Gentiana Dinarica'dan Türetilen Fitokimyasalların Kolorektal Kanser için Potansiyel İlaç Adayları Olarak Hesaplamalı Yaklaşımlarla İncelenmesi
Year 2026,
Volume: 54 Issue: 1, 9 - 19, 31.12.2025
Betül Akçeşme
,
Florina Abazi
,
Adna Hrapovic
,
Selma Kozaric
Abstract
Kolorektal kanser, dünya çapında en ölümcül kanserlerden biridir ve en umut verici sonuçlar için erken müdahale gerektirir. Mevcut tedaviler arasında, metastaz riskini azaltmada etkili olmalarına rağmen, genellikle sağlıklı hücrelere zarar veren ve olumsuz yan etkiler nedeniyle hastada önemli sıkıntıya neden olan kemoterapötik ilaçlar bulunur. Daha az olumsuz etkiye sahip olma eğiliminde olan fitokimyasallar, uygulanabilir alternatif tedavi seçenekleri arasındadır. Bu çalışma, hesaplamalı biyoloji yaklaşımlarını kullanarak Wnt sinyal yolunda yer alan proteinleri hedefleyerek Gentiana dinarica'da bulunan fitokimyasalların kolorektal kanser tedavisi için potansiyelini araştırmaktadır. Sonuçlarımıza göre, β-catenin, DVL1 ve WNT5a proteinlerine karşı en yüksek bağlanma afinitesini gösteren umut verici bir aday olarak gentioside'i belirlerken, isoorientin COX2 proteinine karşı en büyük potansiyeli göstermektedir. Ancak, gentioside ve isoorientin tarafından ilaç benzerliği kurallarının ihlal edilmesi nedeniyle norswertianin ve gentiopikrozid için ileri analizler yapıldı. Bu bileşikler yüksek bağlanma afinitesi ve uygun ilaç benzerliği profilleri sergiler ve bu da onları Wnt yolağı reseptörlerini inhibe etmek için güçlü adaylar yapar. Bu fitokimyasalların kolorektal kanser tedavisindeki etkinliğini doğrulamak için kapsamlı in vitro ve in vivo çalışmalar önerilmektedir.
References
-
C. Mármol, A. Sánchez-de-Diego, E. Pradilla Dieste, M.J. Cerrada, M.J. Rodriguez Yoldi, Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer, Int. J. Mol. Sci., 18 (2017) 197.
-
S. Lotfollahzadeh, A. Recio-Boiles, B. Cagir, Colon Cancer, in: StatPearls, StatPearls Publishing, Treasure Island (FL), USA, 2022.
-
Y. Xi, P. Xu, Global colorectal cancer burden in 2020 and projections to 2040, Transl. Oncol., 14 (2021) 101174.
-
N. Keum, E. Giovannucci, Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies, Nat. Rev. Gastroenterol. Hepatol., 16 (2019) 713-732.
-
World Health Organization, Cancer today, (2022). Available: http://gco.iarc.fr/today/home
-
S. Stintzing, Management of colorectal cancer, F1000Prime Rep, 6 (2014) 108.
-
W.M.C. van den Boogaard, D.S.J. Komninos, W.P. Vermeij, Chemotherapy Side-Effects: Not All DNA Damage Is Equal, Cancers, 14 (2022) 627.
-
K. Nurgali, R.T. Jagoe, R. Abalo, Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae?, Front. Pharmacol., 9 (2018) 245.
-
I.T. Johnson, Phytochemicals and cancer, Proc. Nutr. Soc., 66 (2007) 207-215.
-
N. Mendoza, E.M. Escamilla Silva, Introduction to Phytochemicals: Secondary Metabolites from Plants with Active Principles for Pharmacological Importance, IntechOpen, (2018).
-
S. Yoo, K. Kim, H. Nam, D. Lee, Discovering Health Benefits of Phytochemicals with Integrated Analysis of the Molecular Network, Chemical Properties and Ethnopharmacological Evidence, Nutrients, 10 (2018) 1042.
-
J. Agric, Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways, Available: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b04975
-
J. Liu et al., Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities, Signal Transduct. Target Ther., 7 (2022) 1-23.
-
K. He, W.J. Gan, Wnt/β-catenin signaling pathway in the development and progression of colorectal cancer, Cancer Manag. Res., (2023) 435-448.
-
H. Zhao et al., Wnt signaling in colorectal cancer: pathogenic role and therapeutic target, Mol. Cancer, 21 (2022) 144.
-
Y. Zhang, X. Wang, Targeting the Wnt/β-catenin signaling pathway in cancer, J. Hematol. Oncol., 13 (2020) 165.
-
D. Krstić et al., Phytochemical investigation of Gentiana dinarica, Biochem. Syst. Ecol., 32 (2004) 937-941.
-
Y. Xu et al., Analytical Methods of Phytochemicals from the Genus Gentiana, Molecules, 22 (2017) 2080.
-
F. Mirzaee et al., Medicinal, biological and phytochemical properties of Gentiana species, J. Tradit. Complement. Med., 7 (2017) 400-408.
-
G. Tovilovic-Kovacevic et al., Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line, Phytomedicine, 47 (2018) 151-160.
-
H.M. Berman et al., The Protein Data Bank, Nucleic Acids Res., 28 (2000) 235-242.
-
The UniProt Consortium, UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids Res., 51 (2023) D523-D531.
-
A. Waterhouse et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 46 (2018) W296-W303.
-
J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, 596 (2021) 7873.
-
J. Eberhardt et al., AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings, J. Chem. Inf. Model., 61 (2021) 3891-3898.
-
N. Chikazawa et al., Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells, Anticancer Res., 30 (2010) 2041-2048.
-
Y. Chen, M. Chen, K. Deng, Blocking the Wnt/β-catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies, Int. J. Oncol., 62 (2022) 24.
-
W. Lu et al., Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells, Cell Signal, 24 (2012) 2291-2296.
-
N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminform., 3 (2011) 33.
-
Molinspiration Cheminformatics, Calculation of molecular properties and bioactivity score, Available: https://www.molinspiration.com/cgi-bin/properties
-
A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (2017) 42717.
-
F. Cheng et al., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties, J. Chem. Inf. Model., 52 (2012) 3099-3105.
-
BIOVIA Discovery Studio 2021 Client.
-
J. Petit, N. Meurice, C. Kaiser, G. Maggiora, Softening the Rule of Five--where to draw the line?, Bioorg. Med. Chem., 20 (2012) 5343-5351.
-
F.M. Agwom, E.O. Afolabi, K.J. Bot, N.S. Yakubu, I.J. Olaitan, J.T. Kindala, In silico studies, comparative synthesis and antibacterial activity of some imine derivatives of isonicotinic hydrazide, Org. Med. Chem. Int. J., 8 (2019) 106-113.
-
E.M. Schatoff, B.I. Leach, L.E. Dow, WNT Signaling and Colorectal Cancer, Curr. Colorectal Cancer Rep., 13 (2017) 101-110.
-
Y. Duchartre, Y.-M. Kim, M. Kahn, The Wnt signaling pathway in cancer, Crit. Rev. Oncol. Hematol., 99 (2016) 141-149.
-
Y. Wang, et al., β-Catenin inhibition shapes tumor immunity and synergizes with immunotherapy in colorectal cancer, OncoImmunology, 9 (2020) 1809947.
-
V. Vilchez, L. Turcios, F. Marti, R. Gedaly, Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment, World J. Gastroenterol., 22 (2016) 823-832.
-
A. Ring, et al., CBP/β-Catenin/FOXM1 is a novel therapeutic target in triple negative breast cancer, Cancers, 10 (2018) 25.
-
T. Nagahata et al., Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers, Cancer Sci., 94 (2003) 515-518.
-
K. Mizutani, S. Miyamoto, T. Nagahata, N. Konishi, M. Emi, M. Onda, Upregulation and Overexpression of DVL1, the Human Counterpart of the Drosophila Dishevelled Gene, in Prostate Cancer, Tumori, 91 (2005) 546-551.
-
K. Kumawat, R. Gosens, WNT-5A: signaling and functions in health and disease, Cell. Mol. Life Sci., 73 (2016) 567-587.
-
M.L.P. Bueno, S.T.O. Saad, F.M. Roversi, WNT5A in tumor development and progression: A comprehensive review, Biomed. Pharmacother., 155 (2022) 113599.
-
K. Jin, C. Qian, J. Lin, B. Liu, Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells, Front. Oncol., 13 (2023) 1099811.
-
S. Li, M. Jiang, L. Wang, S. Yu, Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement, Biomed. Pharmacother., 129 (2020) 110389.
-
F. Mirzaee, A. Hosseini, H.B. Jouybari, A. Davoodi, M. Azadbakht, Medicinal, biological and phytochemical properties of Gentiana species, J. Tradit. Complement. Med., 7 (2017) 400-408.
-
V. Mihailović et al., Comparative phytochemical analysis of Gentiana cruciata L. roots and aerial parts, and their biological activities, Ind. Crops Prod., 73 (2015) 49-62.
-
J. Chen, et al., Gentiopicroside ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibiting inflammatory and fibrotic process, Biochem. Biophys. Res. Commun., 495 (2018) 2396–2403.
-
Y. Guo, P. Gao, W. Deng, S. Wang, Doxorubicin-induced Chronic Heart Failure is Alleviated by Gentiopicroside by Inhibiting Oxidative Stress and Inflammation, Ind. J. Pharm. Edu. Res., 57 (2023) 890-897.
-
L. Antoniadi et al., Gentiopicroside—An Insight into Its Pharmacological Significance and Future Perspectives, Cells, 13 (2024) 70.
-
X. Chi, F. Zhang, Q. Gao, R. Xing, S. Chen, A Review on the Ethnomedicinal Usage, Phytochemistry, and Pharmacological Properties of Gentianeae (Gentianaceae) in Tibetan Medicine, Plants, 10 (2021) 2383.
-
G. Tovilovic-Kovacevic et al., Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line, Phytomedicine, 47 (2018) 151-160.
Investigation of phytochemicals derived from Gentiana dinarica as potential drug candidates for colorectal cancer by computational approaches
Year 2026,
Volume: 54 Issue: 1, 9 - 19, 31.12.2025
Betül Akçeşme
,
Florina Abazi
,
Adna Hrapovic
,
Selma Kozaric
Abstract
Colorectal cancer is one of the deadliest cancers worldwide, necessitating early intervention for the most promising outcomes. Current treatments include chemotherapeutic drugs, which, although effective in reducing the risk of metastasis, often harm healthy cells and cause significant patient distress due to adverse side effects. Phytochemicals, which tend to have fewer negative effects, may serve as viable alternative treatment options. This study investigates the potential of phytochemicals derived from Gentiana dinarica for colorectal cancer treatment by targeting proteins involved in the Wnt signaling pathway using computational biology approaches.
Our results identify gentioside as a promising candidate, showing the highest binding affinity toward β-catenin, DVL1, and WNT5a proteins, while isoorientin demonstrates the greatest potential against the COX2 protein. However, due to violations of drug-likeness rules by gentioside and isoorientin, norswertianin and gentiopicroside were further analyzed. These compounds exhibit high binding affinity and favorable drug-likeness profiles, making them strong candidates for inhibiting Wnt pathway receptors. Comprehensive in vitro and in vivo studies are recommended to validate the effectiveness of these phytochemicals in the treatment of colorectal cancer.
Thanks
The authors gratefully acknowledge Muhammed Yasir Goz of the Visual Arts and Communication Design program at the International University of Sarajevo for his assistance in editing the figures presented in this article.
References
-
C. Mármol, A. Sánchez-de-Diego, E. Pradilla Dieste, M.J. Cerrada, M.J. Rodriguez Yoldi, Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer, Int. J. Mol. Sci., 18 (2017) 197.
-
S. Lotfollahzadeh, A. Recio-Boiles, B. Cagir, Colon Cancer, in: StatPearls, StatPearls Publishing, Treasure Island (FL), USA, 2022.
-
Y. Xi, P. Xu, Global colorectal cancer burden in 2020 and projections to 2040, Transl. Oncol., 14 (2021) 101174.
-
N. Keum, E. Giovannucci, Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies, Nat. Rev. Gastroenterol. Hepatol., 16 (2019) 713-732.
-
World Health Organization, Cancer today, (2022). Available: http://gco.iarc.fr/today/home
-
S. Stintzing, Management of colorectal cancer, F1000Prime Rep, 6 (2014) 108.
-
W.M.C. van den Boogaard, D.S.J. Komninos, W.P. Vermeij, Chemotherapy Side-Effects: Not All DNA Damage Is Equal, Cancers, 14 (2022) 627.
-
K. Nurgali, R.T. Jagoe, R. Abalo, Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae?, Front. Pharmacol., 9 (2018) 245.
-
I.T. Johnson, Phytochemicals and cancer, Proc. Nutr. Soc., 66 (2007) 207-215.
-
N. Mendoza, E.M. Escamilla Silva, Introduction to Phytochemicals: Secondary Metabolites from Plants with Active Principles for Pharmacological Importance, IntechOpen, (2018).
-
S. Yoo, K. Kim, H. Nam, D. Lee, Discovering Health Benefits of Phytochemicals with Integrated Analysis of the Molecular Network, Chemical Properties and Ethnopharmacological Evidence, Nutrients, 10 (2018) 1042.
-
J. Agric, Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways, Available: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b04975
-
J. Liu et al., Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities, Signal Transduct. Target Ther., 7 (2022) 1-23.
-
K. He, W.J. Gan, Wnt/β-catenin signaling pathway in the development and progression of colorectal cancer, Cancer Manag. Res., (2023) 435-448.
-
H. Zhao et al., Wnt signaling in colorectal cancer: pathogenic role and therapeutic target, Mol. Cancer, 21 (2022) 144.
-
Y. Zhang, X. Wang, Targeting the Wnt/β-catenin signaling pathway in cancer, J. Hematol. Oncol., 13 (2020) 165.
-
D. Krstić et al., Phytochemical investigation of Gentiana dinarica, Biochem. Syst. Ecol., 32 (2004) 937-941.
-
Y. Xu et al., Analytical Methods of Phytochemicals from the Genus Gentiana, Molecules, 22 (2017) 2080.
-
F. Mirzaee et al., Medicinal, biological and phytochemical properties of Gentiana species, J. Tradit. Complement. Med., 7 (2017) 400-408.
-
G. Tovilovic-Kovacevic et al., Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line, Phytomedicine, 47 (2018) 151-160.
-
H.M. Berman et al., The Protein Data Bank, Nucleic Acids Res., 28 (2000) 235-242.
-
The UniProt Consortium, UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids Res., 51 (2023) D523-D531.
-
A. Waterhouse et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 46 (2018) W296-W303.
-
J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, 596 (2021) 7873.
-
J. Eberhardt et al., AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings, J. Chem. Inf. Model., 61 (2021) 3891-3898.
-
N. Chikazawa et al., Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells, Anticancer Res., 30 (2010) 2041-2048.
-
Y. Chen, M. Chen, K. Deng, Blocking the Wnt/β-catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies, Int. J. Oncol., 62 (2022) 24.
-
W. Lu et al., Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells, Cell Signal, 24 (2012) 2291-2296.
-
N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminform., 3 (2011) 33.
-
Molinspiration Cheminformatics, Calculation of molecular properties and bioactivity score, Available: https://www.molinspiration.com/cgi-bin/properties
-
A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (2017) 42717.
-
F. Cheng et al., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties, J. Chem. Inf. Model., 52 (2012) 3099-3105.
-
BIOVIA Discovery Studio 2021 Client.
-
J. Petit, N. Meurice, C. Kaiser, G. Maggiora, Softening the Rule of Five--where to draw the line?, Bioorg. Med. Chem., 20 (2012) 5343-5351.
-
F.M. Agwom, E.O. Afolabi, K.J. Bot, N.S. Yakubu, I.J. Olaitan, J.T. Kindala, In silico studies, comparative synthesis and antibacterial activity of some imine derivatives of isonicotinic hydrazide, Org. Med. Chem. Int. J., 8 (2019) 106-113.
-
E.M. Schatoff, B.I. Leach, L.E. Dow, WNT Signaling and Colorectal Cancer, Curr. Colorectal Cancer Rep., 13 (2017) 101-110.
-
Y. Duchartre, Y.-M. Kim, M. Kahn, The Wnt signaling pathway in cancer, Crit. Rev. Oncol. Hematol., 99 (2016) 141-149.
-
Y. Wang, et al., β-Catenin inhibition shapes tumor immunity and synergizes with immunotherapy in colorectal cancer, OncoImmunology, 9 (2020) 1809947.
-
V. Vilchez, L. Turcios, F. Marti, R. Gedaly, Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment, World J. Gastroenterol., 22 (2016) 823-832.
-
A. Ring, et al., CBP/β-Catenin/FOXM1 is a novel therapeutic target in triple negative breast cancer, Cancers, 10 (2018) 25.
-
T. Nagahata et al., Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers, Cancer Sci., 94 (2003) 515-518.
-
K. Mizutani, S. Miyamoto, T. Nagahata, N. Konishi, M. Emi, M. Onda, Upregulation and Overexpression of DVL1, the Human Counterpart of the Drosophila Dishevelled Gene, in Prostate Cancer, Tumori, 91 (2005) 546-551.
-
K. Kumawat, R. Gosens, WNT-5A: signaling and functions in health and disease, Cell. Mol. Life Sci., 73 (2016) 567-587.
-
M.L.P. Bueno, S.T.O. Saad, F.M. Roversi, WNT5A in tumor development and progression: A comprehensive review, Biomed. Pharmacother., 155 (2022) 113599.
-
K. Jin, C. Qian, J. Lin, B. Liu, Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells, Front. Oncol., 13 (2023) 1099811.
-
S. Li, M. Jiang, L. Wang, S. Yu, Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement, Biomed. Pharmacother., 129 (2020) 110389.
-
F. Mirzaee, A. Hosseini, H.B. Jouybari, A. Davoodi, M. Azadbakht, Medicinal, biological and phytochemical properties of Gentiana species, J. Tradit. Complement. Med., 7 (2017) 400-408.
-
V. Mihailović et al., Comparative phytochemical analysis of Gentiana cruciata L. roots and aerial parts, and their biological activities, Ind. Crops Prod., 73 (2015) 49-62.
-
J. Chen, et al., Gentiopicroside ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibiting inflammatory and fibrotic process, Biochem. Biophys. Res. Commun., 495 (2018) 2396–2403.
-
Y. Guo, P. Gao, W. Deng, S. Wang, Doxorubicin-induced Chronic Heart Failure is Alleviated by Gentiopicroside by Inhibiting Oxidative Stress and Inflammation, Ind. J. Pharm. Edu. Res., 57 (2023) 890-897.
-
L. Antoniadi et al., Gentiopicroside—An Insight into Its Pharmacological Significance and Future Perspectives, Cells, 13 (2024) 70.
-
X. Chi, F. Zhang, Q. Gao, R. Xing, S. Chen, A Review on the Ethnomedicinal Usage, Phytochemistry, and Pharmacological Properties of Gentianeae (Gentianaceae) in Tibetan Medicine, Plants, 10 (2021) 2383.
-
G. Tovilovic-Kovacevic et al., Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line, Phytomedicine, 47 (2018) 151-160.