Research Article
BibTex RIS Cite

A Bacterial Machinery for Surface Displayed Enzymes

Year 2018, Volume: 46 Issue: 2, 307 - 313, 03.06.2018

Abstract

Biomaterial based protein delivery systems have been utilized for many applications in biomedicine. Despite
their great success, there is a need to develop innovative living, decision making systems for protein
delivery. In this context, here, a cellular system is proposed for protein release and delivery. Such systems can
be used not for biomedical purposes but also for other biochemical applications. In this regard a Escherichia
coli autotransporter protein, Ag43 was engineered to display on its cell membrane. Using this system alkaline
phosphatase protein is displayed on the cell surface as a fusion of Ag43-ALP which is also carrying a specific
TEV protease excision site. It was shown that the active from of the enzyme was released upon its interaction
with TEV protease from the cell surface. In this study a cellular machinery is proposed to be used as a controlled
enzyme delivery system. 

References

  • D.D. Boehr, R.N. D’Amico, N. Rebecca, K.F. O’Rourke, F. Kathleen, Engineered control of enzyme structural dynamics and function, Prot. Sci., 27 (2018) 825-838.
  • C. Silva, M. Martins, S. Jing, J.J. Fu, J. Fu, A. CavacoPaulo, Practical insights on enzyme stabilization, Crit. Rev. Biotechnol., 38 (2018) 335-350.
  • J.H. Schrittwieser, S. Velikogne, M. Hall, Artificial biocatalytic linear cascades for preparation of organic molecules, Chem. Rev., 118 (2018) 270-348. Figure 5. ALP release from the surface of the cells displaying the enzyme upon addition of the TEV protease. The increase in the enzyme activity is statistically significant (t-test, p < 0.05). U.Ö.Ş. Şeker / Hacettepe J. Biol. & Chem., 2018, 46 (2), 307-313 313
  • F. Kazenwadel; M. Franzreb, B.E. Rapp, Synthetic enzyme supercomplexes: co-immobilization of enzyme cascades, Anal. Methods, 7 (2015) 4030- 4037.
  • M. Jeschek, S. Panke, T.R., Artificial metalloenzymes on the verge of new-to-nature metabolism, Trends Biotech. 36 (2018) 60-72.
  • T. Nicolay, J. Vanderleyden, S. Spaepen, Autotransporter-based cell surface display in gramnegative bacteria, Critical Reviews in Microbiology, 41 (2015) 109-123.
  • H. Nakatani, K. Hori, Cell surface protein engineering for high-performance whole-cell catalysts, Frontiers of Chemical Science and Engineering, 1 (2017) 46-57.
  • Decorating microbes: surface display of proteins on Escherichia coli, E. van Bloois, R.T. Winter, H. Kolmar, M.W. Fraaije, Trends in Biotechnology, 29 (2011) 79- 86.
  • N. Dautin, H. D. Bernstein, Protein secretion in gramnegative bacteria via the autotransporter pathway. Annu. Rev. Microbiol., 61 (2007) 89–112.
  • W. Haagmans, M. van der Woude M., Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyRmediated repression of transcription, Mol. Microbiol., 35 (2000) 877–887.
  • D.E. Waldron, P. Owen, C.J. Dorman, Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli, Mol. Microbiol., 44 (2002) 509–520.
  • A. Wallecha, V. Munster, J. Correnti, T. Chan, M. van der Woude, Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation, J. Bacteriol., 184 (2002) 3338–3347.
  • G.C. Ulett, J. Valle, C. Beloin, O. Sherlock, J.M. Ghigo, M. A. Schembri1, Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in longterm persistence in the urinary tract, Infect. Immun., 75 (2007) 3233-3244.
  • H. Hasman, T. Chakraborty, P. J. Klemm, Antigen43-mediated autoaggregation of Escherichia coli is blocked by fimbriation, J. Bacteriol., 181(1999) 4834- 4841.
  • K. Kjaergaard, M.A. Schembri, H. Hasman, P.J. Klemm, Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens, J. Bacteriol., 182 (2000) 4789-4796.
  • O. Sherlock, U. Dobrindt, J.B. Jensen, R.V. Munk, P. Klemm, Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein, J. Bacteriol., 188 (2006) 1789-1807.
  • K. Kjaergaard, H. Hasman, M.A. Schembri, P. Klemm, Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system, J. Bacteriol., 184 (2002) 4197-4204.
  • F.Y. Huang, C.C. Wang; Y.H. Huang, H.G. Zhao, J.L. Guo, S.L. Zhou, H. Wang, Y.Y. Lin, G.H. Tan, Antigen 43/Fc epsilon 3 chimeric protein expressed by a novel bacterial surface expression system as an effective asthma vaccine, Immunology, 143 (2014) 230-240.
  • I. Munoz-Gutierrez, C. Moss-Acosta, B. Trujillo-Martinez, G. Gosset, A. Martinez, Ag43-mediated display of a thermostable beta-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures, Microb. Cell Fact., 13 (2014) 106- .
  • D.G. Gibson, L. Young, R.Y. Chuang, J.C. Venter, C.A. Hutchison, H.O. Smith, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6 (2009) 343-345.
  • C.W. Lee, S.H. Jang, H. Chung, Improving the stability of cold-adapted enzymes by immobilization, Catalysts, 7 (2017) 112.
  • Y. Liu, D.S. Kim, M. Jewett, C. Michael, Repurposing ribosomes for synthetic biology, Curr. Opin. Chem. Biol., 40 (2017) 87-94.
  • R. Lutz, H. Bujard, Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I-1-I-2 regulatory elements, Nucleic Acids Res., 25 (1997) 1203-1210.
  • C. Magni, F. Sessa, J. Capraro, M. Duranti, E. Maffioli, A. Scarafoni, Structural and functional insights into the basic globulin 7S of soybean seeds by using trypsin as a molecular probe, Biochem. Biophys. Res. Commun., 496 (2018) 89-94.
Year 2018, Volume: 46 Issue: 2, 307 - 313, 03.06.2018

Abstract

References

  • D.D. Boehr, R.N. D’Amico, N. Rebecca, K.F. O’Rourke, F. Kathleen, Engineered control of enzyme structural dynamics and function, Prot. Sci., 27 (2018) 825-838.
  • C. Silva, M. Martins, S. Jing, J.J. Fu, J. Fu, A. CavacoPaulo, Practical insights on enzyme stabilization, Crit. Rev. Biotechnol., 38 (2018) 335-350.
  • J.H. Schrittwieser, S. Velikogne, M. Hall, Artificial biocatalytic linear cascades for preparation of organic molecules, Chem. Rev., 118 (2018) 270-348. Figure 5. ALP release from the surface of the cells displaying the enzyme upon addition of the TEV protease. The increase in the enzyme activity is statistically significant (t-test, p < 0.05). U.Ö.Ş. Şeker / Hacettepe J. Biol. & Chem., 2018, 46 (2), 307-313 313
  • F. Kazenwadel; M. Franzreb, B.E. Rapp, Synthetic enzyme supercomplexes: co-immobilization of enzyme cascades, Anal. Methods, 7 (2015) 4030- 4037.
  • M. Jeschek, S. Panke, T.R., Artificial metalloenzymes on the verge of new-to-nature metabolism, Trends Biotech. 36 (2018) 60-72.
  • T. Nicolay, J. Vanderleyden, S. Spaepen, Autotransporter-based cell surface display in gramnegative bacteria, Critical Reviews in Microbiology, 41 (2015) 109-123.
  • H. Nakatani, K. Hori, Cell surface protein engineering for high-performance whole-cell catalysts, Frontiers of Chemical Science and Engineering, 1 (2017) 46-57.
  • Decorating microbes: surface display of proteins on Escherichia coli, E. van Bloois, R.T. Winter, H. Kolmar, M.W. Fraaije, Trends in Biotechnology, 29 (2011) 79- 86.
  • N. Dautin, H. D. Bernstein, Protein secretion in gramnegative bacteria via the autotransporter pathway. Annu. Rev. Microbiol., 61 (2007) 89–112.
  • W. Haagmans, M. van der Woude M., Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyRmediated repression of transcription, Mol. Microbiol., 35 (2000) 877–887.
  • D.E. Waldron, P. Owen, C.J. Dorman, Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli, Mol. Microbiol., 44 (2002) 509–520.
  • A. Wallecha, V. Munster, J. Correnti, T. Chan, M. van der Woude, Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation, J. Bacteriol., 184 (2002) 3338–3347.
  • G.C. Ulett, J. Valle, C. Beloin, O. Sherlock, J.M. Ghigo, M. A. Schembri1, Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in longterm persistence in the urinary tract, Infect. Immun., 75 (2007) 3233-3244.
  • H. Hasman, T. Chakraborty, P. J. Klemm, Antigen43-mediated autoaggregation of Escherichia coli is blocked by fimbriation, J. Bacteriol., 181(1999) 4834- 4841.
  • K. Kjaergaard, M.A. Schembri, H. Hasman, P.J. Klemm, Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens, J. Bacteriol., 182 (2000) 4789-4796.
  • O. Sherlock, U. Dobrindt, J.B. Jensen, R.V. Munk, P. Klemm, Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein, J. Bacteriol., 188 (2006) 1789-1807.
  • K. Kjaergaard, H. Hasman, M.A. Schembri, P. Klemm, Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system, J. Bacteriol., 184 (2002) 4197-4204.
  • F.Y. Huang, C.C. Wang; Y.H. Huang, H.G. Zhao, J.L. Guo, S.L. Zhou, H. Wang, Y.Y. Lin, G.H. Tan, Antigen 43/Fc epsilon 3 chimeric protein expressed by a novel bacterial surface expression system as an effective asthma vaccine, Immunology, 143 (2014) 230-240.
  • I. Munoz-Gutierrez, C. Moss-Acosta, B. Trujillo-Martinez, G. Gosset, A. Martinez, Ag43-mediated display of a thermostable beta-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures, Microb. Cell Fact., 13 (2014) 106- .
  • D.G. Gibson, L. Young, R.Y. Chuang, J.C. Venter, C.A. Hutchison, H.O. Smith, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6 (2009) 343-345.
  • C.W. Lee, S.H. Jang, H. Chung, Improving the stability of cold-adapted enzymes by immobilization, Catalysts, 7 (2017) 112.
  • Y. Liu, D.S. Kim, M. Jewett, C. Michael, Repurposing ribosomes for synthetic biology, Curr. Opin. Chem. Biol., 40 (2017) 87-94.
  • R. Lutz, H. Bujard, Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I-1-I-2 regulatory elements, Nucleic Acids Res., 25 (1997) 1203-1210.
  • C. Magni, F. Sessa, J. Capraro, M. Duranti, E. Maffioli, A. Scarafoni, Structural and functional insights into the basic globulin 7S of soybean seeds by using trypsin as a molecular probe, Biochem. Biophys. Res. Commun., 496 (2018) 89-94.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Urartu Özgür Şafak Şeker This is me

Publication Date June 3, 2018
Acceptance Date March 5, 2018
Published in Issue Year 2018 Volume: 46 Issue: 2

Cite

APA Şeker, U. Ö. Ş. (2018). A Bacterial Machinery for Surface Displayed Enzymes. Hacettepe Journal of Biology and Chemistry, 46(2), 307-313.
AMA Şeker UÖŞ. A Bacterial Machinery for Surface Displayed Enzymes. HJBC. June 2018;46(2):307-313.
Chicago Şeker, Urartu Özgür Şafak. “A Bacterial Machinery for Surface Displayed Enzymes”. Hacettepe Journal of Biology and Chemistry 46, no. 2 (June 2018): 307-13.
EndNote Şeker UÖŞ (June 1, 2018) A Bacterial Machinery for Surface Displayed Enzymes. Hacettepe Journal of Biology and Chemistry 46 2 307–313.
IEEE U. Ö. Ş. Şeker, “A Bacterial Machinery for Surface Displayed Enzymes”, HJBC, vol. 46, no. 2, pp. 307–313, 2018.
ISNAD Şeker, Urartu Özgür Şafak. “A Bacterial Machinery for Surface Displayed Enzymes”. Hacettepe Journal of Biology and Chemistry 46/2 (June 2018), 307-313.
JAMA Şeker UÖŞ. A Bacterial Machinery for Surface Displayed Enzymes. HJBC. 2018;46:307–313.
MLA Şeker, Urartu Özgür Şafak. “A Bacterial Machinery for Surface Displayed Enzymes”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 2, 2018, pp. 307-13.
Vancouver Şeker UÖŞ. A Bacterial Machinery for Surface Displayed Enzymes. HJBC. 2018;46(2):307-13.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc