Floresans Yöntemler ile Bir Sülfa İlacı ve Pepsin Arasındaki Biyofiziksel Etkileşimler Üzerine Çalışmalar
Year 2026,
Volume: 54 Issue: 1, 57 - 64, 31.12.2025
Elmas Gökoğlu
,
Hülya Bektaş
Abstract
Bir sülfa ilacı olan sülfonamid türevi sülfamerazinin (Smz) pepsin enzimi ile biyofiziksel etkileşimi floresans ve UV absorpsiyon spektroskopileri ile incelenmiştir. Smz'nin pepsine bağlanma modunu araştırmak için kararlı hal ve üç boyutlu (3D) floresans yöntemleri kullanılmıştır ve sonuçlar statik sönümün varlığını ortaya çıkarmıştır. Bağlanma kısım sayıları, bağlanma sabitleri ve termodinamik parametreler farklı sıcaklıklarda hesaplanmıştır. Sonuçlar Smz'nin pepsine kendiliğinden bağlandığını ve hidrofobik/elektrostatik etkileşimlerin önemli rol oynadığını belirtmiştir. 3D spektrumlar, bağlanma modunda pepsin yapısındaki konformasyonel değişiklikleri göstermiştir. Işımasız enerji transferi teorisine dayanarak ilaç ile enzim arasındaki bağlanma mesafesi (r) 3,97 nm olarak hesaplanmıştır. Smz’nin belirlenmesi amacıyla, pepsin varlığında Smz için tespit sınırı (LOD) ve miktar tayin sınırı (LOQ) değerleri sırasıyla 6.54x10-6 M ve 2.18x10-5 M olarak hesaplanmıştır.
References
-
N. Rajendiran, J. Thulasidhasan, Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations, Spectrochim. Acta Part A, 144 (2015) 183-191.
-
A. Casini, A. Scozzafava, A. Mastrolorenzo, T.C. Supuran, Sulfonamides and sulfonylated derivatives as anticancer agents, Curr. Cancer Drug Targets, 2 (2002) 55-75.
-
A.J. Bartlett, V.K. Balakrishnan, J. Toito, L.R. Brown, Toxicity of four sulfonamide antibiotics to the freshwater amphipod Hyalella Azteca, Envin. Toxicol. Chem., 32 (2013) 866-875.
-
A-C. Martel, S. Zeggane, HPLC determination of sulfathiazole in French honeys, J. Liq. Chromatogr. Relat. Technol., 26 (2003) 953-961.
-
S. Geng, G. Liu, W. Li, F. Cui, Molecular interaction of ctDNA and HSA with sulfadiazine sodium by multispectroscopic methods and molecular modeling, Luminescence, 28 (2013) 785-792.
-
X. Du, x. wang, J. Yao, H.Li, Y. Bao, J. Lan, Z. Zhao, W. Zhang, Study on the interaction between sulfamerazine and human serum albumin on molecular level using spectral analysis, Coll. Surf. A: Physicochem. Eng. Asp., 661 (2023) 130917.
-
M.D. Meti, Y. Xu, J. Xie, Y. Chen, Z. Wu, J. Liu, Q. Han, Z. He, Z. Hu, H. Xu, Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin, Mol. Biol. Rep., 45 (2018) 1637-1646.
-
W. Shi, Y. Wang, H. Zhang, Z. Liu, Z. Fei, Probing deep into the binding mechanisms of folic acid with a-amylase, pepsin and trypsin: An experimental and computational study, Food Chem., 226 (2017) 128-134.
-
J. Yu, X. Li, H. Liu, Y. Peng, X. Wang, Y. Xu, Interaction behavior between five flavonoids and pepsin: Spectroscopic analysis and molecular docking, J. Mol. Struct., 1223 (2021) 128978.
-
S. Lian, G. Wang, L. Zhou, D. Yanga, Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin, Luminescence, 28 (2013) 967-972.
-
G. Nan, P. Wang, J. Sun, J. Lv, M. Ding, L. Yang, Y. Li, G. Yang, Spectroscopy and molecular docking study on the interaction of daidzein and genistein with pepsin, Luminescence, 31 (2016) 1524-1531.
-
Z. Suo, X. Ma, Z. Meng, Q. Du, H. Li, Interaction between trelagliptin and pepsin through spectroscopy methods and molecular dynamics simulation, Spectrosc. Lett., 51 (2018) 332-339.
-
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition, Springer, New York, USA, 2006.
-
J.R. Lakowicz, G. Weber, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry, 12 (1973) 4161-4170.
-
X.-Z. Feng, Z. Lin, L.-J. Yang, C. Whang, C.-l. Bai, Investigation of the interaction between acridine orange and bovine serum albumin, Talanta, 47 (1998) 1223-1229.
-
Y. Fang, H. Xu, L. Shen, F. Huang, S. Yibulayin, S. Huang, T. Shengli, Z. Hu, Z. He, F. Li, Y. Li, K. Zhou, K. Study on the mechanism of the interaction between acteoside and pepsin using spectroscopic techniques, Luminescence, 30 (2015) 859-866.
-
X. Li, M. Geng, Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach, Int. J. Biol. Macromol., 85 (2016) 168-178.
-
P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry, 20 (1981) 3096-102.
-
H.J. Zeng, D. Yang, G.Z. Hua, R. Yang, L.B. Qu, Studies on the binding of pepsin with three pyrethroid insecticides by multi-spectroscopic approaches and molecular docking, J. Mol. Recognit., 29 (2016) 476-484.
-
L. Zhao, R. Guo, Q. Sun, J. Lan, H. Li, Interaction between azo dye Acid Red 14 and pepsin by multispectral methods and docking studies. Luminescence, 32 (2017) 1123-1130.
-
O.A. Chaves, B. Iglesias, C. Serpa, Biophysical characterization of the interaction between a transport human plasma protein and the 5,10,15,20-tetra(pyridine-4-yl) porphyrin, Molecules, 27 (2022) 5341.
-
X. Ma, J. He, Y. Huang, Y. Xiao, Q. Wang, H. Li, Investigation and comparison of the binding between tolvaptan and pepsin and trypsin: Multi-spectroscopic approaches and molecular docking, J. Mol. Recognit., 30 (2017) e2598.
-
J. Zhang, S. Zhuang, C. Tong, W. Liu, Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling, J. Agric. Food Chem., 61 (2013) 7203-7211.
-
X. Li, P. Li, Study on the interaction of β-carotene and astaxanthin with trypsin and pepsin by spectroscopic techniques, Luminescence, 31 (2016) 782-792.
-
M.A.G. Soares, P.A. de Aquino, T. Costa, C. Serpa, O.A. Chaves, Insights into the effect of glucose on the binding between human serum albumin and the nonsteroidal anti-inflammatory drug nimesulide, Int. J. Biol. Macromol., 265 (2024) 131148.
-
H. Sahoo, Förster resonance energy transfer-A spectroscopic nanoruler: Principle and applications (Review), J. Photochem. Photobiol. C: Photochem. Rev., 12 (2011) 20-30.
-
B.M. Aydın, M. Acar, M. Arık, Y. Onganer, The fluorescence resonance energy transfer between dye compounds in micellar media, Dyes Pigments, 81 (2009) 156-160.
-
J. Britton, E. Antunes, T. Nyokong, Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines, J. Photochem. Photobiol. A: Chem., 210 (2010) 1-7.
-
N. Janakiraman, A. Mohan, A. Kannan, G. Pennathur, Resonance energy transfer between protein and rhamnolipid capped ZnS quantum dots: Application in in-gel staining of proteins, Spectrochim. Acta Part A, 95 (2012) 478-482.
-
E. Gökoğlu, E. Yılmaz, Fluorescence interaction and determination of sulfathiazole with trypsin, J. Fluoresc., 24 (2014) 1439-1445.
-
C. Zhu, H. Zheng, D. Li, S. Li, J. Xu, Fluorescence quenching method for the determination of sodium dodecyl sulphate with near-infrared hydrophobic dye in the presence of Triton X-100, Spectrochim. Acta Part A, 60 (2004) 3173-3179.
Studies on Biophysical Interactions Between a Sulfa Drug and Pepsin by Fluorescence Methods
Year 2026,
Volume: 54 Issue: 1, 57 - 64, 31.12.2025
Elmas Gökoğlu
,
Hülya Bektaş
Abstract
The biophysical interaction of a sulfa drug, sulfonamide derivative sulfamerazine (Smz) with pepsin enzyme was examined using fluorescence and UV-vis absorption spectroscopies. Fluorimetric methods (steady-state/three dimentional fluorescence) were used to examine the binding properties of Smz to pepsin, and the results showed the formation of a complex with a static quenching. Thermodynamic parameters, binding and quenching constants were calculated at different temperatures. The results showed a spontaneous binding between pepsin and Smz through electrostatic/hydrophobic interactions. 3D spectra indicated the conformational/micro environmental changes in the structure of enzyme. Based on the FRET, the binding distance (r) for the drug-enzyme pair was obtained as 3.97 nm. To determine Smz, the limit of detection (LOD) and limit of quantification (LOQ) of Smz were calculated as 6.54x10-6 M and 2.18x10-5 M in the presence of pepsin.
References
-
N. Rajendiran, J. Thulasidhasan, Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations, Spectrochim. Acta Part A, 144 (2015) 183-191.
-
A. Casini, A. Scozzafava, A. Mastrolorenzo, T.C. Supuran, Sulfonamides and sulfonylated derivatives as anticancer agents, Curr. Cancer Drug Targets, 2 (2002) 55-75.
-
A.J. Bartlett, V.K. Balakrishnan, J. Toito, L.R. Brown, Toxicity of four sulfonamide antibiotics to the freshwater amphipod Hyalella Azteca, Envin. Toxicol. Chem., 32 (2013) 866-875.
-
A-C. Martel, S. Zeggane, HPLC determination of sulfathiazole in French honeys, J. Liq. Chromatogr. Relat. Technol., 26 (2003) 953-961.
-
S. Geng, G. Liu, W. Li, F. Cui, Molecular interaction of ctDNA and HSA with sulfadiazine sodium by multispectroscopic methods and molecular modeling, Luminescence, 28 (2013) 785-792.
-
X. Du, x. wang, J. Yao, H.Li, Y. Bao, J. Lan, Z. Zhao, W. Zhang, Study on the interaction between sulfamerazine and human serum albumin on molecular level using spectral analysis, Coll. Surf. A: Physicochem. Eng. Asp., 661 (2023) 130917.
-
M.D. Meti, Y. Xu, J. Xie, Y. Chen, Z. Wu, J. Liu, Q. Han, Z. He, Z. Hu, H. Xu, Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin, Mol. Biol. Rep., 45 (2018) 1637-1646.
-
W. Shi, Y. Wang, H. Zhang, Z. Liu, Z. Fei, Probing deep into the binding mechanisms of folic acid with a-amylase, pepsin and trypsin: An experimental and computational study, Food Chem., 226 (2017) 128-134.
-
J. Yu, X. Li, H. Liu, Y. Peng, X. Wang, Y. Xu, Interaction behavior between five flavonoids and pepsin: Spectroscopic analysis and molecular docking, J. Mol. Struct., 1223 (2021) 128978.
-
S. Lian, G. Wang, L. Zhou, D. Yanga, Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin, Luminescence, 28 (2013) 967-972.
-
G. Nan, P. Wang, J. Sun, J. Lv, M. Ding, L. Yang, Y. Li, G. Yang, Spectroscopy and molecular docking study on the interaction of daidzein and genistein with pepsin, Luminescence, 31 (2016) 1524-1531.
-
Z. Suo, X. Ma, Z. Meng, Q. Du, H. Li, Interaction between trelagliptin and pepsin through spectroscopy methods and molecular dynamics simulation, Spectrosc. Lett., 51 (2018) 332-339.
-
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition, Springer, New York, USA, 2006.
-
J.R. Lakowicz, G. Weber, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry, 12 (1973) 4161-4170.
-
X.-Z. Feng, Z. Lin, L.-J. Yang, C. Whang, C.-l. Bai, Investigation of the interaction between acridine orange and bovine serum albumin, Talanta, 47 (1998) 1223-1229.
-
Y. Fang, H. Xu, L. Shen, F. Huang, S. Yibulayin, S. Huang, T. Shengli, Z. Hu, Z. He, F. Li, Y. Li, K. Zhou, K. Study on the mechanism of the interaction between acteoside and pepsin using spectroscopic techniques, Luminescence, 30 (2015) 859-866.
-
X. Li, M. Geng, Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach, Int. J. Biol. Macromol., 85 (2016) 168-178.
-
P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry, 20 (1981) 3096-102.
-
H.J. Zeng, D. Yang, G.Z. Hua, R. Yang, L.B. Qu, Studies on the binding of pepsin with three pyrethroid insecticides by multi-spectroscopic approaches and molecular docking, J. Mol. Recognit., 29 (2016) 476-484.
-
L. Zhao, R. Guo, Q. Sun, J. Lan, H. Li, Interaction between azo dye Acid Red 14 and pepsin by multispectral methods and docking studies. Luminescence, 32 (2017) 1123-1130.
-
O.A. Chaves, B. Iglesias, C. Serpa, Biophysical characterization of the interaction between a transport human plasma protein and the 5,10,15,20-tetra(pyridine-4-yl) porphyrin, Molecules, 27 (2022) 5341.
-
X. Ma, J. He, Y. Huang, Y. Xiao, Q. Wang, H. Li, Investigation and comparison of the binding between tolvaptan and pepsin and trypsin: Multi-spectroscopic approaches and molecular docking, J. Mol. Recognit., 30 (2017) e2598.
-
J. Zhang, S. Zhuang, C. Tong, W. Liu, Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling, J. Agric. Food Chem., 61 (2013) 7203-7211.
-
X. Li, P. Li, Study on the interaction of β-carotene and astaxanthin with trypsin and pepsin by spectroscopic techniques, Luminescence, 31 (2016) 782-792.
-
M.A.G. Soares, P.A. de Aquino, T. Costa, C. Serpa, O.A. Chaves, Insights into the effect of glucose on the binding between human serum albumin and the nonsteroidal anti-inflammatory drug nimesulide, Int. J. Biol. Macromol., 265 (2024) 131148.
-
H. Sahoo, Förster resonance energy transfer-A spectroscopic nanoruler: Principle and applications (Review), J. Photochem. Photobiol. C: Photochem. Rev., 12 (2011) 20-30.
-
B.M. Aydın, M. Acar, M. Arık, Y. Onganer, The fluorescence resonance energy transfer between dye compounds in micellar media, Dyes Pigments, 81 (2009) 156-160.
-
J. Britton, E. Antunes, T. Nyokong, Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines, J. Photochem. Photobiol. A: Chem., 210 (2010) 1-7.
-
N. Janakiraman, A. Mohan, A. Kannan, G. Pennathur, Resonance energy transfer between protein and rhamnolipid capped ZnS quantum dots: Application in in-gel staining of proteins, Spectrochim. Acta Part A, 95 (2012) 478-482.
-
E. Gökoğlu, E. Yılmaz, Fluorescence interaction and determination of sulfathiazole with trypsin, J. Fluoresc., 24 (2014) 1439-1445.
-
C. Zhu, H. Zheng, D. Li, S. Li, J. Xu, Fluorescence quenching method for the determination of sodium dodecyl sulphate with near-infrared hydrophobic dye in the presence of Triton X-100, Spectrochim. Acta Part A, 60 (2004) 3173-3179.