Research Article
BibTex RIS Cite

A new, sensitive and disposable electrochemical immunosensor based on Benzaldehyde side group containing phosphazene polymer modified ITO substrate for Interleukin 1β detection

Year 2019, Volume: 47 Issue: 3, 305 - 315, 23.10.2019
https://doi.org/10.15671/hjbc.515999

Abstract

Bu çalışmada,
interlökin 1β (IL 1β) tespiti için tek kullanımlık benzaldehit ikameli fosfazen
polimeri (BSPP) ile modifiye edilmiş ITO elektrot temelli yeni bir
elektrokimyasal ultrahassas immünosensör geliştirilmiştir. Aldehit yan grupları
içeren fosfazen polimeri (BSPP) halka açma polimerizasyonu yöntemi ile
sentezlenmiştir. Bu aldehit grupları, anti-IL 1β antikorları için bir bağlantı
noktaları sağlamıştır. Önerilen immünosensörün üretim süreci, Elektrokimyasal Empedans
Spektroskopisi (EIS) ve Döngüsel Voltammetri (CV) gibi elektrokimyasal
tekniklerle izlendi. Ek olarak, bu üretim aşamaları, Taramalı Elektron
Mikroskobu (FE-SEM) ve Atomik Kuvvet Mikroskobu (AFM) kullanılarak karakterize
edildi. Ayrıca, polimer kaplı elektrot yüzeyindeki BSPP polimer tabakası,
Enerji Dağıtıcı X-ışını (EDX) kullanılarak araştırıldı. Üretilen immünosensör
düşük bir tespit sınırına (9,3 fg / mL) ve geniş bir doğrusal tayin aralığına
(0,03-7,5 pg / mL) sahiptir. Ayrıca, iyi tekrarlanabilirlik (% 1.82), mükemmel
tekrarlanabilirlik (% 1.56), iyi seçicilik ve yüksek stabiliteye sahipti. Deney
sonuçları, BSPP polimerinin, klinik teşhis ve pratik uygulamalarda IL1β antijen
tespiti için arzu edilen bir platform olduğunu gösterdi. Önerilen biyosensörün
uygulanabilirliği, insan serumunda IL 1β seviyesi ölçülerek test edildi ve
önerilen immünosensör, nicel analiz için kabul edilebilir sonuçlara sahipti.

References

  • [1] S. Kumar, R.K. Singh, R. Murthy, T. Bhardwaj, Synthesis and evaluation of substituted poly (organophosphazenes) as a novel nanocarrier system for combined antimalarial therapy of primaquine and dihydroartemisinin, Pharm. Res. 32(8) (2015) 2736-2752.
  • [2] H.R. Allcock, The synthesis of functional polyphosphazenes and their surfaces, Appl. Organomet. Chem. 12(10‐11) (1998) 659-666.
  • [3] J. Dudás, A. Fullár, M. Bitsche, V. Schartinger, I. Kovalszky, G.M. Sprinzl, H.J.E.c.r. Riechelmann, Tumor-produced, active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts, Exp. Cell. Res. 317(15) (2011) 2222-2229.
  • [4] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Highly sensitive electrochemical immunosensor based on polythiophene polymer with densely populated carboxyl groups as immobilization matrix for detection of interleukin 1β in human serum and saliva, Sens. Actuator. B, 270, 18-27 (2018).
  • [5] E.B. Aydın, M.K. Sezgintürk, A disposable and ultrasensitive ITO based biosensor modified by 6-phosphonohexanoic acid for electrochemical sensing of IL-1β in human serum and saliva, Anal. Chim. Acta 1039, 41-50 (2018).
  • [6] J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection, Anal. Biochem. 548 (2018) 53-59.
  • [7] M. Aydın, E.B. Aydın, M.K. Sezgintürk, A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum, Biosens. Bioelectron. 107 (2018) 1-9.
  • [8] P. Khashayar, G. Amoabediny, B. Larijani, M. Hosseini, J. Vanfleteren, Fabrication and Verification of Conjugated AuNP-Antibody Nanoprobe for Sensitivity Improvement in Electrochemical Biosensors, Sci. Rep. 7(1) (2017) 16070.
  • [9] N.S. Ferreira, M.G.F. Sales, Disposable immunosensor using a simple method for oriented antibody immobilization for label-free real-time detection of an oxidative stress biomarker implicated in cancer diseases, Biosens. Bioelectron. 53 (2014) 193-199.
  • [10] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection, Biosens. Bioelectron. 121 (2018) 80-89.
  • [11] E.B. Aydın, M.K. Sezgintürk, Indium Tin Oxide (ITO): A promising material in biosensing technology, TrAC, Trends Anal. Chem. 97, 309-315 (2017).
  • [12] M. Aydın, E.B. Aydın, M.K. Sezgintürk, A highly selective electrochemical immunosensor based on Conductive Carbon Black and Star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva, Biosens. Bioelectron. 117, 720-728 (2018).
  • [13] K. Ghayedi Karimi, S.A. Mozaffari, M. Ebrahimi, Spin‐coated ZnO–graphene nanostructure thin film as a promising matrix for urease immobilization of impedimetric urea biosensor, J. Chin. Chem. Soc. (2018).
  • [14] M. Aydın, E.B. Aydın, M.K. Sezgintürk, Bioelectronics, Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly (phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors, Biosens. Bioelectron. 126 (2019) 230-239.
  • [15] G.A. Carriedo, F.J. García Alonso, P.A. González, J.R. Menéndez, Infrared and Raman spectra of the phosphazene high polymer [NP (O2C12H8)] n, Journal of Raman spectroscopy 29(4) (1998) 327-330.
  • [16] C. Fiedler, B. Luerssen, B. Lucht, J. Janek, Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups, J. Power Sources 384 (2018) 165-171.
  • [17] T.A. Luther, F.F. Stewart, J.L. Budzien, R.A. LaViolette, W.F. Bauer, M.K. Harrup, C.W. Allen, A. Elayan, On the mechanism of ion transport through polyphosphazene solid polymer electrolytes: NMR, IR, and Raman spectroscopic studies and computational analysis of 15N-labeled polyphosphazenes, J. Phy. Chem. B 107(14) (2003) 3168-3176.
  • [18] L. Daasch, D. Smith, Infrared spectra of phosphorus compounds, Anal. Chem. 23(6) (1951) 853-868.
  • [19] H. Allcock, R. Kugel, K. Valan, Phosphonitrilic compounds. VI. High molecular weight poly (alkoxy-and aryloxyphosphazenes), Inorg. Chem. 5(10) (1966) 1709-1715.
  • [20] P. Jiang, X. Gu, S. Zhang, J. Sun, R. Xu, S. Bourbigot, S. Duquesne, M. Casetta, Flammability and thermal degradation of poly (lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS, Polymer 79 (2015) 221-231.
  • [21] A. Banas, K. Banas, A. Furgal-Borzych, W. Kwiatek, B. Pawlicki, M. Breese, The pituitary gland under infrared light–in search of a representative spectrum for homogeneous regions, Analyst 140(7) (2015) 2156-2163.
  • [22] M. Chen, R. Lord, Laser-excited Raman spectroscopy of biomolecules. VI. Polypeptides as conformational models, J. Am. Chem. Soc. 96(15) (1974) 4750-4752.
  • [23] K. Chrabaszcz, K. Kochan, A. Fedorowicz, A. Jasztal, E. Buczek, L.S. Leslie, R. Bhargava, K. Malek, S. Chlopicki, K.M. Marzec, FT-IR-and Raman-based biochemical profiling of the early stage of pulmonary metastasis of breast cancer in mice, Analyst 143(9) (2018) 2042-2050.
  • [24] K. Dégardin, A. Desponds, Y. Roggo, Protein-based medicines analysis by Raman spectroscopy for the detection of counterfeits, Forensic Sci. Int. 278 (2017) 313-325.
  • [25] T. Kitagawa, S. Hirota, Raman spectroscopy of proteins Handbook of Vibrational Spectroscopy, New York: Wiley, 2006.
  • [26] A. Bonifacio, C. Beleites, F. Vittur, E. Marsich, S. Semeraro, S. Paoletti, V. Sergo, Chemical imaging of articular cartilage sections with Raman mapping, employing uni-and multi-variate methods for data analysis, Analyst 135(12) (2010) 3193-3204.
  • [27] R.S. Jakubek, J. Handen, S.E. White, S.A. Asher, I.K. Lednev, Ultraviolet resonance Raman spectroscopic markers for protein structure and dynamics, TrAC, Trends Anal. Chem. (2017).
  • [28] J. Lippert, D. Tyminski, P. Desmeules, Determination of the secondary structure of proteins by laser Raman spectroscopy, J. Am. Chem. Soc. 98(22) (1976) 7075-7080.
  • [29] R.W. Williams, Protein secondary structure analysis using Raman amide I and amide III spectra, Methods in enzymology, Elsevier1986, pp. 311-331.
  • [30] E.B. Aydın, M. Aydın, M.K. Sezgintürk, A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples, Biosens. Bioelectron. 97 (2017) 169-176.
  • [31] H. Sabouri, K. Ohno, S. Perrier, Well-defined colloidal crystal films from the 2D self-assembly of core–shell semi-soft nanoparticles, Poly. Chem. 6(41) (2015) 7297-7307.
  • [32] F. Mollarasouli, V. Serafín, S. Campuzano, P. Yáñez-Sedeño, J.M. Pingarrón, K. Asadpour-Zeynali, Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes, Anal. Chim. Acta 1011 (2018) 28-34.
  • [33] H.-B. Wang, H.-D. Zhang, S.-P. Xu, T. Gan, K.-J. Huang, Y.-M. Liu, A sensitive and label-free electrochemical impedance biosensor for protein detection based on terminal protection of small molecule-linked DNA, Sens. Actuator. B, 194 (2014) 478-483.
  • [34] Y. Chen, B. Jiang, Y. Xiang, Y. Chai, R. Yuan, Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites, Chem. Commun. 47(48) (2011) 12798-12800.
Year 2019, Volume: 47 Issue: 3, 305 - 315, 23.10.2019
https://doi.org/10.15671/hjbc.515999

Abstract

References

  • [1] S. Kumar, R.K. Singh, R. Murthy, T. Bhardwaj, Synthesis and evaluation of substituted poly (organophosphazenes) as a novel nanocarrier system for combined antimalarial therapy of primaquine and dihydroartemisinin, Pharm. Res. 32(8) (2015) 2736-2752.
  • [2] H.R. Allcock, The synthesis of functional polyphosphazenes and their surfaces, Appl. Organomet. Chem. 12(10‐11) (1998) 659-666.
  • [3] J. Dudás, A. Fullár, M. Bitsche, V. Schartinger, I. Kovalszky, G.M. Sprinzl, H.J.E.c.r. Riechelmann, Tumor-produced, active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts, Exp. Cell. Res. 317(15) (2011) 2222-2229.
  • [4] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Highly sensitive electrochemical immunosensor based on polythiophene polymer with densely populated carboxyl groups as immobilization matrix for detection of interleukin 1β in human serum and saliva, Sens. Actuator. B, 270, 18-27 (2018).
  • [5] E.B. Aydın, M.K. Sezgintürk, A disposable and ultrasensitive ITO based biosensor modified by 6-phosphonohexanoic acid for electrochemical sensing of IL-1β in human serum and saliva, Anal. Chim. Acta 1039, 41-50 (2018).
  • [6] J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection, Anal. Biochem. 548 (2018) 53-59.
  • [7] M. Aydın, E.B. Aydın, M.K. Sezgintürk, A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum, Biosens. Bioelectron. 107 (2018) 1-9.
  • [8] P. Khashayar, G. Amoabediny, B. Larijani, M. Hosseini, J. Vanfleteren, Fabrication and Verification of Conjugated AuNP-Antibody Nanoprobe for Sensitivity Improvement in Electrochemical Biosensors, Sci. Rep. 7(1) (2017) 16070.
  • [9] N.S. Ferreira, M.G.F. Sales, Disposable immunosensor using a simple method for oriented antibody immobilization for label-free real-time detection of an oxidative stress biomarker implicated in cancer diseases, Biosens. Bioelectron. 53 (2014) 193-199.
  • [10] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection, Biosens. Bioelectron. 121 (2018) 80-89.
  • [11] E.B. Aydın, M.K. Sezgintürk, Indium Tin Oxide (ITO): A promising material in biosensing technology, TrAC, Trends Anal. Chem. 97, 309-315 (2017).
  • [12] M. Aydın, E.B. Aydın, M.K. Sezgintürk, A highly selective electrochemical immunosensor based on Conductive Carbon Black and Star PGMA polymer composite material for IL-8 biomarker detection in human serum and saliva, Biosens. Bioelectron. 117, 720-728 (2018).
  • [13] K. Ghayedi Karimi, S.A. Mozaffari, M. Ebrahimi, Spin‐coated ZnO–graphene nanostructure thin film as a promising matrix for urease immobilization of impedimetric urea biosensor, J. Chin. Chem. Soc. (2018).
  • [14] M. Aydın, E.B. Aydın, M.K. Sezgintürk, Bioelectronics, Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly (phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors, Biosens. Bioelectron. 126 (2019) 230-239.
  • [15] G.A. Carriedo, F.J. García Alonso, P.A. González, J.R. Menéndez, Infrared and Raman spectra of the phosphazene high polymer [NP (O2C12H8)] n, Journal of Raman spectroscopy 29(4) (1998) 327-330.
  • [16] C. Fiedler, B. Luerssen, B. Lucht, J. Janek, Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups, J. Power Sources 384 (2018) 165-171.
  • [17] T.A. Luther, F.F. Stewart, J.L. Budzien, R.A. LaViolette, W.F. Bauer, M.K. Harrup, C.W. Allen, A. Elayan, On the mechanism of ion transport through polyphosphazene solid polymer electrolytes: NMR, IR, and Raman spectroscopic studies and computational analysis of 15N-labeled polyphosphazenes, J. Phy. Chem. B 107(14) (2003) 3168-3176.
  • [18] L. Daasch, D. Smith, Infrared spectra of phosphorus compounds, Anal. Chem. 23(6) (1951) 853-868.
  • [19] H. Allcock, R. Kugel, K. Valan, Phosphonitrilic compounds. VI. High molecular weight poly (alkoxy-and aryloxyphosphazenes), Inorg. Chem. 5(10) (1966) 1709-1715.
  • [20] P. Jiang, X. Gu, S. Zhang, J. Sun, R. Xu, S. Bourbigot, S. Duquesne, M. Casetta, Flammability and thermal degradation of poly (lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS, Polymer 79 (2015) 221-231.
  • [21] A. Banas, K. Banas, A. Furgal-Borzych, W. Kwiatek, B. Pawlicki, M. Breese, The pituitary gland under infrared light–in search of a representative spectrum for homogeneous regions, Analyst 140(7) (2015) 2156-2163.
  • [22] M. Chen, R. Lord, Laser-excited Raman spectroscopy of biomolecules. VI. Polypeptides as conformational models, J. Am. Chem. Soc. 96(15) (1974) 4750-4752.
  • [23] K. Chrabaszcz, K. Kochan, A. Fedorowicz, A. Jasztal, E. Buczek, L.S. Leslie, R. Bhargava, K. Malek, S. Chlopicki, K.M. Marzec, FT-IR-and Raman-based biochemical profiling of the early stage of pulmonary metastasis of breast cancer in mice, Analyst 143(9) (2018) 2042-2050.
  • [24] K. Dégardin, A. Desponds, Y. Roggo, Protein-based medicines analysis by Raman spectroscopy for the detection of counterfeits, Forensic Sci. Int. 278 (2017) 313-325.
  • [25] T. Kitagawa, S. Hirota, Raman spectroscopy of proteins Handbook of Vibrational Spectroscopy, New York: Wiley, 2006.
  • [26] A. Bonifacio, C. Beleites, F. Vittur, E. Marsich, S. Semeraro, S. Paoletti, V. Sergo, Chemical imaging of articular cartilage sections with Raman mapping, employing uni-and multi-variate methods for data analysis, Analyst 135(12) (2010) 3193-3204.
  • [27] R.S. Jakubek, J. Handen, S.E. White, S.A. Asher, I.K. Lednev, Ultraviolet resonance Raman spectroscopic markers for protein structure and dynamics, TrAC, Trends Anal. Chem. (2017).
  • [28] J. Lippert, D. Tyminski, P. Desmeules, Determination of the secondary structure of proteins by laser Raman spectroscopy, J. Am. Chem. Soc. 98(22) (1976) 7075-7080.
  • [29] R.W. Williams, Protein secondary structure analysis using Raman amide I and amide III spectra, Methods in enzymology, Elsevier1986, pp. 311-331.
  • [30] E.B. Aydın, M. Aydın, M.K. Sezgintürk, A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples, Biosens. Bioelectron. 97 (2017) 169-176.
  • [31] H. Sabouri, K. Ohno, S. Perrier, Well-defined colloidal crystal films from the 2D self-assembly of core–shell semi-soft nanoparticles, Poly. Chem. 6(41) (2015) 7297-7307.
  • [32] F. Mollarasouli, V. Serafín, S. Campuzano, P. Yáñez-Sedeño, J.M. Pingarrón, K. Asadpour-Zeynali, Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes, Anal. Chim. Acta 1011 (2018) 28-34.
  • [33] H.-B. Wang, H.-D. Zhang, S.-P. Xu, T. Gan, K.-J. Huang, Y.-M. Liu, A sensitive and label-free electrochemical impedance biosensor for protein detection based on terminal protection of small molecule-linked DNA, Sens. Actuator. B, 194 (2014) 478-483.
  • [34] Y. Chen, B. Jiang, Y. Xiang, Y. Chai, R. Yuan, Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites, Chem. Commun. 47(48) (2011) 12798-12800.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muhammet Aydın 0000-0002-8716-9970

Publication Date October 23, 2019
Acceptance Date May 27, 2019
Published in Issue Year 2019 Volume: 47 Issue: 3

Cite

APA Aydın, M. (2019). A new, sensitive and disposable electrochemical immunosensor based on Benzaldehyde side group containing phosphazene polymer modified ITO substrate for Interleukin 1β detection. Hacettepe Journal of Biology and Chemistry, 47(3), 305-315. https://doi.org/10.15671/hjbc.515999
AMA Aydın M. A new, sensitive and disposable electrochemical immunosensor based on Benzaldehyde side group containing phosphazene polymer modified ITO substrate for Interleukin 1β detection. HJBC. October 2019;47(3):305-315. doi:10.15671/hjbc.515999
Chicago Aydın, Muhammet. “A New, Sensitive and Disposable Electrochemical Immunosensor Based on Benzaldehyde Side Group Containing Phosphazene Polymer Modified ITO Substrate for Interleukin 1β Detection”. Hacettepe Journal of Biology and Chemistry 47, no. 3 (October 2019): 305-15. https://doi.org/10.15671/hjbc.515999.
EndNote Aydın M (October 1, 2019) A new, sensitive and disposable electrochemical immunosensor based on Benzaldehyde side group containing phosphazene polymer modified ITO substrate for Interleukin 1β detection. Hacettepe Journal of Biology and Chemistry 47 3 305–315.
IEEE M. Aydın, “A new, sensitive and disposable electrochemical immunosensor based on Benzaldehyde side group containing phosphazene polymer modified ITO substrate for Interleukin 1β detection”, HJBC, vol. 47, no. 3, pp. 305–315, 2019, doi: 10.15671/hjbc.515999.
ISNAD Aydın, Muhammet. “A New, Sensitive and Disposable Electrochemical Immunosensor Based on Benzaldehyde Side Group Containing Phosphazene Polymer Modified ITO Substrate for Interleukin 1β Detection”. Hacettepe Journal of Biology and Chemistry 47/3 (October 2019), 305-315. https://doi.org/10.15671/hjbc.515999.
JAMA Aydın M. A new, sensitive and disposable electrochemical immunosensor based on Benzaldehyde side group containing phosphazene polymer modified ITO substrate for Interleukin 1β detection. HJBC. 2019;47:305–315.
MLA Aydın, Muhammet. “A New, Sensitive and Disposable Electrochemical Immunosensor Based on Benzaldehyde Side Group Containing Phosphazene Polymer Modified ITO Substrate for Interleukin 1β Detection”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 3, 2019, pp. 305-1, doi:10.15671/hjbc.515999.
Vancouver Aydın M. A new, sensitive and disposable electrochemical immunosensor based on Benzaldehyde side group containing phosphazene polymer modified ITO substrate for Interleukin 1β detection. HJBC. 2019;47(3):305-1.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc