Research Article
BibTex RIS Cite
Year 2019, Volume: 47 Issue: 1, 123 - 131, 01.02.2019

Abstract

References

  • 1.M. Andac, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • 2. M. Uygun, D.A. Uygun, E. Özçalışkan, S. Akgöl, A. Denizli, Concanavalin A immobilized poly(ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization, J. Chromatogr. B, 73 (2012) 887- 888.
  • 3. S. Hajizadeh, C. Xu, H. Kirsebom, L. Ye, B. Mattiasson, Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J. Chromatogr. A, 1274 (2013) 6-12.
  • 4. W. Noppe, H. Deckmyn, Development and screening of epoxy-spacer-phage cryogels for affinity chromatography: Enhancing the binding capacity, J. Sep. Sci., 40 (2017) 2575- 2583.
  • 5. V.I., Lozinsky, Polymeric Cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes, Russ. Chem. Bull., 57 (2008) 1015-1032.
  • 6. F.M. Plieva, H. Kirsebom, B. Mattiasson, Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications, J. Sep. Sci., 34 (2011) 2164-2172.
  • 7. H. Kirsebom, I.Y. Galaev, B. Mattiasson, Stimuli-responsive polymers in the 21st century: elaborated architecture to achieve high sensitivity, fast response, and robust behavior, J. Polym. Sci. Pol. Phys., 49 (2011) 173-178.
  • 8. N. Bereli, M. Andaç, G. Baydemir, R. Say, I.Y. Galaev, A. Denizli, Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, J. Chrom. A, 1190 (2008) 18-26.
  • 9. M. Andaç, I.Y. Galaev, A. Denizli, Dye attached poly(hydroxyethyl methacrylate) cryogel for albumin depletion from human serum, J. Sep. Sci., 35 (2012) 1173- 1182.
  • 10. V.M. Gun’ko, I.N. Savina, S.V. Mikhalovsky, Cryogels: morphological structural and adsorption characterization, Adv. Colloid Interface Sci., 187 (2013) 1-46. Table 3. The kinetic constants for PHEMA and HP-3/PHEMA cryogels. Experimental Pseudo first-order Pseudo second order Polymer Code Qeq (mg/g) k1 (1/min) Qeq (mg/g) R2 k2 (min.g/mg) Qeq (mg/g) R2 PHEMA 0.73 0.0363 2.22 0.793 0.0672 0.79 0.963 HP-3/PHEMA 27.66 0.0207 22..4 0.746 0.00092 33.56 0.979 D. Çimen and A. Denizli / Hacettepe J. Biol. & Chem., 2019, 47 (1), 123–131 131
  • 11. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly(hydroxyethyl methacrylate) cryogel, Biochem. Eng. J., 45 (2009) 201-208.
  • 12. D. Çimen, A. Denizli, Immobilized metal affinity monolithic cryogels for cytochrome C purification, Colloid. Surf. B Biointer., 93 (2012) 29-35.
  • 13. E. Tamahkar, N. Bereli, R. Say, A. Denizli, Molecularly imprinted supermacroporous cryogels for cytochrome C recognition, J. Sep. Sci., 34 (2011) 3433-3440.
  • 14. N. Bereli, M. Andaç, G. Baydemir, R. Say, I.Y. Galaev, A. Denizli, Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, J.Chrom. A, 1190 (2008) 18-26.
  • 15. I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 (2003) 445-451.
  • 16. D. Falkenhagen, M. Brand, J. Hartmann, K.H. Kellner, T. Posnicek, V. Weber, Fluidized bed adsorbent systems for extracorporeal liver support, Ther Apher Dial., 10 (2006) 154-159.
  • 17. D.S. Hage, J.A. Anguizola, C. Bi, R. Li, R. Matsuda, E. Papastavros, E. Pfaunmiller, J. Vargas, X. Zheng, Pharmaceutical and biomedical applications of affinity chromatography: Recent trends and developments, J. Pharmaceutical and Biomed. Anal., 69 (2012) 93-105.
  • 18. M.G. Vladimir, N.S. Irina, V.M. Sergey, Cryogels: Morphological, structural and adsorption characterization, Advances in Colloid and Interface Science 187 (2013) 1-46.
  • 19. N. Wim, D. Hans, Development and screening of epoxyspacer- phage cryogels for affinity chromatography: Enhancing the binding capacity, J. Sep. Sci., 40 (2017) 2575- 2583.
  • 20. L.A.A. Veríssimo, F.S. Paganoto, P.C.G. Mol, R.D.C. Ilhéu Fontan, V.P.R. Minim, L.A. Minim, Preparation of an affinity cryogel column for lysozyme purification, Sep. Sci. Technol., (2017) 1-10.
  • 21. S. Hajizadeh, C. Xu, H. Kirsebom, L. Ye, B. Mattiasson, Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J. Chromatogr. A, 1274 (2013) 6-12.
  • 22. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O’Connor, Cryogels for biomedical applications, J. Mater. Chem. B, 1 (2013) 2682- 2695.
  • 23. A. Kumar, Supermacroporous Cryogels: Biomedical and Biotechnological Applications, Taylor Francis, 480 (2016) 52.
  • 24. G. Erturk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr. A, 1357 (2014) 24-35.
  • 25. S. Allan, B.R. Hoffman, J. Frederick, J. Schoen, E. Lemons, Biomaterials science: an introduction to materials in medicine, Elsevier, 1519 (2013).
  • 26. B.W. Ounis, S.F. Gauthier, S.L. Turgeon, S. Roufik, Y. Pouliot, Separation of minor protein components from whey protein isolates by heparin affinity chromatography, Int Dairy J., 18 (2008) 1043-1050.
  • 27. L. Chen, C. Guo, Y. Guan, H. Liu, Isolation of lactoferrin from acid whey by magnetic affinity separation, Sep. Purif. Technol., 56 (2007) 168-174.
  • 28. A. Puerta, A. Jaulmes, M. Frutos, J.C. Diez-Masa, C. Vidal- Madjar, Adsorption kinetics of beta-lactoglobulin on a polyclonal immunochromatographic support, J. Chrom. A, 953 (2002) 17-30.
  • 29. C.G. Gomez, M.C. Strumia, Synthesis and modification of supports with an alkylamine and their use in albumin adsorption, J. Polym. Sci. Polym. Chem., 46 (2008) 2557- 2566.
  • 30. S. Ozkara, B. Garipcan, E. Piskin, A. Denizli, N-methacryloly- (L)-histidinemethylester carrying a pseudospecific affinity sorbent for immunoglobulin-G isolation from human plasma in a column system, J. Biomater. Sci. Polym. Ed., 14 (2003) 761.
  • 31. Spina R.L, Tripisciano C., T. Mecca T., Cunsolo F., Weber V., Mattiasson B., Chemically modified poly(2-hydroxyethyl methacrylate) cryogel for the adsorption of heparin, J. Biomed Mater., 102 (2014) 1207-1216.
  • 32. S. Murugesan, J. Xie, R.J. Linhardt, Immobilization of heparin: approaches and applications, Curr. Top. Medic. Chem., 8 (2008) 80-100.
  • 33. A. Denizli, Heparin immobilized poly(2‐hydroxyethyl methacrylate) based microspheres, J. Appl. Polym. Sci., 74 (1999) 655-662.
  • 34. A. Denizli, E. Pişkin, Heparin immobilized polyhydroxyethyl methacrylate microbeads for cholesterol removal: a preliminary report, J. Chrom. B, 670 (1995) 157-161.
  • 35. P.C.G. Mól, L.A.A. Veríssimo, M.R. Eller, V.P.R. Minim, L.A. Minim, Development of an affinity cryogel for one step purification of lysozyme from chicken egg white, J. Chromatogr. B, 1044 (2017) 17-23.
  • 36. D. Omana, J. Wang, J. Wu, Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites, J. Chromatogr. B. Anal. Technol. Biomed. Life Sci., 878 (2010) 1771-1778
  • 37. E.D.N.S. Abeyrathne, H.Y. Lee, D.U. Ahn, Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents, Poult. Sci., 92 (2013) 3292-3301.
  • 38. M.E. Avramescu, Z. Borneman, M. Wessling, Particleloaded hollow-fiber membrane adsorbers for lysozyme separation, J. Membrane Sci., 322 (2008) 306-313.
  • 39. H.T. Chiu, J.M. Lin, T.H. Cheng, S.Y. Chou, C.C. Huang, Direct purification of lysozyme from chicken egg white using weak acidic polyacrylonitrile nanofiber-based membranes, J. Appl. Polym. Sci., 156 (2012) 616-621.

Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification

Year 2019, Volume: 47 Issue: 1, 123 - 131, 01.02.2019

Abstract

Heparin immobilized poly(2-hydroxylethyl methacrylate) PHEMA cryogel was synthesized and applied for lysozyme purification from egg white. Firstly, the PHEMA cryogel was synthesized by cryopolymerization and then heparin was covalently immobilized on to the PHEMA cryogel with cyanogen bromide activation. The modification of PHEMA cryogel structure with heparin was further confirmed by Fourier-transform infrared spectroscopy (FTIR). The surface and inner structure morphologies of PHEMA cryogels were studied and characterized by the scanning electron microscope (SEM). The surface area of PHEMA cryogel was found to be 25.2 m2/g. Heparin immobilized PHEMA cryogels were used in lysozyme adsorption studies to assess the effects of pH, lysozyme concentration, flow rate, temperature and ionic strength. The maximum lysozyme adsorption on the heparin immobilized PHEMA cryogel was found to be 48.73 mg/g from aqueous solutions under optimized conditions. 1.0 M NaCI solution was used for desorption of lysozyme in a continuous system. The reusability of heparin immobilized PHEMA cryogels was tested for 10 adsorption-desorption cycles. The Langmuir adsorption model was plotted and found fitted for adsorption studies. The purity of lysozyme from egg white studies was analysed by sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using 12% separating gel.

References

  • 1.M. Andac, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • 2. M. Uygun, D.A. Uygun, E. Özçalışkan, S. Akgöl, A. Denizli, Concanavalin A immobilized poly(ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization, J. Chromatogr. B, 73 (2012) 887- 888.
  • 3. S. Hajizadeh, C. Xu, H. Kirsebom, L. Ye, B. Mattiasson, Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J. Chromatogr. A, 1274 (2013) 6-12.
  • 4. W. Noppe, H. Deckmyn, Development and screening of epoxy-spacer-phage cryogels for affinity chromatography: Enhancing the binding capacity, J. Sep. Sci., 40 (2017) 2575- 2583.
  • 5. V.I., Lozinsky, Polymeric Cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes, Russ. Chem. Bull., 57 (2008) 1015-1032.
  • 6. F.M. Plieva, H. Kirsebom, B. Mattiasson, Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications, J. Sep. Sci., 34 (2011) 2164-2172.
  • 7. H. Kirsebom, I.Y. Galaev, B. Mattiasson, Stimuli-responsive polymers in the 21st century: elaborated architecture to achieve high sensitivity, fast response, and robust behavior, J. Polym. Sci. Pol. Phys., 49 (2011) 173-178.
  • 8. N. Bereli, M. Andaç, G. Baydemir, R. Say, I.Y. Galaev, A. Denizli, Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, J. Chrom. A, 1190 (2008) 18-26.
  • 9. M. Andaç, I.Y. Galaev, A. Denizli, Dye attached poly(hydroxyethyl methacrylate) cryogel for albumin depletion from human serum, J. Sep. Sci., 35 (2012) 1173- 1182.
  • 10. V.M. Gun’ko, I.N. Savina, S.V. Mikhalovsky, Cryogels: morphological structural and adsorption characterization, Adv. Colloid Interface Sci., 187 (2013) 1-46. Table 3. The kinetic constants for PHEMA and HP-3/PHEMA cryogels. Experimental Pseudo first-order Pseudo second order Polymer Code Qeq (mg/g) k1 (1/min) Qeq (mg/g) R2 k2 (min.g/mg) Qeq (mg/g) R2 PHEMA 0.73 0.0363 2.22 0.793 0.0672 0.79 0.963 HP-3/PHEMA 27.66 0.0207 22..4 0.746 0.00092 33.56 0.979 D. Çimen and A. Denizli / Hacettepe J. Biol. & Chem., 2019, 47 (1), 123–131 131
  • 11. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly(hydroxyethyl methacrylate) cryogel, Biochem. Eng. J., 45 (2009) 201-208.
  • 12. D. Çimen, A. Denizli, Immobilized metal affinity monolithic cryogels for cytochrome C purification, Colloid. Surf. B Biointer., 93 (2012) 29-35.
  • 13. E. Tamahkar, N. Bereli, R. Say, A. Denizli, Molecularly imprinted supermacroporous cryogels for cytochrome C recognition, J. Sep. Sci., 34 (2011) 3433-3440.
  • 14. N. Bereli, M. Andaç, G. Baydemir, R. Say, I.Y. Galaev, A. Denizli, Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, J.Chrom. A, 1190 (2008) 18-26.
  • 15. I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 (2003) 445-451.
  • 16. D. Falkenhagen, M. Brand, J. Hartmann, K.H. Kellner, T. Posnicek, V. Weber, Fluidized bed adsorbent systems for extracorporeal liver support, Ther Apher Dial., 10 (2006) 154-159.
  • 17. D.S. Hage, J.A. Anguizola, C. Bi, R. Li, R. Matsuda, E. Papastavros, E. Pfaunmiller, J. Vargas, X. Zheng, Pharmaceutical and biomedical applications of affinity chromatography: Recent trends and developments, J. Pharmaceutical and Biomed. Anal., 69 (2012) 93-105.
  • 18. M.G. Vladimir, N.S. Irina, V.M. Sergey, Cryogels: Morphological, structural and adsorption characterization, Advances in Colloid and Interface Science 187 (2013) 1-46.
  • 19. N. Wim, D. Hans, Development and screening of epoxyspacer- phage cryogels for affinity chromatography: Enhancing the binding capacity, J. Sep. Sci., 40 (2017) 2575- 2583.
  • 20. L.A.A. Veríssimo, F.S. Paganoto, P.C.G. Mol, R.D.C. Ilhéu Fontan, V.P.R. Minim, L.A. Minim, Preparation of an affinity cryogel column for lysozyme purification, Sep. Sci. Technol., (2017) 1-10.
  • 21. S. Hajizadeh, C. Xu, H. Kirsebom, L. Ye, B. Mattiasson, Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J. Chromatogr. A, 1274 (2013) 6-12.
  • 22. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O’Connor, Cryogels for biomedical applications, J. Mater. Chem. B, 1 (2013) 2682- 2695.
  • 23. A. Kumar, Supermacroporous Cryogels: Biomedical and Biotechnological Applications, Taylor Francis, 480 (2016) 52.
  • 24. G. Erturk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr. A, 1357 (2014) 24-35.
  • 25. S. Allan, B.R. Hoffman, J. Frederick, J. Schoen, E. Lemons, Biomaterials science: an introduction to materials in medicine, Elsevier, 1519 (2013).
  • 26. B.W. Ounis, S.F. Gauthier, S.L. Turgeon, S. Roufik, Y. Pouliot, Separation of minor protein components from whey protein isolates by heparin affinity chromatography, Int Dairy J., 18 (2008) 1043-1050.
  • 27. L. Chen, C. Guo, Y. Guan, H. Liu, Isolation of lactoferrin from acid whey by magnetic affinity separation, Sep. Purif. Technol., 56 (2007) 168-174.
  • 28. A. Puerta, A. Jaulmes, M. Frutos, J.C. Diez-Masa, C. Vidal- Madjar, Adsorption kinetics of beta-lactoglobulin on a polyclonal immunochromatographic support, J. Chrom. A, 953 (2002) 17-30.
  • 29. C.G. Gomez, M.C. Strumia, Synthesis and modification of supports with an alkylamine and their use in albumin adsorption, J. Polym. Sci. Polym. Chem., 46 (2008) 2557- 2566.
  • 30. S. Ozkara, B. Garipcan, E. Piskin, A. Denizli, N-methacryloly- (L)-histidinemethylester carrying a pseudospecific affinity sorbent for immunoglobulin-G isolation from human plasma in a column system, J. Biomater. Sci. Polym. Ed., 14 (2003) 761.
  • 31. Spina R.L, Tripisciano C., T. Mecca T., Cunsolo F., Weber V., Mattiasson B., Chemically modified poly(2-hydroxyethyl methacrylate) cryogel for the adsorption of heparin, J. Biomed Mater., 102 (2014) 1207-1216.
  • 32. S. Murugesan, J. Xie, R.J. Linhardt, Immobilization of heparin: approaches and applications, Curr. Top. Medic. Chem., 8 (2008) 80-100.
  • 33. A. Denizli, Heparin immobilized poly(2‐hydroxyethyl methacrylate) based microspheres, J. Appl. Polym. Sci., 74 (1999) 655-662.
  • 34. A. Denizli, E. Pişkin, Heparin immobilized polyhydroxyethyl methacrylate microbeads for cholesterol removal: a preliminary report, J. Chrom. B, 670 (1995) 157-161.
  • 35. P.C.G. Mól, L.A.A. Veríssimo, M.R. Eller, V.P.R. Minim, L.A. Minim, Development of an affinity cryogel for one step purification of lysozyme from chicken egg white, J. Chromatogr. B, 1044 (2017) 17-23.
  • 36. D. Omana, J. Wang, J. Wu, Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites, J. Chromatogr. B. Anal. Technol. Biomed. Life Sci., 878 (2010) 1771-1778
  • 37. E.D.N.S. Abeyrathne, H.Y. Lee, D.U. Ahn, Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents, Poult. Sci., 92 (2013) 3292-3301.
  • 38. M.E. Avramescu, Z. Borneman, M. Wessling, Particleloaded hollow-fiber membrane adsorbers for lysozyme separation, J. Membrane Sci., 322 (2008) 306-313.
  • 39. H.T. Chiu, J.M. Lin, T.H. Cheng, S.Y. Chou, C.C. Huang, Direct purification of lysozyme from chicken egg white using weak acidic polyacrylonitrile nanofiber-based membranes, J. Appl. Polym. Sci., 156 (2012) 616-621.
There are 39 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Duygu Çimen This is me

Adil Denizli

Publication Date February 1, 2019
Acceptance Date February 19, 2019
Published in Issue Year 2019 Volume: 47 Issue: 1

Cite

APA Çimen, D., & Denizli, A. (2019). Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification. Hacettepe Journal of Biology and Chemistry, 47(1), 123-131.
AMA Çimen D, Denizli A. Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification. HJBC. February 2019;47(1):123-131.
Chicago Çimen, Duygu, and Adil Denizli. “Biologically Modified poly(2-Hydroxylethyl Methacrylate) Cryogels for Lysozyme Purification”. Hacettepe Journal of Biology and Chemistry 47, no. 1 (February 2019): 123-31.
EndNote Çimen D, Denizli A (February 1, 2019) Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification. Hacettepe Journal of Biology and Chemistry 47 1 123–131.
IEEE D. Çimen and A. Denizli, “Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification”, HJBC, vol. 47, no. 1, pp. 123–131, 2019.
ISNAD Çimen, Duygu - Denizli, Adil. “Biologically Modified poly(2-Hydroxylethyl Methacrylate) Cryogels for Lysozyme Purification”. Hacettepe Journal of Biology and Chemistry 47/1 (February 2019), 123-131.
JAMA Çimen D, Denizli A. Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification. HJBC. 2019;47:123–131.
MLA Çimen, Duygu and Adil Denizli. “Biologically Modified poly(2-Hydroxylethyl Methacrylate) Cryogels for Lysozyme Purification”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 1, 2019, pp. 123-31.
Vancouver Çimen D, Denizli A. Biologically Modified poly(2-hydroxylethyl methacrylate) Cryogels for Lysozyme Purification. HJBC. 2019;47(1):123-31.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc