Research Article
BibTex RIS Cite

Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase

Year 2018, Volume: 46 Issue: 1, 43 - 52, 01.03.2018

Abstract

A novel multifunctional stationary phase based the amide-silica was synthesised starting from L-isoleucine
and 2-aminoacetanilide. Hereby, compounds 1, 2, 3 and 4 were synthesised for the first time and 1, 2 and 4
were identified. The stationary phase was synthesised by a reliable and repeatable method and characterized
by elemental analysis, solid state 13C NMR, scanning electron microscope (SEM), and Brunauer, Emmett and
Teller (BET). This stationary phase possess four amide groups as polar cites, phenyl ring as aromatic non-polar
cite and isopropyl as an aliphatic non-polar cite. Therefore, it can act as both hydrophilic interaction (HILIC)
and reversed phase (RPLC) chromatographic stationary phase. The stationary phase has also chirality and can
be used in enantioseparation of racemic compounds in normal phase chromatography (NPLC).

References

  • L. Zhang, Q. Dai, X. Qiao, C. Yu, X. Qin, H. Yan, Mixed-mode chromatographic stationary phases: Recent advancement and its aplications for highperformance liquid chromatography, Trends Anal. Chem., 82 (2016) 143-163.
  • P. Janas, S. Bocian, P. Jandera, T. Kowalkowski, B. Buszewski, Separation of flavonoids on different phenyl-bonded stationary phases-the influence of polar groups in stationary phase structure, J. Chromatogr. A, 1429 (2016) 198-206.
  • Y. Liu, Z. Guo, Y. Jin, X. Xue, Q. Xu, F. Zhang, et al., Click oligo(ethylene glycol)”: an excellent orthogonal stationary phase to C18 for twodimensional reversedphase/ reversed-phase liquid chromatography, J. Chromatogr. A, 1206 (2008) 153- 159.
  • P. Jandera, Z. Kucˇerova, J. Urban, Retention times and bandwidths in reversedphase gradient liquid chromatography of peptides and proteins, J. Chromatogr. A, 1218 (2011) 8874–8889.
  • X. Guo, X. Zhang, Z. Guo, Y. Liu, A. Shen, G. Jin, et al., Hydrophilic interaction chromatography for selective separation of isomeric saponins, J. Chromatogr. A, 1325 (2014) 121-128.
  • P. Jiang, D.Wu, C.A. Lucy, Determination of void volume in normal phase liquid chromatography, J. Chromatogr. A, 1324 (2014) 63-70.
  • A.J. Alpert, M. Shukla, A.K. Shukla, L.R. Zieske, S.W. Yuen, M.A.J. Ferguson, A. Mehlert, M. Pauly, R. Orlando, Hydrophilic-interaction chromatography of complex carbohydrates, J. Chromatogr. A, 676 (1994) 191-202
  • A.J. Alpert, Advances in Chromatography, 44 (2006) 317-329.
  • M. R. Gama, R. G. C. Silva, C. H. Collins, C. B. G. Bottoli, Hydrophylic interaction chromatography, Trends in Anal. Chem. 37 (2012) 48-60
  • M.A. Strege, S. Stevensen, S. M.Lawrence, Mixed-mode anion−cation exchange/hydrophilic interaction liquid chromatography−electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery, Anal. Chem., 72 (2000) 4629-4633
  • M.A. Strege, Hydrophilic interaction chromatography− electrospray mass spectrometry analysis of polar compounds for natural product drug discovery, Anal. Chem., 70 (1998) 2439-2445
  • B.Y. Zhu, C.T. Colin, R.S. Hodges, Hydrophilicinteraction chromatography of peptides on hydrophilic and strong cation-exchange columns, J. Chromatogr., 548 (1991) 13-24.
  • T. Saga, Y. Inoue, K. Yamaguchi, Determination of carbohydrates by hydrophilic interaction chromatography with pulsed amperometric detection using postcolumn pH adjustment, J. Chromatogr. A, 625 (1992) 151-155.
  • Q. W. Yu, B. Lin, Y. Q. Feng, F. P. Zou, Application of humic acid bonded‐silica as a hydrophilic‐interaction chromatographic stationary Phase in separation of polar compounds, J. Liq. Chromatogr. Related. Technol., 31 (2008) 64-78.
  • X. Liu, C. Pohl, New hydrophilic interaction/ reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants, J. Chromatogr. A, 1191 (2008) 83–89.
  • H. Hinterwirth, M. Lammerhofer, B. Preinerstorfer, A. Gargano, R. Reischl, W. Bicker, et al., Selectivity issues in targeted metabolomics: separation of phosphorylated carbohydrate isomers by mixedmode hydrophilic interaction/ weak anion exchange chromatography, J. Sep. Sci., 33 (2010) 3273–3282.
  • X. Liu, C.A. Pohl, HILIC behavior of a reversed-phase/ cation-exchange/anionexchange trimode column, J. Sep. Sci., 33 (2010) 779-786.
  • X. Liu, C.A. Pohl, Comparison of reversed-phase/ cation-exchange/anion-exchange trimodal stationary phases and their use in active pharmaceutical ingredient and counterion determinations, J. Chromatogr. A, 1232 (2012) 190-195.
  • X. Liu, C. Pohl, A. Woodruff, J. Chen, Chromatographic evaluation of reversedphase/anion-exchange/cationexchange trimodal stationary phases prepared by electrostatically driven self-assembly process, J. Chromatogr. A, 1218 (2011) 3407-3412.
  • Y. Zhao, H.C. Law, Z. Zhang, H.C. Lam, Q. Quan, G. Li, et al., Online coupling of hydrophilic interaction/ strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis, J. Chromatogr. A, 1415 (2015) 57-66.
  • A.S. Feste, I. Khan, Separation of glucooligosaccharides and polysaccharide hydrolysates by gradient elution hydrophilic interaction chromatography with pulsed amperometric detection, J. Chromatogr., 630 (1992) 129-139. S.C. Churms, Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction, J. Chromatogr. A, 720 (1996) 75-91.
  • S.C. Lin, W.C. Lee, Separation of a fructooligosaccharide mixture by hydrophilic interaction chromatography using silica-based micropellicular sorbents, J. Chromatogr. A, 803 (1998) 302-306.
  • A.R. Oyler, B.L. Armstrong, J.Y. Cha, M.X. Zhou, Q. Yang, R.I. Robinson, R. Dunphy, D.J. Burinsky, Hydrophilic interaction chromatography on aminosilica phases complements reversed-phase high performance liquid chromatography and capillary electrophoresis for peptide analysis, J. Chromatogr. A, 724 (1996) 378-383.
  • T. Yoshida, Peptide separation in normal phase liquid chromatography, Anal. Chem., 69 (1997) 3038-3043.
  • C.T. Mant, L.H. Kondejewski, R.S. Hodges, Hydrophilic interaction/cation-exchange chromatography for separation of cyclic peptides, J. Chromatogr. A, 816 (1998) 79-88.
  • T. Yoshida, T. Okada, T. Hobo, R. Chiba, Calculation of amino acid hydrophilicity indices for retention of peptides on amide, diol and silica columns in normalphase liquid chromatography, Chromatographia, 52 (2000) 418-424.
  • Y. Guo, S. Gaiki, Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography, J. Chromatogr. A, 1074 (2005) 71-80
  • Y. Kawachi, T. Ikeami, H. Takubo, Y. Ikeami, M. Miyamoto, N. Tanaka, J. Chromatogr. A, 1218 (2011) 5903-5919.
  • X. Qiao, L. Zhang, N. Zhang, X. Wang, X. Qin, H. Yan, et al., Imidazolium embedded C8 based stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography, J. Chromatogr. A, 1400 (2015) 107-116.
  • M. Sun, J. Feng, C. Luo, X. Liu, S. Jiang, Benzimidazole modified silica as a novel reversed-phase and anionexchange mixed-mode stationary phase for HPLC, Talanta, 105 (2013) 135-141.
  • K. HU, W. Zhang, H. Yang, Y. Cui, J. Zhang, W. Zhao, A. Yu, S. Zhang, Calixarene ionic luqiuid modified silica gel: A novel stationary phase for mixed-mode chromatography, Talanta, 152 (2016) 392-400.
  • H. Aral, T. Aral, K.S. Çelik, G. Topal, Preparation of a novel ionic hybdid stationary phase by non-covalent functionalization of single-walled carbon nanotubes with amino-derivatized silica gel for fast HPLC separation of aromatic compounds, Talanta, 149 (2016) 21-29.
  • T. Aral, H. Aral, B. Ziyadanoğulları, R. Ziyadanoğulları, Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications, Talanta, 131 (2015) 64- 73.
  • H. Aral, T.Aral, B. Ziyadanoğulları, R. Ziyadanoğulları, Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones, Talanta, 116 (2013) 155-163.
  • Q. Wang, Y. Long, L. Yao, L. Xu, Z.G. Shi, L. Xu, Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DDT stationary phase, Talanta, 146 (2016) 442-451.
  • D. Kotani, I. D’Acquarica, A. Ciogli, C. Villani, D. Capitani, J. Chromatogr. A, 1232 (2012) 196-211.
  • Y. Li, Y. Feng, T. Chen, H. Zhang, Imidazoline type stationary phase for hydrophilic interaction chromatography and reversed-phase liquid chromatography, J. Chromatogr. A, 1218 (2011) 5987- 5994.
  • S. Liu, H. Xu, J. Yu, D. Li, M. Li, X. Qiao, et al., Novel imidazolium-embedded N,N-dimethylaminopropylfunctionalized silica-based stationary phase for hydrophilic interaction/reversed-phase mixed-mode chromatography, Anal. Bioanal. Chem., 407 (2015) 8989-8997.
  • X.D. Cheng, X.T. Peng, Q.W. Yu, B.F. Yuan, Y.Q. Feng, Preparation and chromatographic evaluation of a novel phosphate ester-bonded stationary phase with complexation and hydrophobic interactions retention mechanism, J. Chromatogr. A, 1302 (2013) 81-87.
  • Y. Zhang, Y. Zhang, G. Wang, W. Chen, P. He, Q. Wang, Simultaneous separation of polar and non-polar mixtures by capillary HPLC based on an ostadecylsilane and taurine derivatized silica continuously packed column, Talanta, 161 (2016) 762- 768.
  • Q. Wang, M. Ye, L. Xu, Z.G. Shi, A reversed-phase/ hydrophilic interaction mixed-mode C18-Diol stationary phase for multiple applications, Anal. Chim. Acta, 888 (2015) 182-190.
  • T. Liang, Q. Fu, A. Shen, H. Wang, Y. Jin, H. Xin, Y. Ke, Z. Guo, X. Liang, Preparation and chromatographic evaluation of newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography, J. Chromatogr. A, 1388 (2015) 110-118.
  • H. Qui, M. Zhang, T. Gu, M. Takafuji, H. Ihara, A Sulphonic-azobenzene–grafted silica amphiphilic material: a versatile stationary phase for mixed-mode chromatography, Chem. Eur. J., 19 (2013) 18004- 18010.
  • S. Bocian, A. Nowaczyk, B. Buszewski, New-alkylphospate bonded stationary phase for liquid chromatographic separation of biologically active compounds, Anal. Bioanal. Chem., 404 (2012) 731-740.
  • Z. Liu, B.D. Cai, Y.Q. Feng, Rapid determination of endogenous cytokinins in plant samples by combination of magnetic solid phase extraction with hydrophilic interaction chromatography-tandem mass spectrometry, J. Chromatogr. B, 891-892 (2012) 27-35.
  • T. Tang, W.B. Zhang, J.W. Xu, M. Z. Xia, X.D. Gong, F.Y. Wang, T. Li, Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography, Chinese J. Anal. Chem., 45 (2017) 56-60.
  • L. Qiao, A. Duou, X. Shi, H. Li, Y. Shan, X. Lu, G. Xu, Development and evaluation of new imidazoliumbased zwitterionic stationary phases for hydrophilic interaction chromatography, J. Chromatogr. A, 1286 (2013) 137-145.
  • L. Qiao, X. Zhou, Y. Zhang, A. Yu, K. Hu, S. Zhang, 4-Chloro-6-pyrimidinylferrocene modified silica gel: A novel multiple-function stationary phase for mixedmode chromatography, Talanta, 153 (2016) 8-16.
  • A. Shen, X. Li, X. Dong, J. wei, Z. Guo, X. Liang, Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography, J. Chromatogr. A, 1314 (2013) 63-69.
Year 2018, Volume: 46 Issue: 1, 43 - 52, 01.03.2018

Abstract

References

  • L. Zhang, Q. Dai, X. Qiao, C. Yu, X. Qin, H. Yan, Mixed-mode chromatographic stationary phases: Recent advancement and its aplications for highperformance liquid chromatography, Trends Anal. Chem., 82 (2016) 143-163.
  • P. Janas, S. Bocian, P. Jandera, T. Kowalkowski, B. Buszewski, Separation of flavonoids on different phenyl-bonded stationary phases-the influence of polar groups in stationary phase structure, J. Chromatogr. A, 1429 (2016) 198-206.
  • Y. Liu, Z. Guo, Y. Jin, X. Xue, Q. Xu, F. Zhang, et al., Click oligo(ethylene glycol)”: an excellent orthogonal stationary phase to C18 for twodimensional reversedphase/ reversed-phase liquid chromatography, J. Chromatogr. A, 1206 (2008) 153- 159.
  • P. Jandera, Z. Kucˇerova, J. Urban, Retention times and bandwidths in reversedphase gradient liquid chromatography of peptides and proteins, J. Chromatogr. A, 1218 (2011) 8874–8889.
  • X. Guo, X. Zhang, Z. Guo, Y. Liu, A. Shen, G. Jin, et al., Hydrophilic interaction chromatography for selective separation of isomeric saponins, J. Chromatogr. A, 1325 (2014) 121-128.
  • P. Jiang, D.Wu, C.A. Lucy, Determination of void volume in normal phase liquid chromatography, J. Chromatogr. A, 1324 (2014) 63-70.
  • A.J. Alpert, M. Shukla, A.K. Shukla, L.R. Zieske, S.W. Yuen, M.A.J. Ferguson, A. Mehlert, M. Pauly, R. Orlando, Hydrophilic-interaction chromatography of complex carbohydrates, J. Chromatogr. A, 676 (1994) 191-202
  • A.J. Alpert, Advances in Chromatography, 44 (2006) 317-329.
  • M. R. Gama, R. G. C. Silva, C. H. Collins, C. B. G. Bottoli, Hydrophylic interaction chromatography, Trends in Anal. Chem. 37 (2012) 48-60
  • M.A. Strege, S. Stevensen, S. M.Lawrence, Mixed-mode anion−cation exchange/hydrophilic interaction liquid chromatography−electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery, Anal. Chem., 72 (2000) 4629-4633
  • M.A. Strege, Hydrophilic interaction chromatography− electrospray mass spectrometry analysis of polar compounds for natural product drug discovery, Anal. Chem., 70 (1998) 2439-2445
  • B.Y. Zhu, C.T. Colin, R.S. Hodges, Hydrophilicinteraction chromatography of peptides on hydrophilic and strong cation-exchange columns, J. Chromatogr., 548 (1991) 13-24.
  • T. Saga, Y. Inoue, K. Yamaguchi, Determination of carbohydrates by hydrophilic interaction chromatography with pulsed amperometric detection using postcolumn pH adjustment, J. Chromatogr. A, 625 (1992) 151-155.
  • Q. W. Yu, B. Lin, Y. Q. Feng, F. P. Zou, Application of humic acid bonded‐silica as a hydrophilic‐interaction chromatographic stationary Phase in separation of polar compounds, J. Liq. Chromatogr. Related. Technol., 31 (2008) 64-78.
  • X. Liu, C. Pohl, New hydrophilic interaction/ reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants, J. Chromatogr. A, 1191 (2008) 83–89.
  • H. Hinterwirth, M. Lammerhofer, B. Preinerstorfer, A. Gargano, R. Reischl, W. Bicker, et al., Selectivity issues in targeted metabolomics: separation of phosphorylated carbohydrate isomers by mixedmode hydrophilic interaction/ weak anion exchange chromatography, J. Sep. Sci., 33 (2010) 3273–3282.
  • X. Liu, C.A. Pohl, HILIC behavior of a reversed-phase/ cation-exchange/anionexchange trimode column, J. Sep. Sci., 33 (2010) 779-786.
  • X. Liu, C.A. Pohl, Comparison of reversed-phase/ cation-exchange/anion-exchange trimodal stationary phases and their use in active pharmaceutical ingredient and counterion determinations, J. Chromatogr. A, 1232 (2012) 190-195.
  • X. Liu, C. Pohl, A. Woodruff, J. Chen, Chromatographic evaluation of reversedphase/anion-exchange/cationexchange trimodal stationary phases prepared by electrostatically driven self-assembly process, J. Chromatogr. A, 1218 (2011) 3407-3412.
  • Y. Zhao, H.C. Law, Z. Zhang, H.C. Lam, Q. Quan, G. Li, et al., Online coupling of hydrophilic interaction/ strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis, J. Chromatogr. A, 1415 (2015) 57-66.
  • A.S. Feste, I. Khan, Separation of glucooligosaccharides and polysaccharide hydrolysates by gradient elution hydrophilic interaction chromatography with pulsed amperometric detection, J. Chromatogr., 630 (1992) 129-139. S.C. Churms, Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction, J. Chromatogr. A, 720 (1996) 75-91.
  • S.C. Lin, W.C. Lee, Separation of a fructooligosaccharide mixture by hydrophilic interaction chromatography using silica-based micropellicular sorbents, J. Chromatogr. A, 803 (1998) 302-306.
  • A.R. Oyler, B.L. Armstrong, J.Y. Cha, M.X. Zhou, Q. Yang, R.I. Robinson, R. Dunphy, D.J. Burinsky, Hydrophilic interaction chromatography on aminosilica phases complements reversed-phase high performance liquid chromatography and capillary electrophoresis for peptide analysis, J. Chromatogr. A, 724 (1996) 378-383.
  • T. Yoshida, Peptide separation in normal phase liquid chromatography, Anal. Chem., 69 (1997) 3038-3043.
  • C.T. Mant, L.H. Kondejewski, R.S. Hodges, Hydrophilic interaction/cation-exchange chromatography for separation of cyclic peptides, J. Chromatogr. A, 816 (1998) 79-88.
  • T. Yoshida, T. Okada, T. Hobo, R. Chiba, Calculation of amino acid hydrophilicity indices for retention of peptides on amide, diol and silica columns in normalphase liquid chromatography, Chromatographia, 52 (2000) 418-424.
  • Y. Guo, S. Gaiki, Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography, J. Chromatogr. A, 1074 (2005) 71-80
  • Y. Kawachi, T. Ikeami, H. Takubo, Y. Ikeami, M. Miyamoto, N. Tanaka, J. Chromatogr. A, 1218 (2011) 5903-5919.
  • X. Qiao, L. Zhang, N. Zhang, X. Wang, X. Qin, H. Yan, et al., Imidazolium embedded C8 based stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography, J. Chromatogr. A, 1400 (2015) 107-116.
  • M. Sun, J. Feng, C. Luo, X. Liu, S. Jiang, Benzimidazole modified silica as a novel reversed-phase and anionexchange mixed-mode stationary phase for HPLC, Talanta, 105 (2013) 135-141.
  • K. HU, W. Zhang, H. Yang, Y. Cui, J. Zhang, W. Zhao, A. Yu, S. Zhang, Calixarene ionic luqiuid modified silica gel: A novel stationary phase for mixed-mode chromatography, Talanta, 152 (2016) 392-400.
  • H. Aral, T. Aral, K.S. Çelik, G. Topal, Preparation of a novel ionic hybdid stationary phase by non-covalent functionalization of single-walled carbon nanotubes with amino-derivatized silica gel for fast HPLC separation of aromatic compounds, Talanta, 149 (2016) 21-29.
  • T. Aral, H. Aral, B. Ziyadanoğulları, R. Ziyadanoğulları, Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications, Talanta, 131 (2015) 64- 73.
  • H. Aral, T.Aral, B. Ziyadanoğulları, R. Ziyadanoğulları, Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones, Talanta, 116 (2013) 155-163.
  • Q. Wang, Y. Long, L. Yao, L. Xu, Z.G. Shi, L. Xu, Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DDT stationary phase, Talanta, 146 (2016) 442-451.
  • D. Kotani, I. D’Acquarica, A. Ciogli, C. Villani, D. Capitani, J. Chromatogr. A, 1232 (2012) 196-211.
  • Y. Li, Y. Feng, T. Chen, H. Zhang, Imidazoline type stationary phase for hydrophilic interaction chromatography and reversed-phase liquid chromatography, J. Chromatogr. A, 1218 (2011) 5987- 5994.
  • S. Liu, H. Xu, J. Yu, D. Li, M. Li, X. Qiao, et al., Novel imidazolium-embedded N,N-dimethylaminopropylfunctionalized silica-based stationary phase for hydrophilic interaction/reversed-phase mixed-mode chromatography, Anal. Bioanal. Chem., 407 (2015) 8989-8997.
  • X.D. Cheng, X.T. Peng, Q.W. Yu, B.F. Yuan, Y.Q. Feng, Preparation and chromatographic evaluation of a novel phosphate ester-bonded stationary phase with complexation and hydrophobic interactions retention mechanism, J. Chromatogr. A, 1302 (2013) 81-87.
  • Y. Zhang, Y. Zhang, G. Wang, W. Chen, P. He, Q. Wang, Simultaneous separation of polar and non-polar mixtures by capillary HPLC based on an ostadecylsilane and taurine derivatized silica continuously packed column, Talanta, 161 (2016) 762- 768.
  • Q. Wang, M. Ye, L. Xu, Z.G. Shi, A reversed-phase/ hydrophilic interaction mixed-mode C18-Diol stationary phase for multiple applications, Anal. Chim. Acta, 888 (2015) 182-190.
  • T. Liang, Q. Fu, A. Shen, H. Wang, Y. Jin, H. Xin, Y. Ke, Z. Guo, X. Liang, Preparation and chromatographic evaluation of newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography, J. Chromatogr. A, 1388 (2015) 110-118.
  • H. Qui, M. Zhang, T. Gu, M. Takafuji, H. Ihara, A Sulphonic-azobenzene–grafted silica amphiphilic material: a versatile stationary phase for mixed-mode chromatography, Chem. Eur. J., 19 (2013) 18004- 18010.
  • S. Bocian, A. Nowaczyk, B. Buszewski, New-alkylphospate bonded stationary phase for liquid chromatographic separation of biologically active compounds, Anal. Bioanal. Chem., 404 (2012) 731-740.
  • Z. Liu, B.D. Cai, Y.Q. Feng, Rapid determination of endogenous cytokinins in plant samples by combination of magnetic solid phase extraction with hydrophilic interaction chromatography-tandem mass spectrometry, J. Chromatogr. B, 891-892 (2012) 27-35.
  • T. Tang, W.B. Zhang, J.W. Xu, M. Z. Xia, X.D. Gong, F.Y. Wang, T. Li, Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography, Chinese J. Anal. Chem., 45 (2017) 56-60.
  • L. Qiao, A. Duou, X. Shi, H. Li, Y. Shan, X. Lu, G. Xu, Development and evaluation of new imidazoliumbased zwitterionic stationary phases for hydrophilic interaction chromatography, J. Chromatogr. A, 1286 (2013) 137-145.
  • L. Qiao, X. Zhou, Y. Zhang, A. Yu, K. Hu, S. Zhang, 4-Chloro-6-pyrimidinylferrocene modified silica gel: A novel multiple-function stationary phase for mixedmode chromatography, Talanta, 153 (2016) 8-16.
  • A. Shen, X. Li, X. Dong, J. wei, Z. Guo, X. Liang, Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography, J. Chromatogr. A, 1314 (2013) 63-69.
There are 49 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hayriye Aral This is me

Publication Date March 1, 2018
Acceptance Date February 2, 2017
Published in Issue Year 2018 Volume: 46 Issue: 1

Cite

APA Aral, H. (2018). Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase. Hacettepe Journal of Biology and Chemistry, 46(1), 43-52.
AMA Aral H. Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase. HJBC. March 2018;46(1):43-52.
Chicago Aral, Hayriye. “Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase”. Hacettepe Journal of Biology and Chemistry 46, no. 1 (March 2018): 43-52.
EndNote Aral H (March 1, 2018) Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase. Hacettepe Journal of Biology and Chemistry 46 1 43–52.
IEEE H. Aral, “Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase”, HJBC, vol. 46, no. 1, pp. 43–52, 2018.
ISNAD Aral, Hayriye. “Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase”. Hacettepe Journal of Biology and Chemistry 46/1 (March 2018), 43-52.
JAMA Aral H. Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase. HJBC. 2018;46:43–52.
MLA Aral, Hayriye. “Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 1, 2018, pp. 43-52.
Vancouver Aral H. Synthesis and Characterisation of a New Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatographic Stationary Phase. HJBC. 2018;46(1):43-52.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc