Research Article
BibTex RIS Cite
Year 2019, Volume: 47 Issue: 1, 67 - 76, 01.02.2019

Abstract

References

  • 1. Q. Zhai, J. Wang, H. Jiang, Q. Wei, E. Wang, Bare conical nanopore embedded in polymer membrane for Cr(III) sensing, Talanta, 140 (2015) 219-225.
  • 2. Y.R. Kim, J. Min, I.H. Lee, S. Kim, A.G. Kim, K. Kim, K. Namkoong, C. Ko, Nanopore sensor for fast label-free detection of short double-stranded DNAs, Biosens. Bioelectron., 22 (2007) 2926-2931.
  • 3. B.M. Venkatesan, A.B. Shah, J.M. Zuo, R. Bashir, DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors, Adv. Funct. Mater., 20 (2010) 1266-1275.
  • 4. L.T. Sexton, P. Jin, K. Kececi, L. Baker, Y. Choi, C.R. Martin, Resistive pulse sensing of proteins using single conical nanopores in PET membranes, Abstr. Pap. Am. Chem. S., 231 (2006).
  • 5. E.N. Savariar, K. Krishnamoorthy, S. Thayumanavan, Molecular discrimination inside polymer nanotubules, Nat. Nanotechnol., 3 (2008) 112-117.
  • 6. A.S. Prabhu, T.Z.N. Jubery, K.J. Freedman, R. Mulero, P. Dutta, M.J. Kim, Chemically modified solid-state nanopores for high throughput nanoparticle separation, J. Phys. Condens. Matter., 22 (2010) 454107.
  • 7. B. Hornblower, A. Coombs, R.D. Whitaker, A. Kolomeisky, S.J. Picone, A. Meller, M. Akeson, Single-molecule analysis of DNA-protein complexes using nanopores, Nat. Meth., 4 (2007) 315.
  • 8. C. Dekker, Solid-state nanopores, Nat. Nanotechnol., 2 (2007) 209-215.
  • 9. R. Patricio, A. Pavel Yu, C. Javier, M. Salvador, Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties, Nanotechnology, 19 (2008) 315707.
  • 10. D. Kaya, A. Dinler, N. San, K. Kececi, Effect of Pore Geometry on Resistive-Pulse Sensing of DNA Using Track-Etched PET Nanopore Membrane, Electrochim. Acta, 202 (2016) 157- 165.
  • 11. B.A. Sartowska, O.L. Orelovitch, A. Presz, P.Y. Apel, I.V. Blonskaya, Nanopores with controlled profiles in tracketched membranes, Nukleonika, 57 (2012) 575-579.
  • 12. O.A. Saleh, L.L. Saw, Biological sensing with an on-chip resistive pulse analyzer, P. Ann. Int. IEEE Embs, Vols 1-7, 26 (2004) 2568-2570.
  • 13. H.M. Kim, M.H. Lee, K.B. Kim, Theoretical and experimental study of nanopore drilling by a focused electron beam in transmission electron microscopy, Nanotechnology, 22 (2011) 275303.
  • 14. T. Deng, M. Li, Y. Wang, Z. Liu, Development of solid-state nanopore fabrication technologies, Chin. Sci. Bull., 60 (2015) 304-319.
  • 15. K. Healy, B. Schiedt, A.P. Morrison, Solid-state nanopore technologies for nanopore-based DNA analysis, Nanomedicine (Lond), 2 (2007) 875-897.
  • 16. D. Kaya, K. Kececi, Preparation of nanopores and their application for the detection of metals, Bulg. Chem. Commun., 49 (2017) 37-42.
  • 17. S.R. Park, H. Peng, X.S. Ling, Fabrication of nanopores in silicon chips using feedback chemical etching, Small, 3 (2007) 116-119.
  • 18. I. Vlassiouk, P.Y. Apel, S.N. Dmitriev, K. Healy, Z.S. Siwy, Versatile ultrathin nanoporous silicon nitride membranes, Proc. Natl. Acad. Sci. USA, 106 (2009) 21039-21044.
  • 19. K. Briggs, H. Kwok, V. Tabard-Cossa, Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis, Small, 10 (2014) 2077-2086.
  • 20. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Graphene as a subnanometer trans-electrode membrane, Nature, 467 (2010) 190-U173.
  • 21. M. Lillo, D. Losic, Ion-beam pore opening of porous anodic alumina: The formation of single nanopore and nanopore arrays, Mater. Lett., 63 (2009) 457-460.
  • 22. S. Kipke, G. Schmid, Nanoporous alumina membranes as diffusion controlling systems, Adv. Funct. Mater., 14 (2004) 1184-1188.
  • 23. R. Spohr, Status of ion track technology-prospects of single tracks, Radiat. Meas., 40 (2005) 191-202.
  • 24. S. Nasir, M. Ali, W. Ensinger, Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes, Nanotechnology, 23 (2012) 225502.
  • 25. B. Yameen, M. Ali, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Synthetic Proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes, Nano Lett., 9 (2009) 2788-2793.
  • 26. M. Ali, P. Ramirez, S. Mafé, R. Neumann, W. Ensinger, A pHtunable nanofluidic diode with a broad range of rectifying properties, ACS Nano, 3 (2009) 603-608.
  • 27. K. Kececi, L.T. Sexton, F. Buyukserin, C.R. Martin, Resistivepulse detection of short dsDNAs using a chemically functionalized conical nanopore sensor, Nanomedicine, 3 (2008) 787-796.
  • 28. Q.H. Nguyen, M. Ali, R. Neumann, W. Ensinger, Saccharide/ glycoprotein recognition inside synthetic ion channels modified with boronic acid, Sens. Actuat. B, 162 (2012) 216- 222.
  • 29. Z. Siwy, E. Heins, C.C. Harrell, P. Kohli, C.R. Martin, Conicalnanotube ion-current rectifiers: The role of surface charge, J. Am. Chem. Soc., 126 (2004) 10850-10851.
  • 30. C.C. Harrell, P. Kohli, Z. Siwy, C.R. Martin, DNA - Nanotube artificial ion channels, J. Am. Chem. Soc., 126 (2004) 15646- 15647.
  • 31. K.B. Jirage, J.C. Hulteen, C.R. Martin, Effect of thiol chemisorption on the transport properties of gold nanotubule membranes, Anal. Chem., 71 (1999) 4913-4918.
  • 32. T.A. Desai, S. Sharma, R.J. Walczak, A. Boiarski, M. Cohen, J. Shapiro, T. West, K. Melnik, C. Cosentino, P.M. Sinha, Nanoporous implants for controlled drug delivery, in BioMEMS and Biomedical Nanotechnology, 2006, Springer. p. 263-286.
  • 33. G. Jeon, S.Y. Yang, J.K. Kim, Functional nanoporous membranes for drug delivery, J. Mater. Chem., 22 (2012) 14814-14834.
  • 34. S.P. Adiga, C. Jin, L.A. Curtiss, N.A. Monteiro‐Riviere, R.J. Narayan, Nanoporous membranes for medical and biological applications, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1 (2009) 568-581.
  • 35. A. Saxena, B.P. Tripathi, M. Kumar, V.K. Shahi, Membranebased techniques for the separation and purification of proteins: an overview, Adv. Coll. Interf. Sci., 145 (2009) 1-22.
  • 36. K. Kececi, N. San, D. Kaya, Nanopore detection of doublestranded DNA using a track-etched polycarbonate membrane, Talanta, 144 (2015) 268-274.
  • 37. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • 38. Z.S. Siwy, Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry, Adv. Funct. Mater, 16 (2006) 735-746. 39. J.E. Wharton, P. Jin, L.T. Sexton, L.P. Horne, S.A. Sherrill, W.K.
  • Mino, C.R. Martin, A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors, Small, 3 (2007) 1424-1430.
  • 40. D. Kaya, K. Keçeci, Transport Characteristics of Selected Dyes Through Track-Etched Multiporous PET Membranes, Hacettepe J. Biolog. Chem., 46 (2018) 1-11.
  • 41. Q.H. Nguyen, M. Ali, S. Nasir, W. Ensinger, Transport properties of track-etched membranes having variable effective pore-lengths, Nanotechnology, 26 (2015) 485502.

Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes

Year 2019, Volume: 47 Issue: 1, 67 - 76, 01.02.2019

Abstract

In this study we have prepared cylindrical and conical nanopores on poly(ethylene terephthalate) (PET) membranes using track-etching method. Later on we have investigated the mass transport of the chosen model dye Methyl Orange (MO) through these membranes. In order to enhance the transport flux of the dye, we have used surface functionalization using ethylenediamine (EDA) as the functionalization agent. We have confirmed the functionalization of the nanopore surface using electrochemical measurements. We have investigated mass transport through functionalized and bare PET membranes and shown that by attaching amine groups on the nanopore walls, we can indeed increase the transport of MO. Effects of pore size, pore geometry and temperature were investigated for the transport of MO. We have shown that PET, which has a negative surface charge at neutral pH, can be functionalized for a more effective transport of negatively charged analyte.

References

  • 1. Q. Zhai, J. Wang, H. Jiang, Q. Wei, E. Wang, Bare conical nanopore embedded in polymer membrane for Cr(III) sensing, Talanta, 140 (2015) 219-225.
  • 2. Y.R. Kim, J. Min, I.H. Lee, S. Kim, A.G. Kim, K. Kim, K. Namkoong, C. Ko, Nanopore sensor for fast label-free detection of short double-stranded DNAs, Biosens. Bioelectron., 22 (2007) 2926-2931.
  • 3. B.M. Venkatesan, A.B. Shah, J.M. Zuo, R. Bashir, DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors, Adv. Funct. Mater., 20 (2010) 1266-1275.
  • 4. L.T. Sexton, P. Jin, K. Kececi, L. Baker, Y. Choi, C.R. Martin, Resistive pulse sensing of proteins using single conical nanopores in PET membranes, Abstr. Pap. Am. Chem. S., 231 (2006).
  • 5. E.N. Savariar, K. Krishnamoorthy, S. Thayumanavan, Molecular discrimination inside polymer nanotubules, Nat. Nanotechnol., 3 (2008) 112-117.
  • 6. A.S. Prabhu, T.Z.N. Jubery, K.J. Freedman, R. Mulero, P. Dutta, M.J. Kim, Chemically modified solid-state nanopores for high throughput nanoparticle separation, J. Phys. Condens. Matter., 22 (2010) 454107.
  • 7. B. Hornblower, A. Coombs, R.D. Whitaker, A. Kolomeisky, S.J. Picone, A. Meller, M. Akeson, Single-molecule analysis of DNA-protein complexes using nanopores, Nat. Meth., 4 (2007) 315.
  • 8. C. Dekker, Solid-state nanopores, Nat. Nanotechnol., 2 (2007) 209-215.
  • 9. R. Patricio, A. Pavel Yu, C. Javier, M. Salvador, Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties, Nanotechnology, 19 (2008) 315707.
  • 10. D. Kaya, A. Dinler, N. San, K. Kececi, Effect of Pore Geometry on Resistive-Pulse Sensing of DNA Using Track-Etched PET Nanopore Membrane, Electrochim. Acta, 202 (2016) 157- 165.
  • 11. B.A. Sartowska, O.L. Orelovitch, A. Presz, P.Y. Apel, I.V. Blonskaya, Nanopores with controlled profiles in tracketched membranes, Nukleonika, 57 (2012) 575-579.
  • 12. O.A. Saleh, L.L. Saw, Biological sensing with an on-chip resistive pulse analyzer, P. Ann. Int. IEEE Embs, Vols 1-7, 26 (2004) 2568-2570.
  • 13. H.M. Kim, M.H. Lee, K.B. Kim, Theoretical and experimental study of nanopore drilling by a focused electron beam in transmission electron microscopy, Nanotechnology, 22 (2011) 275303.
  • 14. T. Deng, M. Li, Y. Wang, Z. Liu, Development of solid-state nanopore fabrication technologies, Chin. Sci. Bull., 60 (2015) 304-319.
  • 15. K. Healy, B. Schiedt, A.P. Morrison, Solid-state nanopore technologies for nanopore-based DNA analysis, Nanomedicine (Lond), 2 (2007) 875-897.
  • 16. D. Kaya, K. Kececi, Preparation of nanopores and their application for the detection of metals, Bulg. Chem. Commun., 49 (2017) 37-42.
  • 17. S.R. Park, H. Peng, X.S. Ling, Fabrication of nanopores in silicon chips using feedback chemical etching, Small, 3 (2007) 116-119.
  • 18. I. Vlassiouk, P.Y. Apel, S.N. Dmitriev, K. Healy, Z.S. Siwy, Versatile ultrathin nanoporous silicon nitride membranes, Proc. Natl. Acad. Sci. USA, 106 (2009) 21039-21044.
  • 19. K. Briggs, H. Kwok, V. Tabard-Cossa, Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis, Small, 10 (2014) 2077-2086.
  • 20. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Graphene as a subnanometer trans-electrode membrane, Nature, 467 (2010) 190-U173.
  • 21. M. Lillo, D. Losic, Ion-beam pore opening of porous anodic alumina: The formation of single nanopore and nanopore arrays, Mater. Lett., 63 (2009) 457-460.
  • 22. S. Kipke, G. Schmid, Nanoporous alumina membranes as diffusion controlling systems, Adv. Funct. Mater., 14 (2004) 1184-1188.
  • 23. R. Spohr, Status of ion track technology-prospects of single tracks, Radiat. Meas., 40 (2005) 191-202.
  • 24. S. Nasir, M. Ali, W. Ensinger, Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes, Nanotechnology, 23 (2012) 225502.
  • 25. B. Yameen, M. Ali, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Synthetic Proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes, Nano Lett., 9 (2009) 2788-2793.
  • 26. M. Ali, P. Ramirez, S. Mafé, R. Neumann, W. Ensinger, A pHtunable nanofluidic diode with a broad range of rectifying properties, ACS Nano, 3 (2009) 603-608.
  • 27. K. Kececi, L.T. Sexton, F. Buyukserin, C.R. Martin, Resistivepulse detection of short dsDNAs using a chemically functionalized conical nanopore sensor, Nanomedicine, 3 (2008) 787-796.
  • 28. Q.H. Nguyen, M. Ali, R. Neumann, W. Ensinger, Saccharide/ glycoprotein recognition inside synthetic ion channels modified with boronic acid, Sens. Actuat. B, 162 (2012) 216- 222.
  • 29. Z. Siwy, E. Heins, C.C. Harrell, P. Kohli, C.R. Martin, Conicalnanotube ion-current rectifiers: The role of surface charge, J. Am. Chem. Soc., 126 (2004) 10850-10851.
  • 30. C.C. Harrell, P. Kohli, Z. Siwy, C.R. Martin, DNA - Nanotube artificial ion channels, J. Am. Chem. Soc., 126 (2004) 15646- 15647.
  • 31. K.B. Jirage, J.C. Hulteen, C.R. Martin, Effect of thiol chemisorption on the transport properties of gold nanotubule membranes, Anal. Chem., 71 (1999) 4913-4918.
  • 32. T.A. Desai, S. Sharma, R.J. Walczak, A. Boiarski, M. Cohen, J. Shapiro, T. West, K. Melnik, C. Cosentino, P.M. Sinha, Nanoporous implants for controlled drug delivery, in BioMEMS and Biomedical Nanotechnology, 2006, Springer. p. 263-286.
  • 33. G. Jeon, S.Y. Yang, J.K. Kim, Functional nanoporous membranes for drug delivery, J. Mater. Chem., 22 (2012) 14814-14834.
  • 34. S.P. Adiga, C. Jin, L.A. Curtiss, N.A. Monteiro‐Riviere, R.J. Narayan, Nanoporous membranes for medical and biological applications, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1 (2009) 568-581.
  • 35. A. Saxena, B.P. Tripathi, M. Kumar, V.K. Shahi, Membranebased techniques for the separation and purification of proteins: an overview, Adv. Coll. Interf. Sci., 145 (2009) 1-22.
  • 36. K. Kececi, N. San, D. Kaya, Nanopore detection of doublestranded DNA using a track-etched polycarbonate membrane, Talanta, 144 (2015) 268-274.
  • 37. Z. Siwy, P. Apel, D. Baur, D.D. Dobrev, Y.E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K.O. Voss, Preparation of synthetic nanopores with transport properties analogous to biological channels, Surf. Sci., 532 (2003) 1061-1066.
  • 38. Z.S. Siwy, Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry, Adv. Funct. Mater, 16 (2006) 735-746. 39. J.E. Wharton, P. Jin, L.T. Sexton, L.P. Horne, S.A. Sherrill, W.K.
  • Mino, C.R. Martin, A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors, Small, 3 (2007) 1424-1430.
  • 40. D. Kaya, K. Keçeci, Transport Characteristics of Selected Dyes Through Track-Etched Multiporous PET Membranes, Hacettepe J. Biolog. Chem., 46 (2018) 1-11.
  • 41. Q.H. Nguyen, M. Ali, S. Nasir, W. Ensinger, Transport properties of track-etched membranes having variable effective pore-lengths, Nanotechnology, 26 (2015) 485502.
There are 41 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Dila Kaya This is me

Kaan Keçeci

Publication Date February 1, 2019
Acceptance Date January 14, 2019
Published in Issue Year 2019 Volume: 47 Issue: 1

Cite

APA Kaya, D., & Keçeci, K. (2019). Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes. Hacettepe Journal of Biology and Chemistry, 47(1), 67-76.
AMA Kaya D, Keçeci K. Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes. HJBC. February 2019;47(1):67-76.
Chicago Kaya, Dila, and Kaan Keçeci. “Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes”. Hacettepe Journal of Biology and Chemistry 47, no. 1 (February 2019): 67-76.
EndNote Kaya D, Keçeci K (February 1, 2019) Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes. Hacettepe Journal of Biology and Chemistry 47 1 67–76.
IEEE D. Kaya and K. Keçeci, “Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes”, HJBC, vol. 47, no. 1, pp. 67–76, 2019.
ISNAD Kaya, Dila - Keçeci, Kaan. “Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes”. Hacettepe Journal of Biology and Chemistry 47/1 (February 2019), 67-76.
JAMA Kaya D, Keçeci K. Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes. HJBC. 2019;47:67–76.
MLA Kaya, Dila and Kaan Keçeci. “Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 1, 2019, pp. 67-76.
Vancouver Kaya D, Keçeci K. Effect of Surface Functionalization on the Transport Characteristics of Methyl Orange Through Track-Etched Membranes. HJBC. 2019;47(1):67-76.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc