Research Article
BibTex RIS Cite

Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2

Year 2023, , 215 - 225, 01.04.2023
https://doi.org/10.15671/hjbc.1232843

Abstract

Increasing number of evidence demonstrated increased SARS-CoV-2 infection risk in cancer. Despite various studies shed light on SARS-CoV-2 mediated pathways upregulated in cancer, there is still ongoing efforts to reveal underlying mechanisms of elevated risk for COVID-19 disease in cancer. Given critical role of CEACAM1 in immune exhaustion and immune deregulation observed both in cancer and COVID-19, systematic characterization of CEACAM1 in different malignancies was performed with an ultimate aim to identify the involvement of CEACAM1 in enhanced COVID-19 susceptibility in cancer patients. Here we show that CEACAM1 expression was upregulated in a number of TCGA samples. In addition, CEACAM1 expression was positively correlated with SARS-CoV-2 infection genes in TCGA samples. Single-cell RNA sequencing analysis results of COVID-19 positive patients indicated upregulation of CEACAM1 expression. Furthermore, CEACAM1 expression was associated with HAVCR2, an immune checkpoint marker, and there was a correlation between CEACAM1 and HAVCR2 levels in different TCGA samples. Collectively, CEACAM1 might provide increased susceptibility of COVID-19 disease in cancer patients which might be explained with its interaction with HAVCR2.

Supporting Institution

TUBITAK

Project Number

118C197

References

  • G. Pascarella, A. Strumia, C. Piliego, F. Bruno, R. del Buono, F. Costa, S. Scarlata, and F. E. Agrò, COVID-19 diagnosis and management: a comprehensive review, J Intern Med, 288 (2020) 192-206.
  • A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and D. Veesler, Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, 181 (2020) 281-292.
  • A. G. Harrison, T. Lin, and P. Wang, Mechanisms of SARS-CoV-2 Transmission and Pathogenesis, Trends Immunol, 41 (2020) 1472-1479.
  • Y. H. Shin, K. Jeong, J. Lee, H. J. Lee, J. Yim, J. Kim, S. Kim, and S. B. Park, Inhibition of ACE2-Spike Interaction by an ACE2 Binder Suppresses SARS-CoV-2 Entry, Angewandte Chemie - International Edition, 61 (2022) 110-1115.
  • R. Zang, M. F. G. Castro, B. T. McCune, Q. Zeng, P. W. Rothlauf, N. M. Sonnek, Z. Liu, K. F. Brulois, X. Wang, H. B. Greenberg, M. S. Diamond, M. A. Ciorba, S. P. J. Whelan, and S. Ding, TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes, Sci Immunol, 5 (2020) 20221-20226.
  • H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng, Z. Zhang, Z. Wu, L. Cheng, D. Shi, X. Lu, J. Lei, M. Crispin, Y. Shi, L. Li, and S. Li, Molecular Architecture of the SARS-CoV-2 Virus, Cell, 183 (2020) 730-738.
  • C. Turnquist, B. M. Ryan, I. Horikawa, B. T. Harris, and C. C. Harris, Cytokine Storms in Cancer and COVID-19, Cancer Cell, 38 (2020) 598-601.
  • F. Yang, S. Shi, J. Zhu, J. Shi, K. Dai, and X. Chen, Clinical characteristics and outcomes of cancer patients with COVID-19, J Med Virol, 92 (2020) 2067-2073.
  • M. H. Antikchi, H. Neamatzadeh, Y. Ghelmani, J. Jafari-Nedooshan, S. A. Dastgheib, S. Kargar, M. Noorishadkam, R. Bahrami, and M. H. Jarahzadeh, The Risk and Prevalence of COVID-19 Infection in Colorectal Cancer Patients: a Systematic Review and Meta-analysis, J Gastrointest Cancer, 52 (2021) 73-79.
  • M. Aznab, Evaluation of COVID 19 infection in 279 cancer patients treated during a 90-day period in 2020 pandemic, Int J Clin Oncol, 25 (2020) 1581-1586.
  • J. Y. Y. Kwan, L. T. Lin, R. Bell, J. P. Bruce, C. Richardson, T. J. Pugh, and F. F. Liu, Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients, Sci Rep, 11 (2021) 4533.
  • S. F. Pedersen and Y. C. Ho, SARS-CoV-2: A storm is raging, Journal of Clinical Investigation, 130 (2020) 2022-2025.
  • C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang, Y. Tao, C. Xie, K. Ma, K. Shang, W. Wang, and D.-S. Tian, Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China, SSRN Electronic Journal, (2020) 762-768.
  • C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 395 (2020) 497-506.
  • M. B. LATIF, S. SHUKLA, P. M. del RIO ESTRADA, S. P. RIBEIRO, R. P. SEKALY, and A. A. SHARMA, Immune mechanisms in cancer patients that lead to poor outcomes of SARS-CoV-2 infection, Translational Research, 241 (2022) 83-95.
  • Y. Meng, J. Sun, G. Zhang, T. Yu, and H. Piao, A Pan-Cancer In Silico Analysis of the COVID-19 Internalization Protease: Transmembrane Proteaseserine-2, Front Genet, 13 (2022) 18991-18999.
  • H. Li, L. Xie, L. Chen, L. Zhang, Y. Han, Z. Yan, and X. Guo, Genomic, epigenomic, and immune subtype analysis of CTSL/B and SARS-CoV-2 receptor ACE2 in pan-cancer, Aging, 12 (2020) 22370-22389.
  • P. Katopodis, V. Anikin, H. S. Randeva, D. A. Spandidos, K. Chatha, I. Kyrou, and E. Karteris, Pan-cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS.CoV.2 infection leading to COVID-19, Int J Oncol, 57 (2020) 533-539.
  • M. A. Temena and A. Acar, Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers, Sci Rep, 12 (2022) 11763.
  • Y.-J. Dai, F. Hu, H. Li, H.-Y. Huang, D.-W. Wang, and Y. Liang, A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection, Ann Transl Med, 8 (2020) 481.
  • M. Rumpret, J. Drylewicz, L. J. E. Ackermans, J. A. M. Borghans, R. Medzhitov, and L. Meyaard, Functional categories of immune inhibitory receptors, Nat Rev Immunol, 20 (2020) 771-780.
  • M. B. Abid, M. Mughal, and M. A. Abid, Coronavirus Disease 2019 (COVID-19) and Immune-Engaging Cancer Treatment, JAMA Oncol, 6 (2020) 1529.
  • S. Vivarelli, L. Falzone, F. Torino, G. Scandurra, G. Russo, R. Bordonaro, F. Pappalardo, D. A. Spandidos, G. Raciti, and M. Libra, Immune-checkpoint inhibitors from cancer to COVID-19: A promising avenue for the treatment of patients with COVID-19 (Review), Int J Oncol, 58 (2021) 145-157.
  • Y.-H. Huang, C. Zhu, Y. Kondo, A. C. Anderson, A. Gandhi, A. Russell, S. K. Dougan, B.-S. Petersen, E. Melum, T. Pertel, K. L. Clayton, M. Raab, Q. Chen, N. Beauchemin, P. J. Yazaki, M. Pyzik, M. A. Ostrowski, J. N. Glickman, C. E. Rudd, H. L. Ploegh, A. Franke, G. A. Petsko, V. K. Kuchroo, and R. S. Blumberg, Erratum: Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion, Nature, 536 (2016) 359.
  • N. Saheb Sharif-Askari, F. Saheb Sharif-Askari, B. Mdkhana, S. al Heialy, H. S. Alsafar, R. Hamoudi, Q. Hamid, and R. Halwani, Enhanced expression of immune checkpoint receptors during SARS-CoV-2 viral infection, Mol Ther Methods Clin Dev, 20 (2021) 109-121.
  • Y. Kimura, R. Tsunedomi, K. Yoshimura, S. Matsukuma, Y. Shindo, H. Matsui, Y. Tokumitsu, S. Yoshida, M. Iida, N. Suzuki, S. Takeda, T. Ioka, S. Hazama, and H. Nagano, Immune Evasion of Hepatoma Cancer Stem-Like Cells from Natural Killer Cells, Ann Surg Oncol, 29 (2022) 7423–7433.
  • N. Kim, D. H. Lee, W. S. Choi, E. Yi, H. J. Kim, J. M. Kim, H. S. Jin, and H. S. Kim, Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors, BMB Rep, 54 (2021) 44-58.
  • J. A. Marin-Acevedo, E. M. O. Kimbrough, and Y. Lou, Next generation of immune checkpoint inhibitors and beyond, J Hematol Oncol, 14 (2021) 45.
  • W. M. Kim, Y. H. Huang, A. Gandhi, and R. S. Blumberg, CEACAM1 structure and function in immunity and its therapeutic implications, Semin Immunol, 42 (2019) 101296.
  • T. Li, J. Fan, B. Wang, N. Traugh, Q. Chen, J. S. Liu, B. Li, and X. S. Liu, TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells, Cancer Res, 77 (2017) 108-110.
  • Q. Lian, S. Wang, G. Zhang, D. Wang, G. Luo, J. Tang, L. Chen, and J. Gu, HCCDB: A Database of Hepatocellular Carcinoma Expression Atlas, Genomics Proteomics Bioinformatics, 16 (2018) 269-275.
  • M. L. Speir, A. Bhaduri, N. S. Markov, P. Moreno, T. J. Nowakowski, I. Papatheodorou, A. A. Pollen, B. J. Raney, L. Seninge, W. J. Kent, and M. Haeussler, UCSC Cell Browser: Visualize your single-cell data, Bioinformatics, 37 (2021) 4578-4580.
  • M. Yoshida, K. B. Worlock, N. Huang, R. G. H. Lindeboom, C. R. Butler, N. Kumasaka, C. Dominguez Conde, L. Mamanova, L. Bolt, L. Richardson, K. Polanski, E. Madissoon, J. L. Barnes, J. Allen-Hyttinen, E. Kilich, B. C. Jones, A. de Wilton, A. Wilbrey-Clark, W. Sungnak, J. P. Pett, J. Weller, E. Prigmore, H. Yung, P. Mehta, A. Saleh, A. Saigal, V. Chu, J. M. Cohen, C. Cane, A. Iordanidou, S. Shibuya, A. K. Reuschl, I. T. Herczeg, A. C. Argento, R. G. Wunderink, S. B. Smith, T. A. Poor, C. A. Gao, J. E. Dematte, G. R. S. Budinger, H. K. Donnelly, N. S. Markov, Z. Lu, G. Reynolds, M. Haniffa, G. S. Bowyer, M. Coates, M. R. Clatworthy, F. J. Calero-Nieto, B. Göttgens, C. O’Callaghan, N. J. Sebire, C. Jolly, P. de Coppi, C. M. Smith, A. v. Misharin, S. M. Janes, S. A. Teichmann, M. Z. Nikolić, and K. B. Meyer, Local and systemic responses to SARS-CoV-2 infection in children and adults, Nature, 602 (2022) 321-327.
  • D. Warde-Farley, S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, C. T. Lopes, A. Maitland, S. Mostafavi, J. Montojo, Q. Shao, G. Wright, G. D. Bader, and Q. Morris, The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res, 38 (2010) 214-220.
  • K. H. Stopsack, L. A. Mucci, E. S. Antonarakis, P. S. Nelson, and P. W. Kantoff, TMPRSS2 and COVID-19: Serendipity or opportunity for intervention?, Cancer Discov, 10 (2020) 779-782.
  • Y. Fu, Y. Cheng, and Y. Wu, Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools, Virol Sin, 35 (2020) 266-271.
  • N. Curdy, O. Lanvin, C. Laurent, J. J. Fournié, and D. M. Franchini, Regulatory Mechanisms of Inhibitory Immune Checkpoint Receptors Expression, Trends Cell Biol, 29 (2019) 777-790.
  • H. Brüssow, Immunology of COVID-19, Environ Microbiol, 22 (2020) 48954908.
  • M. S. Abers, M. S. Lionakis, and D. P. Kontoyiannis, Checkpoint Inhibition and Infectious Diseases: A Good Thing?, Trends Mol Med, 25 (2019) 1080-1093.
  • M. Dankner, S. D. Gray-Owen, Y. H. Huang, R. S. Blumberg, and N. Beauchemin, CEACAM1 as a multi-purpose target for cancer immunotherapy, Oncoimmunology, 6 (2017) 412-419.
  • C. Pilard, M. Ancion, P. Delvenne, G. Jerusalem, P. Hubert, and M. Herfs, Cancer immunotherapy: it’s time to better predict patients’ response, Br J Cancer, 125 (2021) 927-938.
  • L. M. McLane, M. S. Abdel-Hakeem, and E. J. Wherry, CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer, Annu Rev Immunol, 37 (2019) 457-495.
  • Z. Modabber, M. Shahbazi, R. Akbari, M. Bagherzadeh, A. Firouzjahi, and M. Mohammadnia-Afrouzi, TIM-3 as a potential exhaustion marker in CD4+ T cells of COVID-19 patients, Immun Inflamm Dis, 9 (2021) 1707-1715.
  • H. S. C. Wong, C. L. Guo, G. H. Lin, K. Y. Lee, Y. Okada, and W. C. Chang, Transcriptome network analyses in human coronavirus infections suggest a rational use of immunomodulatory drugs for COVID-19 therapy, Genomics, 113 (2021) 564-575.
  • M. Barnova, A. Bobcakova, V. Urdova, R. Kosturiak, L. Kapustova, D. Dobrota, and M. Jesenak, Inhibitory Immune Checkpoint Molecules and Exhaustion of T cells in COVID-19, Physiol Res, 70 (2021) 227-247.
  • Y. Piao and X. Jin, Analysis of Tim-3 as a therapeutic target in prostate cancer, Tumor Biology, 39 (2017) 101104-101108.
  • L. Xu, Y. Huang, L. Tan, W. Yu, D. Chen, C. Lu, J. He, G. Wu, X. Liu, and Y. Zhang, Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma, Int Immunopharmacol, 29 (2015) 635-641.
  • Y. Komohara, T. Morita, D. A. Annan, H. Horlad, K. Ohnishi, S. Yamada, T. Nakayama, S. Kitada, S. Suzu, I. Kinoshita, H. Dosaka-Akita, K. Akashi, M. Takeya, and M. Jinushi, The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas, Cancer Immunol Res, 3 (2015) 999-1007.
  • S. F. Ngiow, B. von Scheidt, H. Akiba, H. Yagita, M. W. L. Teng, and M. J. Smyth, Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors, Cancer Res, 71 (2011) 3540-3551.
  • B. Xu, L. Yuan, Q. Gao, P. Yuan, P. Zhao, H. Yuan, H. Fan, T. Li, P. Qin, L. Han, W. Fang, and Z. Suo, Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer, Oncotarget, 6 (2015) 20592-20603.
  • K. Sakuishi, L. Apetoh, J. M. Sullivan, B. R. Blazar, V. K. Kuchroo, and A. C. Anderson, Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity, Journal of Experimental Medicine, 207 (2010) 2187-2194.
Year 2023, , 215 - 225, 01.04.2023
https://doi.org/10.15671/hjbc.1232843

Abstract

Project Number

118C197

References

  • G. Pascarella, A. Strumia, C. Piliego, F. Bruno, R. del Buono, F. Costa, S. Scarlata, and F. E. Agrò, COVID-19 diagnosis and management: a comprehensive review, J Intern Med, 288 (2020) 192-206.
  • A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and D. Veesler, Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, 181 (2020) 281-292.
  • A. G. Harrison, T. Lin, and P. Wang, Mechanisms of SARS-CoV-2 Transmission and Pathogenesis, Trends Immunol, 41 (2020) 1472-1479.
  • Y. H. Shin, K. Jeong, J. Lee, H. J. Lee, J. Yim, J. Kim, S. Kim, and S. B. Park, Inhibition of ACE2-Spike Interaction by an ACE2 Binder Suppresses SARS-CoV-2 Entry, Angewandte Chemie - International Edition, 61 (2022) 110-1115.
  • R. Zang, M. F. G. Castro, B. T. McCune, Q. Zeng, P. W. Rothlauf, N. M. Sonnek, Z. Liu, K. F. Brulois, X. Wang, H. B. Greenberg, M. S. Diamond, M. A. Ciorba, S. P. J. Whelan, and S. Ding, TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes, Sci Immunol, 5 (2020) 20221-20226.
  • H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng, Z. Zhang, Z. Wu, L. Cheng, D. Shi, X. Lu, J. Lei, M. Crispin, Y. Shi, L. Li, and S. Li, Molecular Architecture of the SARS-CoV-2 Virus, Cell, 183 (2020) 730-738.
  • C. Turnquist, B. M. Ryan, I. Horikawa, B. T. Harris, and C. C. Harris, Cytokine Storms in Cancer and COVID-19, Cancer Cell, 38 (2020) 598-601.
  • F. Yang, S. Shi, J. Zhu, J. Shi, K. Dai, and X. Chen, Clinical characteristics and outcomes of cancer patients with COVID-19, J Med Virol, 92 (2020) 2067-2073.
  • M. H. Antikchi, H. Neamatzadeh, Y. Ghelmani, J. Jafari-Nedooshan, S. A. Dastgheib, S. Kargar, M. Noorishadkam, R. Bahrami, and M. H. Jarahzadeh, The Risk and Prevalence of COVID-19 Infection in Colorectal Cancer Patients: a Systematic Review and Meta-analysis, J Gastrointest Cancer, 52 (2021) 73-79.
  • M. Aznab, Evaluation of COVID 19 infection in 279 cancer patients treated during a 90-day period in 2020 pandemic, Int J Clin Oncol, 25 (2020) 1581-1586.
  • J. Y. Y. Kwan, L. T. Lin, R. Bell, J. P. Bruce, C. Richardson, T. J. Pugh, and F. F. Liu, Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients, Sci Rep, 11 (2021) 4533.
  • S. F. Pedersen and Y. C. Ho, SARS-CoV-2: A storm is raging, Journal of Clinical Investigation, 130 (2020) 2022-2025.
  • C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang, Y. Tao, C. Xie, K. Ma, K. Shang, W. Wang, and D.-S. Tian, Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China, SSRN Electronic Journal, (2020) 762-768.
  • C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 395 (2020) 497-506.
  • M. B. LATIF, S. SHUKLA, P. M. del RIO ESTRADA, S. P. RIBEIRO, R. P. SEKALY, and A. A. SHARMA, Immune mechanisms in cancer patients that lead to poor outcomes of SARS-CoV-2 infection, Translational Research, 241 (2022) 83-95.
  • Y. Meng, J. Sun, G. Zhang, T. Yu, and H. Piao, A Pan-Cancer In Silico Analysis of the COVID-19 Internalization Protease: Transmembrane Proteaseserine-2, Front Genet, 13 (2022) 18991-18999.
  • H. Li, L. Xie, L. Chen, L. Zhang, Y. Han, Z. Yan, and X. Guo, Genomic, epigenomic, and immune subtype analysis of CTSL/B and SARS-CoV-2 receptor ACE2 in pan-cancer, Aging, 12 (2020) 22370-22389.
  • P. Katopodis, V. Anikin, H. S. Randeva, D. A. Spandidos, K. Chatha, I. Kyrou, and E. Karteris, Pan-cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS.CoV.2 infection leading to COVID-19, Int J Oncol, 57 (2020) 533-539.
  • M. A. Temena and A. Acar, Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers, Sci Rep, 12 (2022) 11763.
  • Y.-J. Dai, F. Hu, H. Li, H.-Y. Huang, D.-W. Wang, and Y. Liang, A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection, Ann Transl Med, 8 (2020) 481.
  • M. Rumpret, J. Drylewicz, L. J. E. Ackermans, J. A. M. Borghans, R. Medzhitov, and L. Meyaard, Functional categories of immune inhibitory receptors, Nat Rev Immunol, 20 (2020) 771-780.
  • M. B. Abid, M. Mughal, and M. A. Abid, Coronavirus Disease 2019 (COVID-19) and Immune-Engaging Cancer Treatment, JAMA Oncol, 6 (2020) 1529.
  • S. Vivarelli, L. Falzone, F. Torino, G. Scandurra, G. Russo, R. Bordonaro, F. Pappalardo, D. A. Spandidos, G. Raciti, and M. Libra, Immune-checkpoint inhibitors from cancer to COVID-19: A promising avenue for the treatment of patients with COVID-19 (Review), Int J Oncol, 58 (2021) 145-157.
  • Y.-H. Huang, C. Zhu, Y. Kondo, A. C. Anderson, A. Gandhi, A. Russell, S. K. Dougan, B.-S. Petersen, E. Melum, T. Pertel, K. L. Clayton, M. Raab, Q. Chen, N. Beauchemin, P. J. Yazaki, M. Pyzik, M. A. Ostrowski, J. N. Glickman, C. E. Rudd, H. L. Ploegh, A. Franke, G. A. Petsko, V. K. Kuchroo, and R. S. Blumberg, Erratum: Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion, Nature, 536 (2016) 359.
  • N. Saheb Sharif-Askari, F. Saheb Sharif-Askari, B. Mdkhana, S. al Heialy, H. S. Alsafar, R. Hamoudi, Q. Hamid, and R. Halwani, Enhanced expression of immune checkpoint receptors during SARS-CoV-2 viral infection, Mol Ther Methods Clin Dev, 20 (2021) 109-121.
  • Y. Kimura, R. Tsunedomi, K. Yoshimura, S. Matsukuma, Y. Shindo, H. Matsui, Y. Tokumitsu, S. Yoshida, M. Iida, N. Suzuki, S. Takeda, T. Ioka, S. Hazama, and H. Nagano, Immune Evasion of Hepatoma Cancer Stem-Like Cells from Natural Killer Cells, Ann Surg Oncol, 29 (2022) 7423–7433.
  • N. Kim, D. H. Lee, W. S. Choi, E. Yi, H. J. Kim, J. M. Kim, H. S. Jin, and H. S. Kim, Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors, BMB Rep, 54 (2021) 44-58.
  • J. A. Marin-Acevedo, E. M. O. Kimbrough, and Y. Lou, Next generation of immune checkpoint inhibitors and beyond, J Hematol Oncol, 14 (2021) 45.
  • W. M. Kim, Y. H. Huang, A. Gandhi, and R. S. Blumberg, CEACAM1 structure and function in immunity and its therapeutic implications, Semin Immunol, 42 (2019) 101296.
  • T. Li, J. Fan, B. Wang, N. Traugh, Q. Chen, J. S. Liu, B. Li, and X. S. Liu, TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells, Cancer Res, 77 (2017) 108-110.
  • Q. Lian, S. Wang, G. Zhang, D. Wang, G. Luo, J. Tang, L. Chen, and J. Gu, HCCDB: A Database of Hepatocellular Carcinoma Expression Atlas, Genomics Proteomics Bioinformatics, 16 (2018) 269-275.
  • M. L. Speir, A. Bhaduri, N. S. Markov, P. Moreno, T. J. Nowakowski, I. Papatheodorou, A. A. Pollen, B. J. Raney, L. Seninge, W. J. Kent, and M. Haeussler, UCSC Cell Browser: Visualize your single-cell data, Bioinformatics, 37 (2021) 4578-4580.
  • M. Yoshida, K. B. Worlock, N. Huang, R. G. H. Lindeboom, C. R. Butler, N. Kumasaka, C. Dominguez Conde, L. Mamanova, L. Bolt, L. Richardson, K. Polanski, E. Madissoon, J. L. Barnes, J. Allen-Hyttinen, E. Kilich, B. C. Jones, A. de Wilton, A. Wilbrey-Clark, W. Sungnak, J. P. Pett, J. Weller, E. Prigmore, H. Yung, P. Mehta, A. Saleh, A. Saigal, V. Chu, J. M. Cohen, C. Cane, A. Iordanidou, S. Shibuya, A. K. Reuschl, I. T. Herczeg, A. C. Argento, R. G. Wunderink, S. B. Smith, T. A. Poor, C. A. Gao, J. E. Dematte, G. R. S. Budinger, H. K. Donnelly, N. S. Markov, Z. Lu, G. Reynolds, M. Haniffa, G. S. Bowyer, M. Coates, M. R. Clatworthy, F. J. Calero-Nieto, B. Göttgens, C. O’Callaghan, N. J. Sebire, C. Jolly, P. de Coppi, C. M. Smith, A. v. Misharin, S. M. Janes, S. A. Teichmann, M. Z. Nikolić, and K. B. Meyer, Local and systemic responses to SARS-CoV-2 infection in children and adults, Nature, 602 (2022) 321-327.
  • D. Warde-Farley, S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, C. T. Lopes, A. Maitland, S. Mostafavi, J. Montojo, Q. Shao, G. Wright, G. D. Bader, and Q. Morris, The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res, 38 (2010) 214-220.
  • K. H. Stopsack, L. A. Mucci, E. S. Antonarakis, P. S. Nelson, and P. W. Kantoff, TMPRSS2 and COVID-19: Serendipity or opportunity for intervention?, Cancer Discov, 10 (2020) 779-782.
  • Y. Fu, Y. Cheng, and Y. Wu, Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools, Virol Sin, 35 (2020) 266-271.
  • N. Curdy, O. Lanvin, C. Laurent, J. J. Fournié, and D. M. Franchini, Regulatory Mechanisms of Inhibitory Immune Checkpoint Receptors Expression, Trends Cell Biol, 29 (2019) 777-790.
  • H. Brüssow, Immunology of COVID-19, Environ Microbiol, 22 (2020) 48954908.
  • M. S. Abers, M. S. Lionakis, and D. P. Kontoyiannis, Checkpoint Inhibition and Infectious Diseases: A Good Thing?, Trends Mol Med, 25 (2019) 1080-1093.
  • M. Dankner, S. D. Gray-Owen, Y. H. Huang, R. S. Blumberg, and N. Beauchemin, CEACAM1 as a multi-purpose target for cancer immunotherapy, Oncoimmunology, 6 (2017) 412-419.
  • C. Pilard, M. Ancion, P. Delvenne, G. Jerusalem, P. Hubert, and M. Herfs, Cancer immunotherapy: it’s time to better predict patients’ response, Br J Cancer, 125 (2021) 927-938.
  • L. M. McLane, M. S. Abdel-Hakeem, and E. J. Wherry, CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer, Annu Rev Immunol, 37 (2019) 457-495.
  • Z. Modabber, M. Shahbazi, R. Akbari, M. Bagherzadeh, A. Firouzjahi, and M. Mohammadnia-Afrouzi, TIM-3 as a potential exhaustion marker in CD4+ T cells of COVID-19 patients, Immun Inflamm Dis, 9 (2021) 1707-1715.
  • H. S. C. Wong, C. L. Guo, G. H. Lin, K. Y. Lee, Y. Okada, and W. C. Chang, Transcriptome network analyses in human coronavirus infections suggest a rational use of immunomodulatory drugs for COVID-19 therapy, Genomics, 113 (2021) 564-575.
  • M. Barnova, A. Bobcakova, V. Urdova, R. Kosturiak, L. Kapustova, D. Dobrota, and M. Jesenak, Inhibitory Immune Checkpoint Molecules and Exhaustion of T cells in COVID-19, Physiol Res, 70 (2021) 227-247.
  • Y. Piao and X. Jin, Analysis of Tim-3 as a therapeutic target in prostate cancer, Tumor Biology, 39 (2017) 101104-101108.
  • L. Xu, Y. Huang, L. Tan, W. Yu, D. Chen, C. Lu, J. He, G. Wu, X. Liu, and Y. Zhang, Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma, Int Immunopharmacol, 29 (2015) 635-641.
  • Y. Komohara, T. Morita, D. A. Annan, H. Horlad, K. Ohnishi, S. Yamada, T. Nakayama, S. Kitada, S. Suzu, I. Kinoshita, H. Dosaka-Akita, K. Akashi, M. Takeya, and M. Jinushi, The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas, Cancer Immunol Res, 3 (2015) 999-1007.
  • S. F. Ngiow, B. von Scheidt, H. Akiba, H. Yagita, M. W. L. Teng, and M. J. Smyth, Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors, Cancer Res, 71 (2011) 3540-3551.
  • B. Xu, L. Yuan, Q. Gao, P. Yuan, P. Zhao, H. Yuan, H. Fan, T. Li, P. Qin, L. Han, W. Fang, and Z. Suo, Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer, Oncotarget, 6 (2015) 20592-20603.
  • K. Sakuishi, L. Apetoh, J. M. Sullivan, B. R. Blazar, V. K. Kuchroo, and A. C. Anderson, Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity, Journal of Experimental Medicine, 207 (2010) 2187-2194.
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ahmet Acar 0000-0002-2478-8029

