Research Article
BibTex RIS Cite

Sunflower Stalk Based Activated Carbon for Supercapacitors

Year 2019, Volume: 47 Issue: 3, 235 - 247, 23.10.2019
https://doi.org/10.15671/hjbc.509201

Abstract

In
this study, a combination of physical and chemical activation was used to
produce activated carbon from sunflower stalks. The NaOH activated carbon
possess a high specific surface area of 2658 m2/g. The micropore
fraction and surface area obtained is much higher than a commercial activated
carbon. The electrodes from the activated carbons were electrochemically
analyzed in a two-electrode supercapacitor cell with 1 M H2SO4
electrolyte. The results show that the high surface area of sunflower activated
carbon resulted in significantly high specific capacitance of 207 F/g at 0.05
A/g current density. Moreover, a high energy density of 18.4 Wh/kg was obtained
at the power density of 80 W/kg. The results also showed the importance of pore
structure on the supercapacitor performance.

References

  • [1] M.D.D. de Leon-Garza, E. Soto-Regalado, M. Loredo-Cancino, F.D. Cerino-Cordova, R.B. Garcia-Reyes, N.E. Davila-Guzman, J.A. Loredo-Medrano, Phenol adsorption onto coffee waste - granular activated carbon: kinetics and equilibrium studies in aqueous solutions, Desalin Water Treat, 90 (2017) 231-240.
  • [2] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J Clean Prod, 197 (2018) 919-929.
  • [3] N.G. Rincon-Silva, J.C. Moreno-Pirajan, L. Giraldo, Removal of phenol, p-nitrophenol and p-chlorophenol from activated carbon chemically with sulfuric acid from lignocellulosic waste material: Effect of the concentration of activating agent, Afinidad, 74 (2017) 112-123.
  • [4] W.Y. Ao, J. Fu, X. Mao, Q.H. Kang, C.M. Ran, Y. Liu, H.D. Zhang, Z.P. Gao, J. Li, G.Q. Liu, J.J. Dai, Microwave assisted preparation of activated carbon from biomass: A review, Renew Sust Energ Rev, 92 (2018) 958-979.
  • [5] M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renew Sust Energ Rev, 87 (2018) 1-21.
  • [6] P. Gonzalez-Garcia, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew Sust Energ Rev, 82 (2018) 1393-1414.
  • [7] Y.H. Cao, K.L. Wang, X.M. Wang, Z.R. Gu, Q.H. Fan, W. Gibbons, J.D. Hoefelmeyer, P.R. Kharel, M. Shrestha, Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation, Electrochim Acta, 212 (2016) 839-847.
  • [8] E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochim Acta, 192 (2016) 110-119.
  • [9] C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors, Electrochim Acta, 52 (2007) 2498-2505.
  • [10] Y.J. Kim, B.J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors, Carbon, 44 (2006) 1592-1595.
  • [11] Y.Y. Zhu, M.M. Chen, Y. Zhang, W.X. Zhao, C.Y. Wang, A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor, Carbon, 140 (2018) 404-412.
  • [12] J. Pang, W.F. Zhang, H. Zhang, J.L. Zhang, H.M. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors, Carbon, 132 (2018) 280-293.
  • [13] M. Jalali, F. Aboulghazi, Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions, J Mater Cycles Waste, 15 (2013) 548-555.
  • [14] E. Koseoglu, C. Akmil-Basar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass, Adv Powder Technol, 26 (2015) 811-818.
  • [15] A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chem Eng J, 174 (2011) 117-125.
  • [16] V.K. Singh, E.A. Kumar, Thermodynamic analysis of single-stage and single-effect two-stage adsorption cooling cycles using indigenous coconut shell based activated carbon-CO2 pair, Int J Refrig, 84 (2017) 238-252.
  • [17] D. Ozcimen, A. Ersoy-Mericboyu, Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials, Renew Energ, 35 (2010) 1319-1324.
  • [18] K.Z. Qian, A. Kumar, K. Patil, D. Bellmer, D.H. Wang, W.Q. Yuan, R.L. Huhnke, Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char, Energies, 6 (2013) 3972-3986.
  • [19] R. Rajarao, I. Mansuri, R. Dhunna, R. Khanna, V. Sahajwalla, Study of structural evolution of chars during rapid pyrolysis of waste CDs at different temperatures, Fuel, 134 (2014) 17-25.
  • [20] O. Uner, Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Micropor Mesopor Mat, 268 (2018) 225-234.
  • [21] S.S. Brum, M.L. Bianchi, V.L. Silva, M. Goncalves, M.C. Guerreiro, L.C.A. de Oliveira, Preparation and characterization of activated carbon produced from coffee waste, Quim Nova, 31 (2008) 1048-1052.
  • [22] R.H. Liu, E.H. Liu, R. Ding, K. Liu, Y. Teng, Z.Y. Luo, Z.P. Li, T.T. Hu, T.T. Liu, Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors, Ceram Int, 41 (2015) 12734-12741.
  • [23] S.X. Hu, S.L. Zhang, N. Pan, Y.L. Hsieh, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J Power Sources, 270 (2014) 106-112.
  • [24] B.H. Lu, Z.A. Xiao, H. Zhu, W. Xiao, W.L. Wu, D.H. Wang, Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates, J Power Sources, 298 (2015) 74-82.
  • [25] W. Cao, F. Yang, Supercapacitors from high fructose corn syrup-derived activated, Materials Today Energy, 9 (2018) 406-415.
  • [26] L.S. Ghadimi, N. Arsalani, A.G. Tabrizi, A. Mohammadi, I. Ahadzadeh, Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor, Electrochim Acta, 282 (2018) 116-127.
  • [27] T.A. Centeno, F. Stoeckli, The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons, Electrochim Acta, 52 (2006) 560-566.
  • [28] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J Power Sources, 195 (2010) 7880-7903.
  • [29] B. Xu, Y.F. Chen, G. Wei, G.P. Cao, H. Zhang, Y.S. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Mater Chem Phys, 124 (2010) 504-509.
  • [30] A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, J. Ozolinsh, Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte, New Carbon Mater, 32 (2017) 319-326.
  • [31] M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, F. Stoeckli, T.A. Centeno, Cherry stones as precursor of activated carbons for supercapacitors, Mater Chem Phys, 114 (2009) 323-327.
  • [32] K.L. Van, T.T.L. Thi, Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Prog Nat Sci-Mater, 24 (2014) 191-198.
  • [33] B. Kishore, D. Shanmughasundaram, T.R. Penki, N. Munichandraiah, Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors, J Appl Electrochem, 44 (2014) 903-916.
  • [34] Y. Hu, T.S. Fisher, Suggested standards for reporting power and energy density in supercapacitor research, B Mater Sci, 41 (2018).
  • [35] R. Farzana, R. Rajarao, B.R. Bhat, V. Sahajwalla, Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs), J Ind Eng Chem, 65 (2018) 387-396.
  • [36] I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl Surf Sci, 357 (2015) 696-703.
  • [37] J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond, Electrochim Acta, 281 (2018) 170-188.
Year 2019, Volume: 47 Issue: 3, 235 - 247, 23.10.2019
https://doi.org/10.15671/hjbc.509201

Abstract

References

  • [1] M.D.D. de Leon-Garza, E. Soto-Regalado, M. Loredo-Cancino, F.D. Cerino-Cordova, R.B. Garcia-Reyes, N.E. Davila-Guzman, J.A. Loredo-Medrano, Phenol adsorption onto coffee waste - granular activated carbon: kinetics and equilibrium studies in aqueous solutions, Desalin Water Treat, 90 (2017) 231-240.
  • [2] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J Clean Prod, 197 (2018) 919-929.
  • [3] N.G. Rincon-Silva, J.C. Moreno-Pirajan, L. Giraldo, Removal of phenol, p-nitrophenol and p-chlorophenol from activated carbon chemically with sulfuric acid from lignocellulosic waste material: Effect of the concentration of activating agent, Afinidad, 74 (2017) 112-123.
  • [4] W.Y. Ao, J. Fu, X. Mao, Q.H. Kang, C.M. Ran, Y. Liu, H.D. Zhang, Z.P. Gao, J. Li, G.Q. Liu, J.J. Dai, Microwave assisted preparation of activated carbon from biomass: A review, Renew Sust Energ Rev, 92 (2018) 958-979.
  • [5] M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renew Sust Energ Rev, 87 (2018) 1-21.
  • [6] P. Gonzalez-Garcia, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew Sust Energ Rev, 82 (2018) 1393-1414.
  • [7] Y.H. Cao, K.L. Wang, X.M. Wang, Z.R. Gu, Q.H. Fan, W. Gibbons, J.D. Hoefelmeyer, P.R. Kharel, M. Shrestha, Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation, Electrochim Acta, 212 (2016) 839-847.
  • [8] E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochim Acta, 192 (2016) 110-119.
  • [9] C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors, Electrochim Acta, 52 (2007) 2498-2505.
  • [10] Y.J. Kim, B.J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors, Carbon, 44 (2006) 1592-1595.
  • [11] Y.Y. Zhu, M.M. Chen, Y. Zhang, W.X. Zhao, C.Y. Wang, A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor, Carbon, 140 (2018) 404-412.
  • [12] J. Pang, W.F. Zhang, H. Zhang, J.L. Zhang, H.M. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors, Carbon, 132 (2018) 280-293.
  • [13] M. Jalali, F. Aboulghazi, Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions, J Mater Cycles Waste, 15 (2013) 548-555.
  • [14] E. Koseoglu, C. Akmil-Basar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass, Adv Powder Technol, 26 (2015) 811-818.
  • [15] A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chem Eng J, 174 (2011) 117-125.
  • [16] V.K. Singh, E.A. Kumar, Thermodynamic analysis of single-stage and single-effect two-stage adsorption cooling cycles using indigenous coconut shell based activated carbon-CO2 pair, Int J Refrig, 84 (2017) 238-252.
  • [17] D. Ozcimen, A. Ersoy-Mericboyu, Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials, Renew Energ, 35 (2010) 1319-1324.
  • [18] K.Z. Qian, A. Kumar, K. Patil, D. Bellmer, D.H. Wang, W.Q. Yuan, R.L. Huhnke, Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char, Energies, 6 (2013) 3972-3986.
  • [19] R. Rajarao, I. Mansuri, R. Dhunna, R. Khanna, V. Sahajwalla, Study of structural evolution of chars during rapid pyrolysis of waste CDs at different temperatures, Fuel, 134 (2014) 17-25.
  • [20] O. Uner, Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Micropor Mesopor Mat, 268 (2018) 225-234.
  • [21] S.S. Brum, M.L. Bianchi, V.L. Silva, M. Goncalves, M.C. Guerreiro, L.C.A. de Oliveira, Preparation and characterization of activated carbon produced from coffee waste, Quim Nova, 31 (2008) 1048-1052.
  • [22] R.H. Liu, E.H. Liu, R. Ding, K. Liu, Y. Teng, Z.Y. Luo, Z.P. Li, T.T. Hu, T.T. Liu, Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors, Ceram Int, 41 (2015) 12734-12741.
  • [23] S.X. Hu, S.L. Zhang, N. Pan, Y.L. Hsieh, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J Power Sources, 270 (2014) 106-112.
  • [24] B.H. Lu, Z.A. Xiao, H. Zhu, W. Xiao, W.L. Wu, D.H. Wang, Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates, J Power Sources, 298 (2015) 74-82.
  • [25] W. Cao, F. Yang, Supercapacitors from high fructose corn syrup-derived activated, Materials Today Energy, 9 (2018) 406-415.
  • [26] L.S. Ghadimi, N. Arsalani, A.G. Tabrizi, A. Mohammadi, I. Ahadzadeh, Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor, Electrochim Acta, 282 (2018) 116-127.
  • [27] T.A. Centeno, F. Stoeckli, The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons, Electrochim Acta, 52 (2006) 560-566.
  • [28] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J Power Sources, 195 (2010) 7880-7903.
  • [29] B. Xu, Y.F. Chen, G. Wei, G.P. Cao, H. Zhang, Y.S. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Mater Chem Phys, 124 (2010) 504-509.
  • [30] A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, J. Ozolinsh, Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte, New Carbon Mater, 32 (2017) 319-326.
  • [31] M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, F. Stoeckli, T.A. Centeno, Cherry stones as precursor of activated carbons for supercapacitors, Mater Chem Phys, 114 (2009) 323-327.
  • [32] K.L. Van, T.T.L. Thi, Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Prog Nat Sci-Mater, 24 (2014) 191-198.
  • [33] B. Kishore, D. Shanmughasundaram, T.R. Penki, N. Munichandraiah, Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors, J Appl Electrochem, 44 (2014) 903-916.
  • [34] Y. Hu, T.S. Fisher, Suggested standards for reporting power and energy density in supercapacitor research, B Mater Sci, 41 (2018).
  • [35] R. Farzana, R. Rajarao, B.R. Bhat, V. Sahajwalla, Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs), J Ind Eng Chem, 65 (2018) 387-396.
  • [36] I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl Surf Sci, 357 (2015) 696-703.
  • [37] J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond, Electrochim Acta, 281 (2018) 170-188.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Alp Yürüm 0000-0002-1284-3924

Publication Date October 23, 2019
Acceptance Date May 27, 2019
Published in Issue Year 2019 Volume: 47 Issue: 3

Cite

APA Yürüm, A. (2019). Sunflower Stalk Based Activated Carbon for Supercapacitors. Hacettepe Journal of Biology and Chemistry, 47(3), 235-247. https://doi.org/10.15671/hjbc.509201
AMA Yürüm A. Sunflower Stalk Based Activated Carbon for Supercapacitors. HJBC. October 2019;47(3):235-247. doi:10.15671/hjbc.509201
Chicago Yürüm, Alp. “Sunflower Stalk Based Activated Carbon for Supercapacitors”. Hacettepe Journal of Biology and Chemistry 47, no. 3 (October 2019): 235-47. https://doi.org/10.15671/hjbc.509201.
EndNote Yürüm A (October 1, 2019) Sunflower Stalk Based Activated Carbon for Supercapacitors. Hacettepe Journal of Biology and Chemistry 47 3 235–247.
IEEE A. Yürüm, “Sunflower Stalk Based Activated Carbon for Supercapacitors”, HJBC, vol. 47, no. 3, pp. 235–247, 2019, doi: 10.15671/hjbc.509201.
ISNAD Yürüm, Alp. “Sunflower Stalk Based Activated Carbon for Supercapacitors”. Hacettepe Journal of Biology and Chemistry 47/3 (October 2019), 235-247. https://doi.org/10.15671/hjbc.509201.
JAMA Yürüm A. Sunflower Stalk Based Activated Carbon for Supercapacitors. HJBC. 2019;47:235–247.
MLA Yürüm, Alp. “Sunflower Stalk Based Activated Carbon for Supercapacitors”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 3, 2019, pp. 235-47, doi:10.15671/hjbc.509201.
Vancouver Yürüm A. Sunflower Stalk Based Activated Carbon for Supercapacitors. HJBC. 2019;47(3):235-47.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc