Research Article
BibTex RIS Cite

Dinamik 3B Meme Tümörü Modelinde Oleuropein Kanser Köklülüğünü Azaltmaktadır

Year 2026, Volume: 54 Issue: 1, 47 - 55, 31.12.2025
https://doi.org/10.15671/hjbc.1743955

Abstract

Kanser kök hücrelerinin (KKH) tümör mikro çevresiyle etkileşiminin araştırılması,çeşitli hücresel ve moleküler adaptasyon mekanizmaları aracılığıyla anjiyogenez ve metastazı desteklemedeki rollerine dair önemli bilgiler sağlar. Bu çalışmada, oleuropein (OLE) ile hedefli tedaviden sonra KKH'lerin biyolojik yanıtlarını üç boyutlu (3B) bir mikro çevrede değerlendirmeyi amaçladık. Sferoid yapılarda apoptotik aktiviteyi değerlendirmek için TUNEL testi kullanıldı. OLE tedavisinin ardından, hem statik hem de dinamik kültürler OCT3/4, NANOG, SOX2, SURVIVIN, CYCLIN-D1 ve p21 ekspresyonunun arttığını RT-qPCR ile gösterdik. Bu bulgular topluca, OLE'nin kök hücreler üzerindeki anti-proliferatif ve pro-apoptotik etkilerini vurgulamaktadır.

Project Number

TSA-2019-18405

References

  • L. Yang, P. Shi, G. Zhao, J. Xu, W. Peng, J. Zhang, G. Zhang, X. Wang, Z. Dong, F. Chen, H. Cui, Targeting cancer stem cell pathways for cancer therapy, Signal Transduct. Target Ther., 5(1) (2020) 8.
  • R.X. Huang, E.K. Rofstad, Cancer stem cells (CSCs), cervical CSCs and targeted therapies, Oncotarget, 8(21) (2017) 35351-35367.
  • J. Stingl, Detection and analysis of mammary gland stem cells, J Pathol., 217(2) (2009) 229-241.
  • D.R. Pattabiraman, R.A. Weinberg, Tackling the cancer stem cells - what challenges do they pose?, Nat. Rev. Drug Discov., 13(7) (2014) 497-512.
  • Z.J. Yang, R.J. Wechsler-Reya, Hit ‘em where they live: targeting the cancer stem cell niche, Cancer Cell, 11(1) (2007) 3-5.
  • J. Yu, W. Huang, The Progress and Clinical Application of Breast Cancer Organoids, Int. J. Stem Cells, 13(3) (2020) 295- 304.
  • S.I. Djomehri, B. Burman, M.E. Gonzalez, S. Takayama, C.G. Kleer, A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer, J. Cell Commun. Signal., 13(1) (2019) 129-143.
  • C. Fischbach, R. Chen, T. Matsumoto, T. Schmelzle, J.S. Brugge, P.J. Polverini, D.J. Mooney, Engineering tumors with 3D scaffolds, Nat. Methods, 4(10) (2007) 855-60.
  • V. Harma, J. Virtanen, R. Makela, A. Happonen, J.P. Mpindi, M. Knuuttila, P. Kohonen, J. Lotjonen, O. Kallioniemi, M. Nees, A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses, PLoS One, 5(5) (2010) e10431.
  • R. Poincloux, O. Collin, F. Lizarraga, M. Romao, M. Debray, M. Piel, P. Chavrier, Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel, Proc. Natl. Acad. Sci. U.S.A., 108(5) (2011) 1943-8.
  • C. Fischbach, H.J. Kong, S.X. Hsiong, M.B. Evangelista, W. Yuen, D.J. Mooney, Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement, P. Natl. Acad. Sci. U.S.A., 106(2) (2009) 399-404.
  • L.A. Gurski, A.K. Jha, C. Zhang, X.Q. Jia, M.C. Farach-Carson, Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells, Biomaterials, 30(30) (2009) 6076-6085.
  • H.K. Hamdi, R. Castellon, Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor, Biochem. Biophys. Res. Commun., 334(3) (2005) 769-78.
  • J. Han, T.P. Talorete, P. Yamada, H. Isoda, Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells, Cytotechnology, 59(1) (2009) 45-53.
  • H.Y. Lu, J.S. Zhu, Z. Zhang, W.J. Shen, S. Jiang, Y.F. Long, B. Wu, T. Ding, F. Huan, S.L. Wang, Hydroxytyrosol and Oleuropein Inhibit Migration and Invasion of MDA-MB-231 Triple- Negative Breast Cancer Cell via Induction of Autophagy, Anti-cancer Agents Med. Chem., 19(16) (2019) 1983-1990.
  • S.S. Messeha, N.O. Zarmouh, A. Asiri, K.F.A. Soliman, Gene Expression Alterations Associated with Oleuropein-Induced Antiproliferative Effects and S-Phase Cell Cycle Arrest in Triple-Negative Breast Cancer Cells, Nutrients, 12(12) (2020) 3755.
  • M.H. Elamin, M.H. Daghestani, S.A. Omer, M.A. Elobeid, P. Virk, E.M. Al-Olayan, Z.K. Hassan, O.B. Mohammed, A. Aboussekhra, Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells, Food Chem. Toxicol., 53 (2013) 310-6.
  • S. Asgharzade, S.H. Sheikhshabani, E. Ghasempour, R. Heidari, S. Rahmati, M. Mohammadi, A. Jazaeri, Z. Amini- Farsani, The effect of oleuropein on apoptotic pathway regulators in breast cancer cells, Eur. J. Pharmacol., 886 (2020) 173509.
  • G. Tezcan, M.O. Taskapilioglu, B. Tunca, A. Bekar, H. Demirci, H. Kocaeli, S.A. Aksoy, U. Egeli, G. Cecener, S. Tolunay, Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro, Biomed. Pharmacother., 90 (2017) 713-723.
  • Q.R. Guo, L.L. Zhang, J.F. Liu, Z. Li, J.J. Li, W.M. Zhou, H. Wang, J.Q. Li, D.Y. Liu, X.Y. Yu, J.Y. Zhang, Multifunctional microfluidic chip for cancer diagnosis and treatment, Nanotheranostics, 5(1) (2021) 73-89.
  • S. Chakrabarty, W.F. Quiros-Solano, M.M.P. Kuijten, B. Haspels, S. Mallya, C.S.Y. Lo, A. Othman, C. Silvestri, A. van de Stolpe, N. Gaio, H. Odijk, M. van de Ven, C.M.A. de Ridder, W.M. van Weerden, J. Jonkers, R. Dekker, N. Taneja, R. Kanaar, D.C. van Gent, A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture, Cancer Res., 82(3) (2022) 510-520.
  • J. Zhai, C. Li, H. Li, S. Yi, N. Yang, K. Miao, C. Deng, Y. Jia, P.I. Mak, R.P. Martins, Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics, Lab Chip, 21(24) (2021) 4749-4759.
  • O. Altundag-Erdogan, R. Tutar, E. Yuce, B. Celebi-Saltik, Targeting resistant breast cancer stem cells in a three- dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles, Daru J. Pharm. Sci., (2024) 2(2) 471-483.
  • A.R. Aref, R.Y. Huang, W. Yu, K.N. Chua, W. Sun, T.Y. Tu, J. Bai, W.J. Sim, I.K. Zervantonakis, J.P. Thiery, R.D. Kamm, Screening therapeutic EMT blocking agents in a three- dimensional microenvironment, Integr. Biol. (Camb.), 5(2) (2013) 381-9.
  • D.S. Reynolds, K.M. Tevis, W.A. Blessing, Y.L. Colson, M.H. Zaman, M.W. Grinstaff, Breast Cancer Spheroids Reveal a Differential Cancer Stem Cell Response to Chemotherapeutic Treatment, Sci. Rep., 7(1) (2017) 10382.
  • M.M. Matin, J.R. Walsh, P.J. Gokhale, J.S. Draper, A.R. Bahrami, I. Morton, H.D. Moore, P.W. Andrews, Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells, Stem Cells, 22(5) (2004) 659-68.
  • A.C. Hepburn, R.E. Steele, R. Veeratterapillay, L. Wilson, E.E. Kounatidou, A. Barnard, P. Berry, J.R. Cassidy, M. Moad, A. El-Sherif, L. Gaughan, I.G. Mills, C.N. Robson, R. Heer, The induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance, Oncogene, 38(22) (2019) 4412-4424.
  • G.Q. Ling, D.B. Chen, B.Q. Wang, L.S. Zhang, Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines, Oncol. Lett., 4(6) (2012) 1264-1268.
  • Y. Namba, C. Sogawa, Y. Okusha, H. Kawai, M. Itagaki, K. Ono, J. Murakami, E. Aoyama, K. Ohyama, J.I. Asaumi, M. Takigawa, K. Okamoto, S.K. Calderwood, K.I. Kozaki, T. Eguchi, Depletion of Lipid Efflux Pump ABCG1 Triggers the Intracellular Accumulation of Extracellular Vesicles and Reduces Aggregation and Tumorigenesis of Metastatic Cancer Cells, Front. Oncol., 8 (2018) 376.
  • R.D. Sicchieri, W.A. da Silveira, L.R.M. Mandarano, T.M.G. de Oliveira, H.H.A. Carrara, V.F. Muglia, J.M. de Andrade, D.G. Tiezzi, ABCG2 is a potential marker of tumor-initiating cells in breast cancer, Tumor Biol., 36(12) (2015) 9233-9243.
  • J. Calahorra, E. Martinez-Lara, J.M. Granadino-Roldan, J.M. Marti, A. Canuelo, S. Blanco, F.J. Oliver, E. Siles, Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells, Sci. Rep-Uk., 10(1) (2020) 6361.
  • B. Corominas-Faja, E. Cuyas, J. Lozano-Sanchez, S. Cufi, S. Verdura, S. Fernandez-Arroyo, I. Borras-Linares, B. Martin-Castillo, A.G. Martin, R. Lupu, A. Nonell-Canals, M. Sanchez-Martinez, V. Micol, J. Joven, A. Segura-Carretero, J.A. Menendez, Extra-virgin olive oil contains a metabolo- epigenetic inhibitor of cancer stem cells, Carcinogenesis, 39(4) (2018) 601-613.
  • O. Leis, A. Eguiara, E. Lopez-Arribillaga, M.J. Alberdi, S. Hernandez-Garcia, K. Elorriaga, A. Pandiella, R. Rezola, A.G. Martin, Sox2 expression in breast tumours and activation in breast cancer stem cells, Oncogene, 31(11) (2012) 1354-65.
  • S. Erdogan, O. Doganlar, Z.B. Doganlar, R. Serttas, K. Turkekul, I. Dibirdik, A. Bilir, The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-kappaB signaling, Life Sci., 162 (2016) 77-86.
  • C.Y. Tian, D. Huang, Y.L. Yu, J.H. Zhang, Q.X. Fang, C. Xie, ABCG1 as a potential oncogene in lung cancer, Exp. Ther. Med., 13(6) (2017) 3189-3194.

Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model

Year 2026, Volume: 54 Issue: 1, 47 - 55, 31.12.2025
https://doi.org/10.15671/hjbc.1743955

Abstract

Investigating the interaction of cancer stem cells (CSCs) with the tumor microenvironment provides critical insights into their roles in promoting angiogenesis and metastasis through various cellular and molecular adaptation mechanisms, including survival, maintenance of stemness, dormancy, and treatment response. In the present study, we aimed to evaluate the biological responses of CSCs following targeted treatment with phenolic oleuropein (OLE), a glycosylated seco-iridoid compound, within a three-dimensional (3D) microenvironment. CD44⁺/CD24⁻/low CSCs were isolated from the MCF-7 cell line using magnetic-activated cell sorting (MACS). The expression levels of stemness-related genes (OCT3/4, NANOG, SOX2) and drug resistance markers (ABCG1, ABCG2) were assessed in both MCF-7 cells and CSCs using RT-qPCR and the spheroid structures were further evaluated using the TUNEL assay to assess apoptotic activity. CSCs exhibited significantly elevated expression of ABCG1 and stemness markers (OCT3/4, NANOG, SOX2) compared to parental MCF-7 cells. Following OLE treatment, both static and dynamic cultures demonstrated increased expression of OCT3/4, NANOG, SOX2, SURVIVIN, CYCLIN-D1, and p21. Notably, while untreated cells expressed ABCG1 and ABCG2, these genes were not detectable in OLE-treated cells under either culture condition. Collectively, these findings underscore the anti-proliferative and pro-apoptotic effects of OLE on CSCs and highlight its potential to counteract drug resistance mechanisms within a biomimetic 3D microenvironment.

Ethical Statement

Ethical declaration is not required due to the use of cell lines in the study.

Supporting Institution

Hacettepe University

Project Number

TSA-2019-18405

Thanks

This work was supported by Hacettepe University Scientific Research and Projects Unit, Project No: TSA-2019-18405.

References

  • L. Yang, P. Shi, G. Zhao, J. Xu, W. Peng, J. Zhang, G. Zhang, X. Wang, Z. Dong, F. Chen, H. Cui, Targeting cancer stem cell pathways for cancer therapy, Signal Transduct. Target Ther., 5(1) (2020) 8.
  • R.X. Huang, E.K. Rofstad, Cancer stem cells (CSCs), cervical CSCs and targeted therapies, Oncotarget, 8(21) (2017) 35351-35367.
  • J. Stingl, Detection and analysis of mammary gland stem cells, J Pathol., 217(2) (2009) 229-241.
  • D.R. Pattabiraman, R.A. Weinberg, Tackling the cancer stem cells - what challenges do they pose?, Nat. Rev. Drug Discov., 13(7) (2014) 497-512.
  • Z.J. Yang, R.J. Wechsler-Reya, Hit ‘em where they live: targeting the cancer stem cell niche, Cancer Cell, 11(1) (2007) 3-5.
  • J. Yu, W. Huang, The Progress and Clinical Application of Breast Cancer Organoids, Int. J. Stem Cells, 13(3) (2020) 295- 304.
  • S.I. Djomehri, B. Burman, M.E. Gonzalez, S. Takayama, C.G. Kleer, A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer, J. Cell Commun. Signal., 13(1) (2019) 129-143.
  • C. Fischbach, R. Chen, T. Matsumoto, T. Schmelzle, J.S. Brugge, P.J. Polverini, D.J. Mooney, Engineering tumors with 3D scaffolds, Nat. Methods, 4(10) (2007) 855-60.
  • V. Harma, J. Virtanen, R. Makela, A. Happonen, J.P. Mpindi, M. Knuuttila, P. Kohonen, J. Lotjonen, O. Kallioniemi, M. Nees, A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses, PLoS One, 5(5) (2010) e10431.
  • R. Poincloux, O. Collin, F. Lizarraga, M. Romao, M. Debray, M. Piel, P. Chavrier, Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel, Proc. Natl. Acad. Sci. U.S.A., 108(5) (2011) 1943-8.
  • C. Fischbach, H.J. Kong, S.X. Hsiong, M.B. Evangelista, W. Yuen, D.J. Mooney, Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement, P. Natl. Acad. Sci. U.S.A., 106(2) (2009) 399-404.
  • L.A. Gurski, A.K. Jha, C. Zhang, X.Q. Jia, M.C. Farach-Carson, Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells, Biomaterials, 30(30) (2009) 6076-6085.
  • H.K. Hamdi, R. Castellon, Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor, Biochem. Biophys. Res. Commun., 334(3) (2005) 769-78.
  • J. Han, T.P. Talorete, P. Yamada, H. Isoda, Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells, Cytotechnology, 59(1) (2009) 45-53.
  • H.Y. Lu, J.S. Zhu, Z. Zhang, W.J. Shen, S. Jiang, Y.F. Long, B. Wu, T. Ding, F. Huan, S.L. Wang, Hydroxytyrosol and Oleuropein Inhibit Migration and Invasion of MDA-MB-231 Triple- Negative Breast Cancer Cell via Induction of Autophagy, Anti-cancer Agents Med. Chem., 19(16) (2019) 1983-1990.
  • S.S. Messeha, N.O. Zarmouh, A. Asiri, K.F.A. Soliman, Gene Expression Alterations Associated with Oleuropein-Induced Antiproliferative Effects and S-Phase Cell Cycle Arrest in Triple-Negative Breast Cancer Cells, Nutrients, 12(12) (2020) 3755.
  • M.H. Elamin, M.H. Daghestani, S.A. Omer, M.A. Elobeid, P. Virk, E.M. Al-Olayan, Z.K. Hassan, O.B. Mohammed, A. Aboussekhra, Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells, Food Chem. Toxicol., 53 (2013) 310-6.
  • S. Asgharzade, S.H. Sheikhshabani, E. Ghasempour, R. Heidari, S. Rahmati, M. Mohammadi, A. Jazaeri, Z. Amini- Farsani, The effect of oleuropein on apoptotic pathway regulators in breast cancer cells, Eur. J. Pharmacol., 886 (2020) 173509.
  • G. Tezcan, M.O. Taskapilioglu, B. Tunca, A. Bekar, H. Demirci, H. Kocaeli, S.A. Aksoy, U. Egeli, G. Cecener, S. Tolunay, Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro, Biomed. Pharmacother., 90 (2017) 713-723.
  • Q.R. Guo, L.L. Zhang, J.F. Liu, Z. Li, J.J. Li, W.M. Zhou, H. Wang, J.Q. Li, D.Y. Liu, X.Y. Yu, J.Y. Zhang, Multifunctional microfluidic chip for cancer diagnosis and treatment, Nanotheranostics, 5(1) (2021) 73-89.
  • S. Chakrabarty, W.F. Quiros-Solano, M.M.P. Kuijten, B. Haspels, S. Mallya, C.S.Y. Lo, A. Othman, C. Silvestri, A. van de Stolpe, N. Gaio, H. Odijk, M. van de Ven, C.M.A. de Ridder, W.M. van Weerden, J. Jonkers, R. Dekker, N. Taneja, R. Kanaar, D.C. van Gent, A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture, Cancer Res., 82(3) (2022) 510-520.
  • J. Zhai, C. Li, H. Li, S. Yi, N. Yang, K. Miao, C. Deng, Y. Jia, P.I. Mak, R.P. Martins, Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics, Lab Chip, 21(24) (2021) 4749-4759.
  • O. Altundag-Erdogan, R. Tutar, E. Yuce, B. Celebi-Saltik, Targeting resistant breast cancer stem cells in a three- dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles, Daru J. Pharm. Sci., (2024) 2(2) 471-483.
  • A.R. Aref, R.Y. Huang, W. Yu, K.N. Chua, W. Sun, T.Y. Tu, J. Bai, W.J. Sim, I.K. Zervantonakis, J.P. Thiery, R.D. Kamm, Screening therapeutic EMT blocking agents in a three- dimensional microenvironment, Integr. Biol. (Camb.), 5(2) (2013) 381-9.
  • D.S. Reynolds, K.M. Tevis, W.A. Blessing, Y.L. Colson, M.H. Zaman, M.W. Grinstaff, Breast Cancer Spheroids Reveal a Differential Cancer Stem Cell Response to Chemotherapeutic Treatment, Sci. Rep., 7(1) (2017) 10382.
  • M.M. Matin, J.R. Walsh, P.J. Gokhale, J.S. Draper, A.R. Bahrami, I. Morton, H.D. Moore, P.W. Andrews, Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells, Stem Cells, 22(5) (2004) 659-68.
  • A.C. Hepburn, R.E. Steele, R. Veeratterapillay, L. Wilson, E.E. Kounatidou, A. Barnard, P. Berry, J.R. Cassidy, M. Moad, A. El-Sherif, L. Gaughan, I.G. Mills, C.N. Robson, R. Heer, The induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance, Oncogene, 38(22) (2019) 4412-4424.
  • G.Q. Ling, D.B. Chen, B.Q. Wang, L.S. Zhang, Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines, Oncol. Lett., 4(6) (2012) 1264-1268.
  • Y. Namba, C. Sogawa, Y. Okusha, H. Kawai, M. Itagaki, K. Ono, J. Murakami, E. Aoyama, K. Ohyama, J.I. Asaumi, M. Takigawa, K. Okamoto, S.K. Calderwood, K.I. Kozaki, T. Eguchi, Depletion of Lipid Efflux Pump ABCG1 Triggers the Intracellular Accumulation of Extracellular Vesicles and Reduces Aggregation and Tumorigenesis of Metastatic Cancer Cells, Front. Oncol., 8 (2018) 376.
  • R.D. Sicchieri, W.A. da Silveira, L.R.M. Mandarano, T.M.G. de Oliveira, H.H.A. Carrara, V.F. Muglia, J.M. de Andrade, D.G. Tiezzi, ABCG2 is a potential marker of tumor-initiating cells in breast cancer, Tumor Biol., 36(12) (2015) 9233-9243.
  • J. Calahorra, E. Martinez-Lara, J.M. Granadino-Roldan, J.M. Marti, A. Canuelo, S. Blanco, F.J. Oliver, E. Siles, Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells, Sci. Rep-Uk., 10(1) (2020) 6361.
  • B. Corominas-Faja, E. Cuyas, J. Lozano-Sanchez, S. Cufi, S. Verdura, S. Fernandez-Arroyo, I. Borras-Linares, B. Martin-Castillo, A.G. Martin, R. Lupu, A. Nonell-Canals, M. Sanchez-Martinez, V. Micol, J. Joven, A. Segura-Carretero, J.A. Menendez, Extra-virgin olive oil contains a metabolo- epigenetic inhibitor of cancer stem cells, Carcinogenesis, 39(4) (2018) 601-613.
  • O. Leis, A. Eguiara, E. Lopez-Arribillaga, M.J. Alberdi, S. Hernandez-Garcia, K. Elorriaga, A. Pandiella, R. Rezola, A.G. Martin, Sox2 expression in breast tumours and activation in breast cancer stem cells, Oncogene, 31(11) (2012) 1354-65.
  • S. Erdogan, O. Doganlar, Z.B. Doganlar, R. Serttas, K. Turkekul, I. Dibirdik, A. Bilir, The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-kappaB signaling, Life Sci., 162 (2016) 77-86.
  • C.Y. Tian, D. Huang, Y.L. Yu, J.H. Zhang, Q.X. Fang, C. Xie, ABCG1 as a potential oncogene in lung cancer, Exp. Ther. Med., 13(6) (2017) 3189-3194.
There are 35 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death, Cellular Interactions, Biochemistry and Cell Biology (Other), Macromolecular Materials
Journal Section Research Article
Authors

Özlem Altundağ Erdoğan 0000-0002-3877-1834

Maryam Ghulam Sarwar 0009-0005-2616-7655

Betül Çelebi Saltık 0000-0002-8647-9416

Project Number TSA-2019-18405
Submission Date July 16, 2025
Acceptance Date October 14, 2025
Publication Date December 31, 2025
Published in Issue Year 2026 Volume: 54 Issue: 1

Cite

APA Altundağ Erdoğan, Ö., Ghulam Sarwar, M., & Çelebi Saltık, B. (2025). Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model. Hacettepe Journal of Biology and Chemistry, 54(1), 47-55. https://doi.org/10.15671/hjbc.1743955
AMA Altundağ Erdoğan Ö, Ghulam Sarwar M, Çelebi Saltık B. Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model. HJBC. December 2025;54(1):47-55. doi:10.15671/hjbc.1743955
Chicago Altundağ Erdoğan, Özlem, Maryam Ghulam Sarwar, and Betül Çelebi Saltık. “Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model”. Hacettepe Journal of Biology and Chemistry 54, no. 1 (December 2025): 47-55. https://doi.org/10.15671/hjbc.1743955.
EndNote Altundağ Erdoğan Ö, Ghulam Sarwar M, Çelebi Saltık B (December 1, 2025) Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model. Hacettepe Journal of Biology and Chemistry 54 1 47–55.
IEEE Ö. Altundağ Erdoğan, M. Ghulam Sarwar, and B. Çelebi Saltık, “Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model”, HJBC, vol. 54, no. 1, pp. 47–55, 2025, doi: 10.15671/hjbc.1743955.
ISNAD Altundağ Erdoğan, Özlem et al. “Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model”. Hacettepe Journal of Biology and Chemistry 54/1 (December2025), 47-55. https://doi.org/10.15671/hjbc.1743955.
JAMA Altundağ Erdoğan Ö, Ghulam Sarwar M, Çelebi Saltık B. Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model. HJBC. 2025;54:47–55.
MLA Altundağ Erdoğan, Özlem et al. “Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model”. Hacettepe Journal of Biology and Chemistry, vol. 54, no. 1, 2025, pp. 47-55, doi:10.15671/hjbc.1743955.
Vancouver Altundağ Erdoğan Ö, Ghulam Sarwar M, Çelebi Saltık B. Oleuropein Inhibits Cancer Stemness in a Dynamic 3D Breast Tumor Model. HJBC. 2025;54(1):47-55.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc