Year 2019,
Volume: 47 Issue: 1, 133 - 141, 01.02.2019
Hasret Tolga Şirin
Ebru Akdoğan
Erhan Bişkin
References
- M. Jarcho, R.L. Salsbury, M.B. Thomas, R.H. Doremus,
Synthesis and fabrication of β-tricalcium phosphate
(whitlockite) ceramics for potential prosthetic applications,
J. Mater. Sci., 14 (1979) 142-150.
- 2. J. Enderle, J. Bronzino, Introduction to biomedical
engineering, Elsevier, Burlington, USA, 2012
- 3. S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S.-H. Hyon,
K. Jamshidi, Polymer-hydroxyapatite composites for
biodegradable bone fillers, Biomaterials, 7 (1986) 183-187.
- 4. S.M. Zakaria, S.H.S. Zein, M.R. Othman, F. Yang, J.A. Jansen,
Nanophase hydroxyapatite as a biomaterial in advanced
hard tissue engineering: a review, Tissue Eng. Part B: Rev.,
19 (2013) 431-441.
- 5. J. Park, R. Lakes, Biomaterials: an Introduction, Springer
Science Business Media, LLC, New York, USA, 2007
- 6. C. Doyle, E. Tanner, W. Bonfield, In vitro and in vivo evaluation
of polyhydroxybutyrate and of polyhydroxybutyrate
reinforced with hydroxyapatite, Biomaterials, 12 (1991)
- 841-847.
7. Z. Huang, J. Tian, B. Yu, Y. Xu, Q. Feng, A bone-like nanohydroxyapatite/
collagen loaded injectable scaffold., Biomed.
Mater., 4 (2009) 055005.
- 8. W. Thein-Han, R. Misra, Biomimetic chitosan–
nanohydroxyapatite composite scaffolds for bone tissue
engineering, Acta Biomater., 5 (2009) 1182-1197.
- 9. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone
tissue engineering, Acta Biomater., 7 (2011) 2769-2781.
- 10. D. Apelt, F. Theiss, A.O. El-Warrak, K. Zlinszky, R. Bettschart-
Wolfisberger, M. Bohner, S. Matter, J.A. Auer, B. von
Rechenberg, In vivo behavior of three different injectable
hydraulic calcium phosphate cements, Biomaterials, 25
(2004) 1439-1451.
- 11. J.E. Dumas, K. Zienkiewicz, S.A. Tanner, E.M. Prieto, S.
Bhattacharyya, S.A. Guelcher, Synthesis and characterization
of an injectable allograft bone/polymer composite bone
void filler with tunable mechanical properties, Tissue Eng.
Part A, 16 (2010) 2505-2518.
- 12. N.L. Ignjatović, C.Z. Liub, J.T. Czernuszka, D.P. Uskokovića,
Micro-and nano-injectable composite biomaterials
containing calcium phosphate coated with poly (DL-lactideco-
glycolide), Acta Biomater., 3 (2007) 927-935.
- 13. J.D. Kretlow, L. Klouda, A.G. Mikos, Injectable matrices and
scaffolds for drug delivery in tissue engineering, Adv. Drug
Deliver. Rev., 59 (2007) 263-273.
- 14. A. La Gatta, A. De Rosa, P. Laurienzo, M. Malinconico, A novel
injectable poly (ε‐caprolactone)/calcium sulfate system
for bone regeneration: Synthesis and characterization,
Macromol Biosci., 5 (2005) 1108-1117.
- 15. A. López, C. Persson, J. Hilborn, H. Engqvist, Synthesis and
characterization of injectable composites of poly [D, Llactide‐
co‐(ε‐caprolactone)] reinforced with β‐TCP and
CaCO3 for intervertebral disk augmentation, J. Biomed.
Mater. Res. B: Appl. Biomater., 95 (2010) 75-83.
- 16. K.L. Low, S.H. Tan, S.H.S. Zein, J.A. Roether, V. Mouriño,
A.R. Boccaccini, Calcium phosphate‐based composites as
injectable bone substitute materials, J. Biomed. Mater. Res.
Part B: Appl. Biomater., 94 (2010) 273-286.
H.T. Sirin et al. / Hacettepe J. Biol. & Chem., 2019, 47 (1), 133–141 141
- 17. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini,
Biodegradable and bioactive porous polymer/inorganic
composite scaffolds for bone tissue engineering,
Biomaterials, 27 (2006) 3413-3431.
- 18. A. Senköylü, E. Ural, K. Kesencì, A. Sìmşek, S. Ruacan,
L. Fambri, C. Migliaresi, E. Pìşkìn, Poly (D, L-lactide/ɛcaprolactone)/
hydroxyapatite composites as bone filler: an
in vivo study in rats, Int. J. Artif. Organs, 25 (2002) 1174-1179.
- 19. E. Ural, K. Kesenci, L. Fambri, C. Migliaresi, E. Piskin, Poly
(D, L-cactide/ε-caprolactone)/hydroxyapatite composites,
Biomaterials, 21 (2000) 2147-2154.
- 20. R.Y. Basha, M. Doble, Design of biocomposite materials for
bone tissue regeneration, Mater. Sci., 57 (2015) 452-463.
- 21. B. Torabinejad, J. Mohammadi-Rovshandeh, S.M.
Davachi, A. Zamaniana, Synthesis and characterization of
nanocomposite scaffolds based on triblock copolymer of
L-lactide, ε-caprolactone and nano-hydroxyapatite for bone
tissue engineering, Mater. Sci. and Eng. C., 42 (2014) 199-
210.
- 22. H. Nie, C.H. Wang, Fabrication and characterization of PLGA/
HAp composite scaffolds for delivery of BMP-2 plasmid DNA,
J. Control. Release, 120 (2007) 111-121.
- 23. Z. Hong, R.L. Reis, J.F. Mano, Preparation and in vitro
characterization of novel bioactive glass ceramic
nanoparticles, J. Biomed. Mater. Res. A, 88 (2009) 304-313.
- 24. T. Miyai, A. Ito, G. Tamazawa, T. Matsuno, Y. Sogo, C.
Nakamura, A. Yamazaki, T. Satoh, Antibiotic-loaded poly-ε-
caprolactone and porous β-tricalcium phosphate composite
for treating osteomyelitis, Biomaterials, 29 (2008) 350-358.
- 25. F. Yang, J. Wolke, J. Jansen, Biomimetic calcium phosphate
coating on electrospun poly (ɛ-caprolactone) scaffolds for
bone tissue engineering, Chem. Eng. J., 137 (2008) 154-161.
- 26. V. Guarino, L. Ambrosio, The synergic effect of polylactide
fiber and calcium phosphate particle reinforcement in poly
ε-caprolactone-based composite scaffolds, Acta Biomater.,
4 (2008) 1778-1787.
- 27. C.C.P.M. Verheyen, J.R. De Wijn, C.A. Van Blitterswijk, K.
DeGroot, Evaluation of hydroxylapatite/poly (l‐lactide)
composites: Mechanical behavior, J. Biomed. Mater. Res., 26
(1992) 1277-1296.
- 28. Y. Kinoshita, M. Matsuo, K. Todoki, S. Ozono, S. Fukuoka, H.
Tsuzuki, M. Nakamura, K. Tomihata, T. Shimamoto, Y. Ikada,
Alveolar bone regeneration using absorbable poly (L-lactideco-
ɛ-caprolactone)/β-tricalcium phosphate membrane and
gelatin sponge incorporating basic fibroblast growth factor,
Int. J. Oral and Maxillofac. Surg., 37 (2008) 275-281.
- 29. M. K ikuchi, Y. K oyama, T. Y amada, Y. I mamura, T. O kada,
N. Shirahama, K. Akita, K. Takakuda, J. Tanaka, Development
of guided bone regeneration membrane composed of
β-tricalcium phosphate and poly (L-lactide-co-glycolide-co-
ε-caprolactone) composites, Biomaterials, 25 (2004) 5979-
5986.
- 30. P. N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Cho,
Nanostructured calcium phosphates for biomedical
applications: novel synthesis and characterization, Acta
Biomater., 1 (2005) 65-83.
- 31. S.V. Dorozhkin, Bioceramics of calcium orthophosphates,
Biomaterials, 31 (2010) 1465-1485.
- 32. L.L. Hench, Bioceramics: from concept to clinic, J. Am.
Ceram. Soc., 74 (1991) 1487-1510.
- 33. S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas,
Calcium phosphate apatites with variable Ca/P atomic ratio I.
Synthesis, characterisation and thermal stability of powders,
Biomaterials, 23 (2002) 1065-1072.
- 34. B. Schrader, Infrared and Rarnan spectroscopy: Methods
and applications VCH Publishers. Inc., New York, USA, 1995.
- 35. B. Stuart, Infrared spectroscopy, Kirk‐Othmer Encyclopedia
of Chemical Technology, (2000) 1-18.
- 36. E. Akdogan, M. Demirbilek, Y. Sen, M.A. Onur, O.K. Azap, E.
Sonmez, H.T. Sirin, M. Mutlu, In-vitro and in-vivo bacteria
anti-fouling properties of phosphite plasma treated silicone,
surface innovations, 7 (2018) 122-132.
- 37. B. Stuart, Infrared spectroscopy: Fundamentals and
applications, John Wiley & Sons, Ltd, Weinheim Germany,
2005
- 38. K. Ishikawa, P. Ducheyne, S. Radin, Determination of the
Ca/P ratio in calcium-deficient hydroxyapatite using X-ray
diffraction analysis, J. Mater. Sci. Mater. Med., 4 (1993) 165-
168.
- 39. M. Akao, H. Aoki, K. Kato, A. Sato, Dense polycrystalline
β-tricalcium phosphate for prosthetic applications, J. Mater.
Sci. Mater. Med., 17 (1982) 343-346.
- 40. Y. Lemmouchi, E. Schacht, C. Lootens, In vitro release of
trypanocidal drugs from biodegradable implants based
on poly (ε-caprolactone) and poly(D,L-lactide), J. Control.
Release, 55 (1998) 79-85.
- 41. H. Kricheldorf, Syntheses and application of polylactides,
Chemosphere, 43 (2001) 49-54.
- 42. L. Wu, J. Ding, In vitro degradation of three-dimensional
porous poly (D, L-lactide-co-glycolide) scaffolds for tissue
engineering, Biomaterials, 25 (2004) 5821-5830.
- 43. H. Pistner, D.R. Bendi, J. Muhling, J.F. Reuther, Poly (l-lactide):
a long-term degradation study in vivo: Part III. Analytical
characterization, Biomaterials, 14 (1993) 291-298.
- 44. Y. Ikada, S.H. Hyon, K. Jamshidi, S. Higashi, T. Yamamuro, Y.
Katutani, T. Kitsugi, Release of antibiotic from composites
of hydroxyapatite and poly(lactic acid), J. Control. Release,
2 (1985) 179-186.
Preparation of Poly(DL-Lactide/ε-Caprolactone)–β-TCP Composites for Bone Tissue Repair
Year 2019,
Volume: 47 Issue: 1, 133 - 141, 01.02.2019
Hasret Tolga Şirin
Ebru Akdoğan
Erhan Bişkin
Abstract
Poly-D,L-Lactide/ε-caprolactone (PDLLA-ε-CL) and β-tri-calcium phosphate (β-TCP) composites were prepared as an alternative for injectable filling material in bone tissue repair. β-TCP was synthesized by a wet precipitation method and characterised using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffractometer (XRD), Zeta-SIZER and Brunauer–Emmett–Teller (BET) analyser. PDLLA-ε-CL copolymer was synthesized under nitrogen (N2) atmosphere using ring-opening polymerization in the presence of stannous octoate as a catalyst. The chemical structures of copolymers were determined by FTIR and Proton Nuclear Magnetic Resonance (1H-NMR) analysis. The average molecular weights of copolymers were identified by Gel Permeation Chromatography (GPC). (PDLLA-ε-CL)-β-TCP composites were then prepared by loading differing amounts of β-TCP to the copolymer phase. The resulting composites were easily shaped by hand. The degradation profiles of the composites were determined by monitoring the changes in the molecular weight of the co-polymers over a period of 42 days. Degradation rate of the composites decreased as the percentage of β-TCP in the structure increased.
References
- M. Jarcho, R.L. Salsbury, M.B. Thomas, R.H. Doremus,
Synthesis and fabrication of β-tricalcium phosphate
(whitlockite) ceramics for potential prosthetic applications,
J. Mater. Sci., 14 (1979) 142-150.
- 2. J. Enderle, J. Bronzino, Introduction to biomedical
engineering, Elsevier, Burlington, USA, 2012
- 3. S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S.-H. Hyon,
K. Jamshidi, Polymer-hydroxyapatite composites for
biodegradable bone fillers, Biomaterials, 7 (1986) 183-187.
- 4. S.M. Zakaria, S.H.S. Zein, M.R. Othman, F. Yang, J.A. Jansen,
Nanophase hydroxyapatite as a biomaterial in advanced
hard tissue engineering: a review, Tissue Eng. Part B: Rev.,
19 (2013) 431-441.
- 5. J. Park, R. Lakes, Biomaterials: an Introduction, Springer
Science Business Media, LLC, New York, USA, 2007
- 6. C. Doyle, E. Tanner, W. Bonfield, In vitro and in vivo evaluation
of polyhydroxybutyrate and of polyhydroxybutyrate
reinforced with hydroxyapatite, Biomaterials, 12 (1991)
- 841-847.
7. Z. Huang, J. Tian, B. Yu, Y. Xu, Q. Feng, A bone-like nanohydroxyapatite/
collagen loaded injectable scaffold., Biomed.
Mater., 4 (2009) 055005.
- 8. W. Thein-Han, R. Misra, Biomimetic chitosan–
nanohydroxyapatite composite scaffolds for bone tissue
engineering, Acta Biomater., 5 (2009) 1182-1197.
- 9. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone
tissue engineering, Acta Biomater., 7 (2011) 2769-2781.
- 10. D. Apelt, F. Theiss, A.O. El-Warrak, K. Zlinszky, R. Bettschart-
Wolfisberger, M. Bohner, S. Matter, J.A. Auer, B. von
Rechenberg, In vivo behavior of three different injectable
hydraulic calcium phosphate cements, Biomaterials, 25
(2004) 1439-1451.
- 11. J.E. Dumas, K. Zienkiewicz, S.A. Tanner, E.M. Prieto, S.
Bhattacharyya, S.A. Guelcher, Synthesis and characterization
of an injectable allograft bone/polymer composite bone
void filler with tunable mechanical properties, Tissue Eng.
Part A, 16 (2010) 2505-2518.
- 12. N.L. Ignjatović, C.Z. Liub, J.T. Czernuszka, D.P. Uskokovića,
Micro-and nano-injectable composite biomaterials
containing calcium phosphate coated with poly (DL-lactideco-
glycolide), Acta Biomater., 3 (2007) 927-935.
- 13. J.D. Kretlow, L. Klouda, A.G. Mikos, Injectable matrices and
scaffolds for drug delivery in tissue engineering, Adv. Drug
Deliver. Rev., 59 (2007) 263-273.
- 14. A. La Gatta, A. De Rosa, P. Laurienzo, M. Malinconico, A novel
injectable poly (ε‐caprolactone)/calcium sulfate system
for bone regeneration: Synthesis and characterization,
Macromol Biosci., 5 (2005) 1108-1117.
- 15. A. López, C. Persson, J. Hilborn, H. Engqvist, Synthesis and
characterization of injectable composites of poly [D, Llactide‐
co‐(ε‐caprolactone)] reinforced with β‐TCP and
CaCO3 for intervertebral disk augmentation, J. Biomed.
Mater. Res. B: Appl. Biomater., 95 (2010) 75-83.
- 16. K.L. Low, S.H. Tan, S.H.S. Zein, J.A. Roether, V. Mouriño,
A.R. Boccaccini, Calcium phosphate‐based composites as
injectable bone substitute materials, J. Biomed. Mater. Res.
Part B: Appl. Biomater., 94 (2010) 273-286.
H.T. Sirin et al. / Hacettepe J. Biol. & Chem., 2019, 47 (1), 133–141 141
- 17. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini,
Biodegradable and bioactive porous polymer/inorganic
composite scaffolds for bone tissue engineering,
Biomaterials, 27 (2006) 3413-3431.
- 18. A. Senköylü, E. Ural, K. Kesencì, A. Sìmşek, S. Ruacan,
L. Fambri, C. Migliaresi, E. Pìşkìn, Poly (D, L-lactide/ɛcaprolactone)/
hydroxyapatite composites as bone filler: an
in vivo study in rats, Int. J. Artif. Organs, 25 (2002) 1174-1179.
- 19. E. Ural, K. Kesenci, L. Fambri, C. Migliaresi, E. Piskin, Poly
(D, L-cactide/ε-caprolactone)/hydroxyapatite composites,
Biomaterials, 21 (2000) 2147-2154.
- 20. R.Y. Basha, M. Doble, Design of biocomposite materials for
bone tissue regeneration, Mater. Sci., 57 (2015) 452-463.
- 21. B. Torabinejad, J. Mohammadi-Rovshandeh, S.M.
Davachi, A. Zamaniana, Synthesis and characterization of
nanocomposite scaffolds based on triblock copolymer of
L-lactide, ε-caprolactone and nano-hydroxyapatite for bone
tissue engineering, Mater. Sci. and Eng. C., 42 (2014) 199-
210.
- 22. H. Nie, C.H. Wang, Fabrication and characterization of PLGA/
HAp composite scaffolds for delivery of BMP-2 plasmid DNA,
J. Control. Release, 120 (2007) 111-121.
- 23. Z. Hong, R.L. Reis, J.F. Mano, Preparation and in vitro
characterization of novel bioactive glass ceramic
nanoparticles, J. Biomed. Mater. Res. A, 88 (2009) 304-313.
- 24. T. Miyai, A. Ito, G. Tamazawa, T. Matsuno, Y. Sogo, C.
Nakamura, A. Yamazaki, T. Satoh, Antibiotic-loaded poly-ε-
caprolactone and porous β-tricalcium phosphate composite
for treating osteomyelitis, Biomaterials, 29 (2008) 350-358.
- 25. F. Yang, J. Wolke, J. Jansen, Biomimetic calcium phosphate
coating on electrospun poly (ɛ-caprolactone) scaffolds for
bone tissue engineering, Chem. Eng. J., 137 (2008) 154-161.
- 26. V. Guarino, L. Ambrosio, The synergic effect of polylactide
fiber and calcium phosphate particle reinforcement in poly
ε-caprolactone-based composite scaffolds, Acta Biomater.,
4 (2008) 1778-1787.
- 27. C.C.P.M. Verheyen, J.R. De Wijn, C.A. Van Blitterswijk, K.
DeGroot, Evaluation of hydroxylapatite/poly (l‐lactide)
composites: Mechanical behavior, J. Biomed. Mater. Res., 26
(1992) 1277-1296.
- 28. Y. Kinoshita, M. Matsuo, K. Todoki, S. Ozono, S. Fukuoka, H.
Tsuzuki, M. Nakamura, K. Tomihata, T. Shimamoto, Y. Ikada,
Alveolar bone regeneration using absorbable poly (L-lactideco-
ɛ-caprolactone)/β-tricalcium phosphate membrane and
gelatin sponge incorporating basic fibroblast growth factor,
Int. J. Oral and Maxillofac. Surg., 37 (2008) 275-281.
- 29. M. K ikuchi, Y. K oyama, T. Y amada, Y. I mamura, T. O kada,
N. Shirahama, K. Akita, K. Takakuda, J. Tanaka, Development
of guided bone regeneration membrane composed of
β-tricalcium phosphate and poly (L-lactide-co-glycolide-co-
ε-caprolactone) composites, Biomaterials, 25 (2004) 5979-
5986.
- 30. P. N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Cho,
Nanostructured calcium phosphates for biomedical
applications: novel synthesis and characterization, Acta
Biomater., 1 (2005) 65-83.
- 31. S.V. Dorozhkin, Bioceramics of calcium orthophosphates,
Biomaterials, 31 (2010) 1465-1485.
- 32. L.L. Hench, Bioceramics: from concept to clinic, J. Am.
Ceram. Soc., 74 (1991) 1487-1510.
- 33. S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas,
Calcium phosphate apatites with variable Ca/P atomic ratio I.
Synthesis, characterisation and thermal stability of powders,
Biomaterials, 23 (2002) 1065-1072.
- 34. B. Schrader, Infrared and Rarnan spectroscopy: Methods
and applications VCH Publishers. Inc., New York, USA, 1995.
- 35. B. Stuart, Infrared spectroscopy, Kirk‐Othmer Encyclopedia
of Chemical Technology, (2000) 1-18.
- 36. E. Akdogan, M. Demirbilek, Y. Sen, M.A. Onur, O.K. Azap, E.
Sonmez, H.T. Sirin, M. Mutlu, In-vitro and in-vivo bacteria
anti-fouling properties of phosphite plasma treated silicone,
surface innovations, 7 (2018) 122-132.
- 37. B. Stuart, Infrared spectroscopy: Fundamentals and
applications, John Wiley & Sons, Ltd, Weinheim Germany,
2005
- 38. K. Ishikawa, P. Ducheyne, S. Radin, Determination of the
Ca/P ratio in calcium-deficient hydroxyapatite using X-ray
diffraction analysis, J. Mater. Sci. Mater. Med., 4 (1993) 165-
168.
- 39. M. Akao, H. Aoki, K. Kato, A. Sato, Dense polycrystalline
β-tricalcium phosphate for prosthetic applications, J. Mater.
Sci. Mater. Med., 17 (1982) 343-346.
- 40. Y. Lemmouchi, E. Schacht, C. Lootens, In vitro release of
trypanocidal drugs from biodegradable implants based
on poly (ε-caprolactone) and poly(D,L-lactide), J. Control.
Release, 55 (1998) 79-85.
- 41. H. Kricheldorf, Syntheses and application of polylactides,
Chemosphere, 43 (2001) 49-54.
- 42. L. Wu, J. Ding, In vitro degradation of three-dimensional
porous poly (D, L-lactide-co-glycolide) scaffolds for tissue
engineering, Biomaterials, 25 (2004) 5821-5830.
- 43. H. Pistner, D.R. Bendi, J. Muhling, J.F. Reuther, Poly (l-lactide):
a long-term degradation study in vivo: Part III. Analytical
characterization, Biomaterials, 14 (1993) 291-298.
- 44. Y. Ikada, S.H. Hyon, K. Jamshidi, S. Higashi, T. Yamamuro, Y.
Katutani, T. Kitsugi, Release of antibiotic from composites
of hydroxyapatite and poly(lactic acid), J. Control. Release,
2 (1985) 179-186.