Research Article
BibTex RIS Cite
Year 2018, Volume: 46 Issue: 1, 79 - 89, 01.03.2018

Abstract

References

  • X. Rozanska, R. Fortrie, J. Sauer, Oxidative dehydrogenation of propane by monomeric vanadium oxide sites on silica support, J. Phys. Chem. C., 111 (2007) 6041-6050.
  • B. Frank, M. Morassutto, R. Schomäcker, R. Schlögl, D.S. Su, Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes, ChemCatChem., 2 (2010) 644-648.
  • B. Frank, J. Zhang, R. Blume, R. Schlögl, D.S. Su, Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons, Angew. Chem. Int. Ed., 48 (2009) 6913-6917.
  • J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D.S. Su, Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane, Science, 322 (2008) 73- 77.
  • C. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S.H. Overbury, Open-Cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane, J. Am. Chem. Soc., 131 (2009) 7735-7741.
  • T. García, J. López, J.L. Nieto, R. Sanchis, A. Dejoz, M. Vázquez, B. Solsona, Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts, Fuel Process. Technol., 134 (2015) 290- 296.
  • M. Sheintuch, D.S. Simakov, Alkanes dehydrogenation, membrane reactors for hydrogen production processes, Springer, (2011) 183-200.
  • B. Barghi, M. Fattahi, F. Khorasheh, Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds, reaction kinetics, React. Kinet. Mech. Cat., 107 (2012) 141-155.
  • S.A. Al-Ghamdi, H.I. de Lasa, Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2 O3 catalyst, Fuel, 128 (2014) 120-140.
  • H. Kim, G.A. Ferguson, L. Cheng, S.A. Zygmunt, P.C. Stair, L.A. Curtiss, Structure-specific reactivity of alumina-supported monomeric vanadium oxide species, J. Phys. Chem. C, 116 (2012) 2927-2932.
  • C. Popa, M.V. Ganduglia-Pirovano, J. Sauer, Periodic density functional theory study of von species supported on the CeO2 surface, J. Phys. Chem. C, 115 (2011) 7399-7410.
  • M.J. Cheng, K. Chenoweth, J. Oxgaard, A. van Duin, W.A. Goddard, Single-site vanadyl activation, functionalization, and reoxidation reaction mechanism for propane oxidative dehydrogenation on the cubic v4o10 cluster, J. Phys. Chem. C, 111 (2007) 5115-5127.
  • M.V. Ganduglia-Pirovano, C. Popa, J. Sauer, H. Abbott, A. Uhl, M. Baron, D. Stacchiola, O. Bondarchuk, S. Shaikhutdinov, H.J. Freund, Role of ceria in oxidative dehydrogenation on supported vanadia catalysts, J. Am. Chem. Soc., 132 (2010) 2345-2349.
  • X. Fan, G. Zhang, F. Zhang, Multiple roles of graphene in heterogeneous catalysis, Chem. Soc. Rev., 44 (2015) 3023-3035.
  • O.V. Khavryuchenko, B. Frank, A. Trunschke, K. Hermann, R. Schlögl, Quantum-chemical investigation of hydrocarbon oxidative dehydrogenation over spinactive carbon catalyst clusters, J. Phys. Chem. C, 117 (2013) 6225-6234.
  • B. Frank, R. Blume, A. Rinaldi, A. Trunschke, Oxygen insertion catalysis by sp2 carbon, R. Schlögl, Angew. Chem. Int. Ed., 50 (2011) 10226-10230.
  • F. Cavani, F. Trifiro, The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins, Catal. Today, 24 (1995) 307-313.
  • M.D. Argyle, K. Chen, A.T. Bell, E. Iglesia, Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia, J. Catal., 208 (2002) 139-149.
  • D. Whitehurst, Abstracts of papers of the American Chemical Society, Am. Chem. Soc., 1155 16TH ST, NW, Washington, DC 20036, 1997, pp. 77-FUEL.
  • E. Mamedov, V.C. Corberán, Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks, Appl. Catal. A-Gen., 127 (1995) 1-40.
  • A.S. Kootenaei, J. Towfighi, A. Khodadadi, Y. Mortazavi, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane, Appl. Surf. Sci., 298 (2014) 26-35.
  • M. Calatayud, B. Mguig, C. Minot, A periodic model for the V2 O5–TiO2 (anatase) catalyst. stability of dimeric species, Surf. Sci., 526 (2003) 297-308.
  • M. Calatayud, B. Mguig, C. Minot, A DFT study on the hydrated V2 O5-TiO2 -anatase catalyst: stability of monomeric species, Theor. Chem. Acc., 114 (2005) 29- 37. 24. M. Calatayud, C. Minot, Reactivity of the V2 O5-TiO2 - anatase catalyst: role of the oxygen sites, Top. Catal., 41 (2006) 17-26.
  • C.A. Carrero, R. Schlögl, I.E. Wachs, R. Schomaecker, Critical literature review of the kinetics for the oxidative dehydrogenation of propane over welldefined supported vanadium oxide catalysts, ACS Catal., 4 (2014) 3357-3380.
  • B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, Adv. Catal., 45 (2000) 71-129.
  • J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts, Nature Chem., 1 (2009) 37-46.
  • B. Frank, S. Wrabetz, O.V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, Calorimetric study of propane and propylene adsorption on the active surface of multiwalled carbon nanotube catalysts, Chem. Phys. Chem., 12 (2011) 2709-2713.
  • W. Daniell, A. Ponchel, S. Kuba, F. Anderle, T. Weingand, D. Gregory, H. Knözinger, Characterization and catalytic behavior of VOx -CeO2 catalysts for the oxidative dehydrogenation of propane, Top. Catal., 20 (2002) 65-74.
  • A. Khodakov, B. Olthof, A.T. Bell, E. Iglesia, Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions, J. Catal., 181 (1999) 205-216.
  • S.T. Oyama, Adsorbate bonding and the selection of partial and total oxidation pathways, J. Catal., 128 (1991) 210-217.
  • J. Le Bars, J. Vedrine, A. Auroux, B. Pommier, G. Pajonk, Calorimetric study of vanadium pentoxide catalysts used in the reaction of ethane oxidative dehydrogenation, J. Phys. Chem., 96 (1992) 2217-2221.
  • H.H. Kung, Oxidative dehydrogenation of light (C2 to C4) Alkanes, Adv. catal. 40 (1994) 1-38.
  • C. Pieck, M. Banares, J. Fierro, Propane oxidative dehydrogenation on VOx /ZrO2 catalysts, J. Catal., 224 (2004) 1-7.
  • A.D. Becke, Density functional thermochemistry, III the role of exact exchange, J. Chem. Phys., 98 (1993) 5648-5652.
  • R.G. Parr, W. Yang, Density-Functional Theory of atoms and molecules, Oxford University Press, 1989.
  • R. Enjalbert, J. Galy, A refinement of the structure of V2 O5, Acta. Cryst. Sect. C: Cryst. Struct. Commun., 42 (1986) 1467-1469.
  • M. Ganduglia-Pirovano, J. Sauer, Stability of reduced V2 O5 (001) Surfaces, Phys. Rev. B, 70 (2004) 045422- 1-045422-13.
  • S.T. Oyama, G.T. Went, K.B. Lewis, A.T. Bell, G.A. Somorjai, Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported vanadium oxide catalysts, J. Phys. Chem., 93 (1989) 6786-6790.

DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic

Year 2018, Volume: 46 Issue: 1, 79 - 89, 01.03.2018

Abstract

The detailed mechanism for oxidative dehydrogenation of propane on the 1
VO4(CH3
)3 surface has been studied
in depth with density functional theory (DFT) calculations at the B3LYP level and standard split-valance basis
set, 6-31+G*. Monomeric vanadia specie was considered and modeled as catalysis. In addition, the mechanisms
of the two complete catalytic cycle, involving the regeneration of the reduced catalyst using O2 gaseous have
been reported. The reaction proceeds in two subsequent steps which at the first, one hydrogen abstracting
by the vanadium of V= O1 group with about 48.35 cal/mol activation energy is the rate determining step.
Subsequently, second intermediate has been formed through a bond formed between the propyl radical and O2
atom (V-O2). In continue, the O1 atom abstracts one hydrogen atom from the methyl group with a 131.63 kcal/
mol barrier to form propene by passing to second transition state. The results of our calculations have found
that all the reactions involve vanadyl oxygen (V=O1), with the bridging oxygen (V-O-C) serving to stabilize the
isopropyl radical intermediate.

References

  • X. Rozanska, R. Fortrie, J. Sauer, Oxidative dehydrogenation of propane by monomeric vanadium oxide sites on silica support, J. Phys. Chem. C., 111 (2007) 6041-6050.
  • B. Frank, M. Morassutto, R. Schomäcker, R. Schlögl, D.S. Su, Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes, ChemCatChem., 2 (2010) 644-648.
  • B. Frank, J. Zhang, R. Blume, R. Schlögl, D.S. Su, Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons, Angew. Chem. Int. Ed., 48 (2009) 6913-6917.
  • J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D.S. Su, Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane, Science, 322 (2008) 73- 77.
  • C. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S.H. Overbury, Open-Cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane, J. Am. Chem. Soc., 131 (2009) 7735-7741.
  • T. García, J. López, J.L. Nieto, R. Sanchis, A. Dejoz, M. Vázquez, B. Solsona, Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts, Fuel Process. Technol., 134 (2015) 290- 296.
  • M. Sheintuch, D.S. Simakov, Alkanes dehydrogenation, membrane reactors for hydrogen production processes, Springer, (2011) 183-200.
  • B. Barghi, M. Fattahi, F. Khorasheh, Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds, reaction kinetics, React. Kinet. Mech. Cat., 107 (2012) 141-155.
  • S.A. Al-Ghamdi, H.I. de Lasa, Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2 O3 catalyst, Fuel, 128 (2014) 120-140.
  • H. Kim, G.A. Ferguson, L. Cheng, S.A. Zygmunt, P.C. Stair, L.A. Curtiss, Structure-specific reactivity of alumina-supported monomeric vanadium oxide species, J. Phys. Chem. C, 116 (2012) 2927-2932.
  • C. Popa, M.V. Ganduglia-Pirovano, J. Sauer, Periodic density functional theory study of von species supported on the CeO2 surface, J. Phys. Chem. C, 115 (2011) 7399-7410.
  • M.J. Cheng, K. Chenoweth, J. Oxgaard, A. van Duin, W.A. Goddard, Single-site vanadyl activation, functionalization, and reoxidation reaction mechanism for propane oxidative dehydrogenation on the cubic v4o10 cluster, J. Phys. Chem. C, 111 (2007) 5115-5127.
  • M.V. Ganduglia-Pirovano, C. Popa, J. Sauer, H. Abbott, A. Uhl, M. Baron, D. Stacchiola, O. Bondarchuk, S. Shaikhutdinov, H.J. Freund, Role of ceria in oxidative dehydrogenation on supported vanadia catalysts, J. Am. Chem. Soc., 132 (2010) 2345-2349.
  • X. Fan, G. Zhang, F. Zhang, Multiple roles of graphene in heterogeneous catalysis, Chem. Soc. Rev., 44 (2015) 3023-3035.
  • O.V. Khavryuchenko, B. Frank, A. Trunschke, K. Hermann, R. Schlögl, Quantum-chemical investigation of hydrocarbon oxidative dehydrogenation over spinactive carbon catalyst clusters, J. Phys. Chem. C, 117 (2013) 6225-6234.
  • B. Frank, R. Blume, A. Rinaldi, A. Trunschke, Oxygen insertion catalysis by sp2 carbon, R. Schlögl, Angew. Chem. Int. Ed., 50 (2011) 10226-10230.
  • F. Cavani, F. Trifiro, The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins, Catal. Today, 24 (1995) 307-313.
  • M.D. Argyle, K. Chen, A.T. Bell, E. Iglesia, Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia, J. Catal., 208 (2002) 139-149.
  • D. Whitehurst, Abstracts of papers of the American Chemical Society, Am. Chem. Soc., 1155 16TH ST, NW, Washington, DC 20036, 1997, pp. 77-FUEL.
  • E. Mamedov, V.C. Corberán, Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks, Appl. Catal. A-Gen., 127 (1995) 1-40.
  • A.S. Kootenaei, J. Towfighi, A. Khodadadi, Y. Mortazavi, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane, Appl. Surf. Sci., 298 (2014) 26-35.
  • M. Calatayud, B. Mguig, C. Minot, A periodic model for the V2 O5–TiO2 (anatase) catalyst. stability of dimeric species, Surf. Sci., 526 (2003) 297-308.
  • M. Calatayud, B. Mguig, C. Minot, A DFT study on the hydrated V2 O5-TiO2 -anatase catalyst: stability of monomeric species, Theor. Chem. Acc., 114 (2005) 29- 37. 24. M. Calatayud, C. Minot, Reactivity of the V2 O5-TiO2 - anatase catalyst: role of the oxygen sites, Top. Catal., 41 (2006) 17-26.
  • C.A. Carrero, R. Schlögl, I.E. Wachs, R. Schomaecker, Critical literature review of the kinetics for the oxidative dehydrogenation of propane over welldefined supported vanadium oxide catalysts, ACS Catal., 4 (2014) 3357-3380.
  • B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, Adv. Catal., 45 (2000) 71-129.
  • J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts, Nature Chem., 1 (2009) 37-46.
  • B. Frank, S. Wrabetz, O.V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, Calorimetric study of propane and propylene adsorption on the active surface of multiwalled carbon nanotube catalysts, Chem. Phys. Chem., 12 (2011) 2709-2713.
  • W. Daniell, A. Ponchel, S. Kuba, F. Anderle, T. Weingand, D. Gregory, H. Knözinger, Characterization and catalytic behavior of VOx -CeO2 catalysts for the oxidative dehydrogenation of propane, Top. Catal., 20 (2002) 65-74.
  • A. Khodakov, B. Olthof, A.T. Bell, E. Iglesia, Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions, J. Catal., 181 (1999) 205-216.
  • S.T. Oyama, Adsorbate bonding and the selection of partial and total oxidation pathways, J. Catal., 128 (1991) 210-217.
  • J. Le Bars, J. Vedrine, A. Auroux, B. Pommier, G. Pajonk, Calorimetric study of vanadium pentoxide catalysts used in the reaction of ethane oxidative dehydrogenation, J. Phys. Chem., 96 (1992) 2217-2221.
  • H.H. Kung, Oxidative dehydrogenation of light (C2 to C4) Alkanes, Adv. catal. 40 (1994) 1-38.
  • C. Pieck, M. Banares, J. Fierro, Propane oxidative dehydrogenation on VOx /ZrO2 catalysts, J. Catal., 224 (2004) 1-7.
  • A.D. Becke, Density functional thermochemistry, III the role of exact exchange, J. Chem. Phys., 98 (1993) 5648-5652.
  • R.G. Parr, W. Yang, Density-Functional Theory of atoms and molecules, Oxford University Press, 1989.
  • R. Enjalbert, J. Galy, A refinement of the structure of V2 O5, Acta. Cryst. Sect. C: Cryst. Struct. Commun., 42 (1986) 1467-1469.
  • M. Ganduglia-Pirovano, J. Sauer, Stability of reduced V2 O5 (001) Surfaces, Phys. Rev. B, 70 (2004) 045422- 1-045422-13.
  • S.T. Oyama, G.T. Went, K.B. Lewis, A.T. Bell, G.A. Somorjai, Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported vanadium oxide catalysts, J. Phys. Chem., 93 (1989) 6786-6790.
There are 38 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Abdollah Fallah Shojaeı This is me

Ali-morad Rashıdı This is me

Mina Ghiasi Ghıası This is me

Robabe Mosavı This is me

Publication Date March 1, 2018
Acceptance Date February 8, 2017
Published in Issue Year 2018 Volume: 46 Issue: 1

Cite

APA Shojaeı, A. F., Rashıdı, A.-m., Ghıası, M. G., Mosavı, R. (2018). DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic. Hacettepe Journal of Biology and Chemistry, 46(1), 79-89.
AMA Shojaeı AF, Rashıdı Am, Ghıası MG, Mosavı R. DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic. HJBC. March 2018;46(1):79-89.
Chicago Shojaeı, Abdollah Fallah, Ali-morad Rashıdı, Mina Ghiasi Ghıası, and Robabe Mosavı. “DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic”. Hacettepe Journal of Biology and Chemistry 46, no. 1 (March 2018): 79-89.
EndNote Shojaeı AF, Rashıdı A-m, Ghıası MG, Mosavı R (March 1, 2018) DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic. Hacettepe Journal of Biology and Chemistry 46 1 79–89.
IEEE A. F. Shojaeı, A.-m. Rashıdı, M. G. Ghıası, and R. Mosavı, “DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic”, HJBC, vol. 46, no. 1, pp. 79–89, 2018.
ISNAD Shojaeı, Abdollah Fallah et al. “DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic”. Hacettepe Journal of Biology and Chemistry 46/1 (March 2018), 79-89.
JAMA Shojaeı AF, Rashıdı A-m, Ghıası MG, Mosavı R. DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic. HJBC. 2018;46:79–89.
MLA Shojaeı, Abdollah Fallah et al. “DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 1, 2018, pp. 79-89.
Vancouver Shojaeı AF, Rashıdı A-m, Ghıası MG, Mosavı R. DFT Studies of Carbon Structures Supported Vanadia Catalysts for Oxidative Dehydrogenation of Propane: Kinetic and Thermodynamic. HJBC. 2018;46(1):79-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc