Year 2018,
Volume: 46 Issue: 1, 53 - 60, 01.03.2018
Meshude Akbulut Söylemez
,
Olgun Güven
References
- B. Sellergren, Direct drug determination by selective
sample enrichment on an imprinted polymer, Anal.
Chem., 66 (1994) 1578-1582.
- L. Fischer, R. Müller, B. Ekberg, K. Mosbach, Direct
enantioseparation of beta-adrenergic blockers using
a chiral stationary phase prepared by molecular
imprinting, J. Am. Chem. Soc., 113 (1991) 9358-9360.
- S.A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano,
I. Karube, Y.P. Parhometz, A.V. El’skaya, Atrazine
sensing by molecularly imprinted membranes,
Biosens. Bioelectron., 10 (1995) 959-964.
- D. Kriz, K. Mosbach, Competitive amperometric
morphine sensor based on an agarose immobilised
molecularly imprinted polymer, Anal. Chim. Acta, 300
(1995) 71-75.
- M. Kempe, K. Mosbach, Chiral recognition of Naprotected
amino acids and derivatives in molecularly
imprinted polymers, Int. J. Peptide Protein Res., 44
(1994) 603-606.
- K. Haupt, Imprinted polymers: tailor-made mimics of
antibodies and receptors, Chem. Commun., (2003)
171–178
- Y. Ren, X. Wei, M. Zhang, Adsorption character for
removal Cu(II) by magnetic Cu(II) Ion imprinted
composite adsorbent, J. Hazard. Mater., 158 (2008)
14-22.
- G. Sener, L. Uzun, A. Denizli, Lysine-promoted
colorimetric response of gold nanoparticles: a simple
assay for ultrasensitive mercury(II) detection, Anal.
Chem., 86 (2014) 514-520.
- A. Martín-Esteban, Molecularly imprinted polymers:
new molecular recognition materials for selective
solid-phase extraction of organic compounds,
Fresenius J. Anal. Chem., 370 (2001) 795-802.
- R.J. Umpleby, M. Bode, K.D. Shimizu, Measurement
of the continuous distribution of binding sites in
molecularly imprinted polymers, Analyst, 125 (2000)
1261–1265.
- R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D.
Shimizu, Characterization of molecularly imprinted
polymers with the Langmuir-Freundlich isotherm,
Anal. Chem., 3 (2001) 4584-4591.
- G. Wulff, R. Grobe-Einsler, A. Sarhan, Enzymeanalogue
built polymers, on the specificity
distribution of chiral cavities prepared in synthetic
polymers, Macromol. Chem., 178 (1977) 2817-2825.
- A. Ersöz, A. Denizli, A. Ozcan, R. Say, Molecularly
imprinted ligand-exchange recognition assay of
glucose by quartz crystal microbalance, Biosens.
Bioelectron., 20 (2005) 2197-2202.
- P. Parmpi, P. Kofinas, biomimetic glucose recognition
using molecularly imprinted polymer hydrogels,
Biomaterials, 25 (2004) 1969-1973.
- C. Chen, G. Chen, Z. Guan, D. Lee, F.H. Arnold,
Polymeric sensor materials for glucose, Polym. Prepr.,
37 (1996) 216-217.
- H. Bodugoz, O. Güven, N.A. Peppas, Glucose
recognition capabilities of hydroxyethyl methacrylatebased
hydrogels containing poly(ethylene glycol)
chains, J. Appl. Polym. Sci., 103 (2007) 432-441.
- Z. Ateş, O. Güven, Radiation induced molecular
imprinting of D-glucose onto poly(2-hydroxyethyl
methacrylate) matrices using various crosslinking
agents, Rad. Phys. Chem., 79 (2010) 219-222.
- N. Djourelov, Z. Ateş, O. Güven, M. Misheva, T.
Suzuki, Positron annihilation lifetime spectroscopy
of molecularly imprinted hydroxyethyl methacrylate
based polymers, Polymer, 48 (2007) 2692-2699.
- C. Yu, K. Mosbach, Molecular imprinting utilizing an
amide functional group for hydrogen bonding leading
to highly efficient polymers, J. Org. Chem., 62 (1997)
4057-4064.
- B. Sellergren, K.J. Shea, Influence of polymer
morphology on the ability of imprinted network
polymers to resolve enantiomers, J. Chromatogr.,
635 (1993) 31-49.
- J. Brandrup, E.H. Immergut, 1989. Polymer Handbook,
third ed. John Wiley & Sons Inc., USA.
- P.B. Rathi, Determination and evaluation of solubility
parameter of satranidazole using dioxane-water
system, Indian J. Pharm. Sci., 72 (2010) 671-674.
- S.J. Tao, Positronium annihilation in molecular
substances, J. Chem. Phys., 56 (1972) 5499-5510.
- M. Eldrup, D. Lightbody, J.N. Sherwood, The
temperature dependence of positron lifetimes in solid
pivalic acid, Chem. Phys., 63 (1981) 51-58.
- C. Ranganathaiah, 2010. Characterization of polymer
nanocomposites by free-volume measurements,
S., Thomas, G.E., Zaikov, S.V., Valsaraj, A.P. Meera,
(Eds.), Recent advances in polymer nanocomposites:
synthesis and characterisation, Taylor & Francis
Group, New York, pp. 305-335.
- G. Knowles, The reduced glucose permeability of the
isolated malpighian tubules of the blowfly calliphora
vomitoria, J. Exp. Biol., 62 (1975) 327-340.
Radiation Synthesis of Molecularly Imprinted Hydroxyethylmethacrylate-based Matrices for Glucose Recognition
Year 2018,
Volume: 46 Issue: 1, 53 - 60, 01.03.2018
Meshude Akbulut Söylemez
,
Olgun Güven
Abstract
I
n this study, 2-hydroxyethyl methacrylate (HEMA) was used as functional monomer and diethylene glycol
diacrylate (DEGDA) and polyethylene glycol (200) diacrylate (PEG(200)DA) were used as crosslinking agents
to imprint D(+)glucose. D(+)glucose imprinted polymers were prepared in the presence of dimethyl sulfoxide
(DMSO) /isopropyl alcohol (IPA) (3/1, v/v) at room temperature, in the air by radiation-induced polymerization/
crosslinking. The control polymers were synthesized by the same procedure in the absence of D(+)glucose. In
order to evaluate the recognition and separation properties of the imprinted system high performance liquid
chromatography (HPLC) experiments were carried out where β (-) lactose, D(+)glucose and glycerol were used
as analytes. To increase the affinity of the template to the stationary phase polarity of the mobile phase was
decreased by the addition of acetonitrile into water. Optimum composition of acetonitrile/water (1/5 v/v) was
determined according to the swelling experiments. The sizes of the cavities in the polymeric networks were
determined by positron annihilation lifetime spectroscopy (PALS). The average radii of cavities were found as
0.254 and 0.279 nm for freeze-dried imprinted polymers prepared by using PEG(200)DA after swollen in water
and acetonitrile/water mixture (1/5 by volume), respectively.
References
- B. Sellergren, Direct drug determination by selective
sample enrichment on an imprinted polymer, Anal.
Chem., 66 (1994) 1578-1582.
- L. Fischer, R. Müller, B. Ekberg, K. Mosbach, Direct
enantioseparation of beta-adrenergic blockers using
a chiral stationary phase prepared by molecular
imprinting, J. Am. Chem. Soc., 113 (1991) 9358-9360.
- S.A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano,
I. Karube, Y.P. Parhometz, A.V. El’skaya, Atrazine
sensing by molecularly imprinted membranes,
Biosens. Bioelectron., 10 (1995) 959-964.
- D. Kriz, K. Mosbach, Competitive amperometric
morphine sensor based on an agarose immobilised
molecularly imprinted polymer, Anal. Chim. Acta, 300
(1995) 71-75.
- M. Kempe, K. Mosbach, Chiral recognition of Naprotected
amino acids and derivatives in molecularly
imprinted polymers, Int. J. Peptide Protein Res., 44
(1994) 603-606.
- K. Haupt, Imprinted polymers: tailor-made mimics of
antibodies and receptors, Chem. Commun., (2003)
171–178
- Y. Ren, X. Wei, M. Zhang, Adsorption character for
removal Cu(II) by magnetic Cu(II) Ion imprinted
composite adsorbent, J. Hazard. Mater., 158 (2008)
14-22.
- G. Sener, L. Uzun, A. Denizli, Lysine-promoted
colorimetric response of gold nanoparticles: a simple
assay for ultrasensitive mercury(II) detection, Anal.
Chem., 86 (2014) 514-520.
- A. Martín-Esteban, Molecularly imprinted polymers:
new molecular recognition materials for selective
solid-phase extraction of organic compounds,
Fresenius J. Anal. Chem., 370 (2001) 795-802.
- R.J. Umpleby, M. Bode, K.D. Shimizu, Measurement
of the continuous distribution of binding sites in
molecularly imprinted polymers, Analyst, 125 (2000)
1261–1265.
- R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D.
Shimizu, Characterization of molecularly imprinted
polymers with the Langmuir-Freundlich isotherm,
Anal. Chem., 3 (2001) 4584-4591.
- G. Wulff, R. Grobe-Einsler, A. Sarhan, Enzymeanalogue
built polymers, on the specificity
distribution of chiral cavities prepared in synthetic
polymers, Macromol. Chem., 178 (1977) 2817-2825.
- A. Ersöz, A. Denizli, A. Ozcan, R. Say, Molecularly
imprinted ligand-exchange recognition assay of
glucose by quartz crystal microbalance, Biosens.
Bioelectron., 20 (2005) 2197-2202.
- P. Parmpi, P. Kofinas, biomimetic glucose recognition
using molecularly imprinted polymer hydrogels,
Biomaterials, 25 (2004) 1969-1973.
- C. Chen, G. Chen, Z. Guan, D. Lee, F.H. Arnold,
Polymeric sensor materials for glucose, Polym. Prepr.,
37 (1996) 216-217.
- H. Bodugoz, O. Güven, N.A. Peppas, Glucose
recognition capabilities of hydroxyethyl methacrylatebased
hydrogels containing poly(ethylene glycol)
chains, J. Appl. Polym. Sci., 103 (2007) 432-441.
- Z. Ateş, O. Güven, Radiation induced molecular
imprinting of D-glucose onto poly(2-hydroxyethyl
methacrylate) matrices using various crosslinking
agents, Rad. Phys. Chem., 79 (2010) 219-222.
- N. Djourelov, Z. Ateş, O. Güven, M. Misheva, T.
Suzuki, Positron annihilation lifetime spectroscopy
of molecularly imprinted hydroxyethyl methacrylate
based polymers, Polymer, 48 (2007) 2692-2699.
- C. Yu, K. Mosbach, Molecular imprinting utilizing an
amide functional group for hydrogen bonding leading
to highly efficient polymers, J. Org. Chem., 62 (1997)
4057-4064.
- B. Sellergren, K.J. Shea, Influence of polymer
morphology on the ability of imprinted network
polymers to resolve enantiomers, J. Chromatogr.,
635 (1993) 31-49.
- J. Brandrup, E.H. Immergut, 1989. Polymer Handbook,
third ed. John Wiley & Sons Inc., USA.
- P.B. Rathi, Determination and evaluation of solubility
parameter of satranidazole using dioxane-water
system, Indian J. Pharm. Sci., 72 (2010) 671-674.
- S.J. Tao, Positronium annihilation in molecular
substances, J. Chem. Phys., 56 (1972) 5499-5510.
- M. Eldrup, D. Lightbody, J.N. Sherwood, The
temperature dependence of positron lifetimes in solid
pivalic acid, Chem. Phys., 63 (1981) 51-58.
- C. Ranganathaiah, 2010. Characterization of polymer
nanocomposites by free-volume measurements,
S., Thomas, G.E., Zaikov, S.V., Valsaraj, A.P. Meera,
(Eds.), Recent advances in polymer nanocomposites:
synthesis and characterisation, Taylor & Francis
Group, New York, pp. 305-335.
- G. Knowles, The reduced glucose permeability of the
isolated malpighian tubules of the blowfly calliphora
vomitoria, J. Exp. Biol., 62 (1975) 327-340.