966
  • Gomes, M. A., & Meisen, T. (2023). A review on customer segmentation methods for personalized customer targeting in e-commerce use cases. Information Systems and e-Business Management, 21, 527–570. https://doi.org/10.1007/s10257-023-00640-4
  • Güner, O. O. (2020). Alibaba.com’un İsmi Neden Alibaba? İşte Jack Ma'nın Akılalmaz Başarı Hikayesi. Erişim adresi: https://www.webtekno.com/alibaba-basari-hikayesi-jack-ma-h83302.html
  • Jahan, I., & Sanam, T. F. (2024). A comprehensive framework for customer retention in e-commerce using machine learning based on churn prediction, customer segmentation, and recommendation. Electronic Commerce Research, 1-44. https://doi.org/10.1007/s10660-024-09936-0
  • Kamthania, D., Pahwa, A., & Madhavan, S. S. (2018). Market segmentation analysis and visualization using k-mode clustering algorithm for e-commerce business. Journal of Computing and Information Technology, 26(1), 57–68. https://doi.org/10.20532/cit.2018.1003863
  • Kasana, J., & Chaudhary, N. (2014). A comparative study of eBay and Amazon in online shopping. International Research Journal of Commerce Arts and Science, 5(2), 263-275. https://doi.org/10.32804/CASIRJ
  • Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer segmentation using k-means clustering. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 135-139. https://doi.org/10.1109/CTEMS.2018.8769171
  • Khan, T. A. Sadiq, R., Shahid, Z., Alam, M. M., & Suud, M. M. (2024). Sentiment analysis using support vector machine and random forest. Journal of Informatics and Web Engineering, 3(1), 67-75. https://doi.org/10.33093/jiwe.2024.3.1.5
  • Kumar, S., Rani, R., Pippal, S. K., & Agrawal, R. (2025). Customer segmentation in e-commerce: K-means vs hierarchical clustering. Telecommunication Computing Electronics and Control, 23(1), 119-128. https://doi.org/10.12928/TELKOMNIKA.v23i1.26384
  • Liu, F. (2020). 3D block matching algorithm in concealed image recognition and e-commerce customer segmentation. IEEE Sensors Journal, 20(20), 11761-11769. https://doi.org/10.1109/JSEN.2019.2936169
  • Mahadevan, A. (2025). Snowboard'lardan 160 Milyar Dolara: Shopify'ın Köken Hikayesi. Erişim adresi: https://www.doola.com/tr/blog/from-snowboards-to-160-billion-the-shopify-origin-story/
  • Mishra, M., Chopde, J., Shah, M., Parikh, P., Babu, R. C., & Woo, J. (2019). Big data predictive analysis of Amazon product review. KSII The 14th Asia Pacific International Conference on Information Science and Technology (APIC-IST), 141-147. Erişim adresi: https://www.calstatela.edu/sites/default/files/amazonprodreviewapic-ist2019.pdf
  • Monil, P., Darshan, P., Jecky, R., Vimarsh, C., & Bhatt, B. R. (2020). Customer segmentation using machine learning. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 8(6), 2104-2108. http://doi.org/10.22214/ijraset.2020.6344
  • Namvar, M., & Gholamian, M. R. (2010). A two-phase clustering method for intelligent customer segmentation. 2010 International Conference on Intelligent Systems, Modelling and Simulation, 215-219. https://doi.org/10.1109/ISMS.2010.48
  • Narayana, V. L., Sirisha, S., Divya, G., Pooja, N. L. S., & Nouf, A. (2022). Mall Customer Segmentation Using Machine Learning. Proceedings of the International Conference on Electronics and Renewable Systems (ICEARS 2022), 1280-1288. https://doi.org/10.1109/ICEARS53579.2022.9752447
  • Nazeer, K. A. A., & Sebastian, M. P. (2009). Improving the accuracy and efficiency of the k-means clustering algorithm. Proceedings of the World Congress on Engineering, 1-5. Erişim adresi: https://www.researchgate.net/publication/44260003_Improving_the_Accuracy_and_Efficiency_of_the_k-means_Clustering_Algorithm
  • Noviyanti, C. N., & Alamsyah. (2024). Early detection of diabetes using random forest algorithm. Journal of Information System Exploration and Research, 2(1), 41-48. https://doi.org/10.52465/joiser.v2i1.245
  • Patankar, N., Dixit, S., Bhamare, A., Darpel, A., & Raina, R. (2021). Customer segmentation using machine learning. Recent Trends in Intensive Computing, 239-244. https://doi.org/10.3233/APC210200 Peker, S., Kocyigit, A., & Eren, P. E. (2017). LRFMP model for customer segmentation in the grocery retail industry: A case study. Marketing Intelligence & Planning, 35(4), 544-559. https://doi.org/10.1108/MIP-11-2016-0210
  • Putra, F., Tahiyat, H. F., Ihsan, R. M., & Efrizoni, L. (2024). Application of K-Nearest Neighbor Algorithm Using Wrapper as Preprocessing for Determination of Human Weight Information. Indonesian Journal of Machine Learning and Computer Science Journal, 4, 273-281. https://doi.org/10.57152/malcom.v4i1.1085
  • Rajyalaxmi, M., Vijai, C., Srivastava, K., Kalyan, N., Pravallika, B., & Dutt, A. (2024). Application of machine learning algorithms for customer segmentation in e-commerce management. 2024 International Conference on Science Technology Engineering and Management (ICSTEM), 1-5. https://doi.org/10.1109/ICSTEM61137.2024.10560944
  • Saputra, D. M., Saputra, D., & Oswari, D. L. (2019). Effect of distance metrics in determining k-value in k-means clustering using Elbow and Silhouette method. Advances in Intelligent Systems Research, 172, 341-346. https://doi.org/10.2991/aisr.k.200424.051
  • Santos, V. F., Sabino, L. R., Morais, G. M., & Gonçalves, C. A. (2017). E-commerce: A short history follow-up on possible trends. International Journal of Business Administration, 8(7), 130-138. https://doi.org/10.5430/ijba.v8n7p130
  • Tabianan, K., Velu, S., & Ravi, V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability, 14, 7243. https://doi.org/10.3390/su14127243
  • Tangkere, I. H., & Tumewu, F. J. (2016). The influence of customer perception and customer attitude on customer purchase intention of Zalora online shop in Manado. Jurnal Berkala Ilmiah Efisiensi, 16(4), 709-721. Erişim adresi: https://ejournal.unsrat.ac.id/index.php/jbie/article/view/13708
  • Tanır, D., & Ramazanov, S. (2023). Veri Madenciliği Yöntemleri ile Türkiye’de Fertlerin E-Ticaret Kullanımını Etkileyen Faktörlerin Analizi. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 25(44), 46-65. Erişim adresi: https://dergipark.org.tr/tr/pub/kmusekad/issue/78068/1169823
  • Wu, R. S., & Chou, P. H. (2011). Customer segmentation of multiple category data in e-commerce using a soft-clustering approach. Electronic Commerce Research and Applications, 10, 331–341. https://doi.org/10.1016/j.elerap.2010.11.002

E-Ticarette Kullanıcılarının Davranışsal Yaklaşımlarının Makine Öğrenmesi Yöntemleri ile Sınıflandırılması ve Müşteri Segmentasyonu

Year 2025, Volume: 18 Issue: 2, 314 - 329, 31.08.2025
https://doi.org/10.17218/hititsbd.1637810

Abstract

E-ticaretin hızla büyümesi ve artan tüketici beklentileri, etkili müşteri segmentasyonu yöntemlerine olan ihtiyacı artırmıştır. Geleneksel segmentasyon teknikleri genellikle manuel ve kural tabanlı yaklaşımlara dayandığından, modern e-ticaretin gerektirdiği karmaşıklık ve ölçeklenebilirliği sağlamada yetersiz kalmaktadır. Makine öğrenmesi algoritmaları, veriye dayalı içgörüler sunarak kişiselleştirilmiş pazarlama stratejileri ve hedefe yönelik müşteri etkileşimleri oluşturmayı mümkün kılan güçlü bir alternatif sunmaktadır. Bu çalışma, K-En Yakın Komşu (KNN), Destek Vektör Makineleri (SVM) ve Rastgele Orman (Random Forest) algoritmalarını kullanarak müşteri segmentasyonu sınıflandırma performanslarını analiz etmeyi ve karşılaştırmayı amaçlamaktadır. Mevcut literatürde müşteri segmentasyonu için çeşitli yaklaşımlar önerilmiştir, ancak bu makine öğrenmesi modellerinin e-ticaret bağlamında doğrudan karşılaştırılması sınırlı kalmıştır. Bu araştırma, bu boşluğu doldurmayı hedefleyerek farklı modellerin sınıflandırma performanslarını değerlendirip çevrimiçi alışveriş yapan müşterileri segmente etmede en uygun yöntemi belirlemeyi amaçlamaktadır. Bu çalışmada kullanılan veri seti Kaggle platformundan elde edilmiş olup, alışveriş sıklığı, promosyon katılımı, harcama alışkanlıkları ve güvenlik endişeleri gibi tüketici davranışlarını yansıtan özellikleri içermektedir. En uygun küme sayısını belirlemek için Elbow ve Silhouette yöntemleri kullanılmıştır. Kümeleme yapısı belirlendikten sonra K-Means algoritması uygulanarak müşteriler davranışsal özelliklerine göre farklı gruplara ayrılmıştır. Ardından, KNN, SVM ve Random Forest algoritmaları bu kümeleri sınıflandırmak için eğitilmiş ve performansları Accuracy (Doğruluk), Precision (Kesinlik), Recall (Duyarlılık) ve F1-Skoru gibi metrikler kullanılarak değerlendirilmiştir. Elde edilen sonuçlara göre, SVM modeli %95 doğruluk oranı ile en yüksek performansı sergilemiştir. Random Forest modeli ise %93 doğruluk oranı ile SVM’ye çok yakın sonuçlar üretmiş olup, daha düşük hesaplama maliyeti ve daha yüksek ölçeklenebilirlik avantajı sunmaktadır. KNN modeli ise %78 doğruluk oranı ile en düşük performansı göstermiştir, bu da yüksek boyutlu veya büyük veri setleri için uygun olmadığını göstermektedir. Ek olarak, Precision, Recall ve F1-Skoru açısından da SVM ve Random Forest’ın KNN’den daha üstün olduğu tespit edilmiştir, bu da onların daha güçlü sınıflandırma yeteneklerine sahip olduğunu doğrulamaktadır. Sonuç olarak, bu çalışma e-ticarette müşteri segmentasyonu için doğru makine öğrenmesi modelinin seçilmesinin önemini vurgulamaktadır. SVM, en yüksek doğruluk oranı gerektiren uygulamalar için önerilirken, Random Forest büyük veri setleri ve ölçeklenebilirlik gereksinimleri için daha uygun bir alternatif sunmaktadır. KNN modeli ise küçük ölçekli segmentasyon görevleri için daha uygun olup, büyük veri setleri için ideal olmadığı belirlenmiştir. Bu bulgular, makine öğrenmesi kullanarak müşteri segmentasyonunu optimize etmek isteyen e-ticaret işletmeleri için yol gösterici olacak ve müşteri hedefleme, etkileşim ve sadakat stratejilerini geliştirmeye katkı sağlayacaktır.

References

  • Ahmad, I., Basheri, M., Iqbal, M. J., & Rahim, A. (2018). Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE ACCESS, 6, 33789-33795. https://doi.org/10.1109/ACCESS.2018.2841987
  • Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(1), 1-12. https://doi.org/10.3390/electronics9081295
  • Asar, Ç. A. (2024). eBay’de Satılan İlk Ürünün Ne Olduğunu Öğrenince ‘Şaka Herhalde?’ Diyeceksiniz. Erişim adresi: https://www.webtekno.com/ebay-satilan-ilk-urun-h151745.html
  • Chunduru, A., Kishore, A. R., Sasapu, B. K., & Seepana, K. (2024). Multi chronic disease prediction system using CNN and random forest. SN Computer Science, 5(157), 1-13. https://doi.org/10.1007/s42979-023-02521-6
  • Akbulut S. (2006). Veri Madenciliği Teknikleri ile Bir Kozmetik Markanın Ayrılan Müşteri Analizi ve Müşteri Segmentasyonu (Yüksek Lisans Tezi), Gazi Üniversitesi Fen Bilimleri Enstitüsü Endüstri Mühendisliği, Ankara. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=lgu6rrVmt1RZ_Ntn3lVpPw&no=OCDd8HOhVAwmqA4VBI6lGg
  • Cui, M. (2020). Introduction to the K-Means clustering algorithm based on the Elbow method. Accounting, Auditing and Finance, 1, 5-8. https://doi.org/10.23977/accaf.2020.010102
  • Denli, İ. (2021). Görevinden Ayrılan Jeff Bezos’ın İlham Verici Amazon’u Kurma Hikâyesi. Erişim adresi: https://www.webtekno.com/jeff-bezos-amazon-kurulusu-h113225.html
  • Doğanlı B. (2025). Müşteri segmentasyonu ve davranış analizi: Random forest algoritması kullanılarak gelir ve harcama davranışlarının incelenmesi. Business, Economics and Management Research Journal, 8(1), 52-66. https://doi.org/10.58308/bemarej.1646966
  • Gomes, M. A., & Meisen, T. (2023). A review on customer segmentation methods for personalized customer targeting in e-commerce use cases. Information Systems and e-Business Management, 21, 527–570. https://doi.org/10.1007/s10257-023-00640-4
  • Güner, O. O. (2020). Alibaba.com’un İsmi Neden Alibaba? İşte Jack Ma'nın Akılalmaz Başarı Hikayesi. Erişim adresi: https://www.webtekno.com/alibaba-basari-hikayesi-jack-ma-h83302.html
  • Jahan, I., & Sanam, T. F. (2024). A comprehensive framework for customer retention in e-commerce using machine learning based on churn prediction, customer segmentation, and recommendation. Electronic Commerce Research, 1-44. https://doi.org/10.1007/s10660-024-09936-0
  • Kamthania, D., Pahwa, A., & Madhavan, S. S. (2018). Market segmentation analysis and visualization using k-mode clustering algorithm for e-commerce business. Journal of Computing and Information Technology, 26(1), 57–68. https://doi.org/10.20532/cit.2018.1003863
  • Kasana, J., & Chaudhary, N. (2014). A comparative study of eBay and Amazon in online shopping. International Research Journal of Commerce Arts and Science, 5(2), 263-275. https://doi.org/10.32804/CASIRJ
  • Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer segmentation using k-means clustering. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 135-139. https://doi.org/10.1109/CTEMS.2018.8769171
  • Khan, T. A. Sadiq, R., Shahid, Z., Alam, M. M., & Suud, M. M. (2024). Sentiment analysis using support vector machine and random forest. Journal of Informatics and Web Engineering, 3(1), 67-75. https://doi.org/10.33093/jiwe.2024.3.1.5
  • Kumar, S., Rani, R., Pippal, S. K., & Agrawal, R. (2025). Customer segmentation in e-commerce: K-means vs hierarchical clustering. Telecommunication Computing Electronics and Control, 23(1), 119-128. https://doi.org/10.12928/TELKOMNIKA.v23i1.26384
  • Liu, F. (2020). 3D block matching algorithm in concealed image recognition and e-commerce customer segmentation. IEEE Sensors Journal, 20(20), 11761-11769. https://doi.org/10.1109/JSEN.2019.2936169
  • Mahadevan, A. (2025). Snowboard'lardan 160 Milyar Dolara: Shopify'ın Köken Hikayesi. Erişim adresi: https://www.doola.com/tr/blog/from-snowboards-to-160-billion-the-shopify-origin-story/
  • Mishra, M., Chopde, J., Shah, M., Parikh, P., Babu, R. C., & Woo, J. (2019). Big data predictive analysis of Amazon product review. KSII The 14th Asia Pacific International Conference on Information Science and Technology (APIC-IST), 141-147. Erişim adresi: https://www.calstatela.edu/sites/default/files/amazonprodreviewapic-ist2019.pdf
  • Monil, P., Darshan, P., Jecky, R., Vimarsh, C., & Bhatt, B. R. (2020). Customer segmentation using machine learning. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 8(6), 2104-2108. http://doi.org/10.22214/ijraset.2020.6344
  • Namvar, M., & Gholamian, M. R. (2010). A two-phase clustering method for intelligent customer segmentation. 2010 International Conference on Intelligent Systems, Modelling and Simulation, 215-219. https://doi.org/10.1109/ISMS.2010.48
  • Narayana, V. L., Sirisha, S., Divya, G., Pooja, N. L. S., & Nouf, A. (2022). Mall Customer Segmentation Using Machine Learning. Proceedings of the International Conference on Electronics and Renewable Systems (ICEARS 2022), 1280-1288. https://doi.org/10.1109/ICEARS53579.2022.9752447
  • Nazeer, K. A. A., & Sebastian, M. P. (2009). Improving the accuracy and efficiency of the k-means clustering algorithm. Proceedings of the World Congress on Engineering, 1-5. Erişim adresi: https://www.researchgate.net/publication/44260003_Improving_the_Accuracy_and_Efficiency_of_the_k-means_Clustering_Algorithm
  • Noviyanti, C. N., & Alamsyah. (2024). Early detection of diabetes using random forest algorithm. Journal of Information System Exploration and Research, 2(1), 41-48. https://doi.org/10.52465/joiser.v2i1.245
  • Patankar, N., Dixit, S., Bhamare, A., Darpel, A., & Raina, R. (2021). Customer segmentation using machine learning. Recent Trends in Intensive Computing, 239-244. https://doi.org/10.3233/APC210200 Peker, S., Kocyigit, A., & Eren, P. E. (2017). LRFMP model for customer segmentation in the grocery retail industry: A case study. Marketing Intelligence & Planning, 35(4), 544-559. https://doi.org/10.1108/MIP-11-2016-0210
  • Putra, F., Tahiyat, H. F., Ihsan, R. M., & Efrizoni, L. (2024). Application of K-Nearest Neighbor Algorithm Using Wrapper as Preprocessing for Determination of Human Weight Information. Indonesian Journal of Machine Learning and Computer Science Journal, 4, 273-281. https://doi.org/10.57152/malcom.v4i1.1085
  • Rajyalaxmi, M., Vijai, C., Srivastava, K., Kalyan, N., Pravallika, B., & Dutt, A. (2024). Application of machine learning algorithms for customer segmentation in e-commerce management. 2024 International Conference on Science Technology Engineering and Management (ICSTEM), 1-5. https://doi.org/10.1109/ICSTEM61137.2024.10560944
  • Saputra, D. M., Saputra, D., & Oswari, D. L. (2019). Effect of distance metrics in determining k-value in k-means clustering using Elbow and Silhouette method. Advances in Intelligent Systems Research, 172, 341-346. https://doi.org/10.2991/aisr.k.200424.051
  • Santos, V. F., Sabino, L. R., Morais, G. M., & Gonçalves, C. A. (2017). E-commerce: A short history follow-up on possible trends. International Journal of Business Administration, 8(7), 130-138. https://doi.org/10.5430/ijba.v8n7p130
  • Tabianan, K., Velu, S., & Ravi, V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability, 14, 7243. https://doi.org/10.3390/su14127243
  • Tangkere, I. H., & Tumewu, F. J. (2016). The influence of customer perception and customer attitude on customer purchase intention of Zalora online shop in Manado. Jurnal Berkala Ilmiah Efisiensi, 16(4), 709-721. Erişim adresi: https://ejournal.unsrat.ac.id/index.php/jbie/article/view/13708
  • Tanır, D., & Ramazanov, S. (2023). Veri Madenciliği Yöntemleri ile Türkiye’de Fertlerin E-Ticaret Kullanımını Etkileyen Faktörlerin Analizi. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 25(44), 46-65. Erişim adresi: https://dergipark.org.tr/tr/pub/kmusekad/issue/78068/1169823
  • Wu, R. S., & Chou, P. H. (2011). Customer segmentation of multiple category data in e-commerce using a soft-clustering approach. Electronic Commerce Research and Applications, 10, 331–341. https://doi.org/10.1016/j.elerap.2010.11.002
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Customer Relationship Management
Journal Section Articles
Authors

Serkan Metin 0000-0003-1765-7474

Early Pub Date August 21, 2025
Publication Date August 31, 2025
Submission Date February 11, 2025
Acceptance Date August 15, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Metin, S. (2025). E-Ticarette Kullanıcılarının Davranışsal Yaklaşımlarının Makine Öğrenmesi Yöntemleri ile Sınıflandırılması ve Müşteri Segmentasyonu. Hitit Sosyal Bilimler Dergisi, 18(2), 314-329. https://doi.org/10.17218/hititsbd.1637810
Hitit Journal of Social Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).