Project Number 118C197
Publication Date April 1, 2023
Acceptance Date February 23, 2023
Published in Issue Year 2023

Cite

APA Acar, A. (2023). Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2. Hacettepe Journal of Biology and Chemistry, 51(2), 215-225. https://doi.org/10.15671/hjbc.1232843
AMA Acar A. Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2. HJBC. April 2023;51(2):215-225. doi:10.15671/hjbc.1232843
Chicago Acar, Ahmet. “Integrative Profiling of CEACAM1 in Different Malignancies With Implications on the SARS-CoV-2 Infection Genes ACE2 and TMPRSS2”. Hacettepe Journal of Biology and Chemistry 51, no. 2 (April 2023): 215-25. https://doi.org/10.15671/hjbc.1232843.
EndNote Acar A (April 1, 2023) Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2. Hacettepe Journal of Biology and Chemistry 51 2 215–225.
IEEE A. Acar, “Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2”, HJBC, vol. 51, no. 2, pp. 215–225, 2023, doi: 10.15671/hjbc.1232843.
ISNAD Acar, Ahmet. “Integrative Profiling of CEACAM1 in Different Malignancies With Implications on the SARS-CoV-2 Infection Genes ACE2 and TMPRSS2”. Hacettepe Journal of Biology and Chemistry 51/2 (April 2023), 215-225. https://doi.org/10.15671/hjbc.1232843.
JAMA Acar A. Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2. HJBC. 2023;51:215–225.
MLA Acar, Ahmet. “Integrative Profiling of CEACAM1 in Different Malignancies With Implications on the SARS-CoV-2 Infection Genes ACE2 and TMPRSS2”. Hacettepe Journal of Biology and Chemistry, vol. 51, no. 2, 2023, pp. 215-2, doi:10.15671/hjbc.1232843.
Vancouver Acar A. Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2. HJBC. 2023;51(2):215-2.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc