Research Article
BibTex RIS Cite

Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler ile Bisfenol A Uzaklaştırılması

Year 2019, Volume: 47 Issue: 3, 249 - 258, 23.10.2019
https://doi.org/10.15671/hjbc.617584

Abstract

The main objective of this study is to
investigate the effectiveness of poly(divinylbenzene-N-methacryloyl-L-tryptophan
methyl ester) [poly(DVB-MATrp)] microbeads (average diameter =
150-200 μm) to remove bisphenol A
(BPA) from aqueous phase. The poly(DVB-MATrp) microbeads were synthesized by
copolymerizing N-methacryloyl-L-tryptophan methyl ester (MATrp) in the presence
of divinylbenzene (DVB). The
poly(DVB-MATrp) beads were characterized by Fourier transform infrared
spectroscopy (FTIR), elemental analysis, scanning electron microscopy (SEM) and
swelling test. The efficiency of poly(DVB-MATrp) microbeads for adsorption of
BPA from aqueous medium was evaluated by investigating the effects of pH,
initial concentration, contact time and temperature. The adsorption capacity of
the microbeads was determined to be 171.1 mg/g at pH
7.0, 25 oC.
The
Langmuir and Freundlich
isotherm models were
used to fit adsorption data.
The adsorption process obeyed
pseudo-second-order kinetic model. The
prepared microbeads can be repeatedly used to adsorption of BPA without a
significant change in the adsorption capacity.


Bu çalışmanın amacı, poli(divinilbenzen-N-metakriloil-L-triptofan metil ester)
[poli(DVB-MATrp)] mikrokürelerin (ortalama çap: 150-200 μm) sulu fazdan
bisfenol A (BPA) uzaklaştırılmasındaki etkinliğinin araştırılmasıdır.
Poli(DVB-MATrp) mikroküreler N-metakriloil-L-triptofan metil ester (MATrp)
monomerinin divinilbenzen (DVB) varlığında polimerleştirilmesi ile sentezlendi.
Poli(DVB-MATrp) mikroküreler Fourier dönüşüm infrared spektroskopisi (FTIR), elementel
analiz, taramalı elektron mikroskobu (SEM), ve şisme testi ile karakterize
edildi. Poli(DVB-MATrp) mikrokürelerin sulu fazdan
BPA adsorplamadaki etkinliği pH, başlangıç derişimi, temas süresi ve sıcaklığın
etkisinin araştırılması ile incelendi. Mikrokürelerin BPA adsorpsiyon
kapasitesi pH 7.0 ve 25 oC sıcaklıkta 171,1 mg/g olarak belirlendi.
Elde edilen adsorpsiyon verilerinin
Langmuir
ve
Freundlich izoterm modellerine uygunluğu
araştırıldı. Adsorpsiyonun yalanı-ikinci-derece kinetik modele uygun olduğu
belirlendi. Sentezlenen mikroküreler, BPA adsorpsiyon kapasitesinde önemli bir
değişiklik olmaksızın tekrar tekrar kullanıldı

Supporting Institution

the Scientific and Technological Research Council of Turkey (TUBİTAK)

Project Number

118 Z 021

Thanks

This work was supported by the Scientific and Technological Research Council of Turkey and was assigned project number 118 Z 021.

References

  • [1] V.A. Santhi, T. Hairin, A.M. Mustafa, Simultaneous determination of organochlorine pesticides and bisphenol A in edible marine biota by GC–MS, Chemosphere, 86 (2012) 1066-1071.
  • [2] C.A. Staples, P.B. Dorn, G.M. Klecka, S.T. O’Block, L.R. Harris, A review of the environmental fate, effects, and exposures of bisphenol A, Chemosphere, 36 (1998)2149-2173.
  • [3] A. Ballesteros-Gomez, S.Rubio, D. Perez-Bendito, Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A,1216 (2009) 449-469.
  • [4] F.S. Vom Saal, C. Hughes, An Extensive New Literature Concerning Low-Dose Effects of Bisphenol A Shows the Need for a New Risk Assessment, Environ Health Perspect 113 (2005) 926-933.
  • [5] W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite, J. Colloid Interface Sci, 299 (2006)513-519.
  • [6] Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite, J. Colloid Interface Sci, 348 (2010)585-590.
  • [7] N. Genc,O. Kilicoglu, A.O Narci, Removal of Bisphenol A aqueous solution using surfactant-modified natural zeolite: Taguchi's experimental design, adsorption kinetic, equilibrium and thermodynamic study, Environmental Technology, 38:4 (2017) 424-432.
  • [8] Y. Yang, Z. Wang, T. He, Y. Dai, S. Xie, Sediment bacterial communities associated with anaerobic biodegradation of Bisphenol A, Microb Ecol, 70 (2015) 97–104.
  • [9] W. Ma, C. Nie, B. Chen, X. Cheng, X. Lun,F. Zeng, Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater, Journal of Environmental Sciences, 31 (2015) 154 – 163.
  • [10] J. Boonnorat, C. Chiemchaisri, W. Chiemchaisri, K. Yamamoto, Removals of phenolic compounds and phthalic acid esters in landfill leachate by microbial sludge of two-stage membrane bioreactor,Journal of Hazardous Materials, 277 (2014) 93–101.
  • [11] X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A, Journal of Hazardous Materials, 324 (2017) 665–672.
  • [12] H. Kuramitz, Y. Nakata, M. Kawasaki, S. Tanaka, Electrochemical oxidation of bisphenol A: Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 45 (2001)37-43.
  • [13] M. P. Pachamuthua, S. Karthikeyan, R. Maheswari, A.F. Lee, A. Ramanathan,Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1, Applied Surface Science, 393 (2017) 67–73.
  • [14] M. Umar, F. Roddick, L. Fan, H.A. Aziz, Application of ozone for the removal of bisphenol A from water and wastewater – A review, Chemosphere, 90 (2013)2197-2207.
  • [15] A. Chmayssema, S. Tahac, D. Hauchard, Scaled-up electrochemical reactor with a fixed bed three-dimensional cathode for electro-Fenton process: Application to the treatment of bisphenol A, Electrochimica Acta, 225 (2017) 435–442.
  • [16] Y. Yoon, P. Westerhoff, S.A. Snyder, M. Esparza, HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon, Water Res, 37 (2003) 3530-3537.
  • [17] W.T. Tsai, C.W. Lai, T.Y. Su, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater. B, 134 (2006)169-175.
  • [18] G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater, 164 (2009) 1275-1280.
  • [19] L. Joseph, L.K. Boateng, J.R.V. Flora, Y.G. Park, M. Badawy, Y. Yoon, Removal of bisphenol A and 17α-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon, Sep. Purif. Technol, 107 (2013) 37-47.
  • [20] L. Yan, D. Lv, X. Huang, H. Shi, G. Zhang, Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions, Water Science And Technology,74: 7 (2016) 1744-1751.
  • [21] B. Pan, D. Lin,H. Mashayekhi, B. Xing, Adsorption and hysteresis of Bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials,Environ. Sci. Technol, 42 (2008) 5480-5485.
  • [22] L. Joseph, J. Heo, Y.G. Park, J.R.V. Flora, Y. Yoon, Adsorption of bisphenol A and 17α-ethinyl estradiol on single walled carbon nanotubes from seawater and brackish water, Desalination 281 (2011) 68-74.
  • [23] Q. Zhou, Y. Wanga, J. Xiao, H. Fan, Adsorption and removal of bisphenol A, α-naphthol and β-naphthol from aqueous solution by Fe3O4@polyaniline core–shell nanomaterials, Synthetic Metals, 212 (2016) 113–122.
  • [24] M. Kitaoka, K. Hayashi, Adsorption of bisphenol A by cross-Linked ß-cyclodextrin polymer, J. Inclusion Phenom.Macrocyclic Chem, 44 (2002) 429-431.
  • [25] B. Osman, E. Tümay Özer, A. Kara, E. Yeşilova, N. Beşirli, Properties of magnetic microbeads in removing bisphenol-A from aqueous phase,J Porous Mater, 22 (2015)37–46.
  • [26] Y. Watabe, K. Hosoya, N. Tanaka, T. Kubo, T. Kondo, M. Morita, Novel surface modified molecularly imprinted polymer focused on the removal of interference in environmental water samples for chromatographic determination, J. Chromatogr. A, 1073 (2005) 363-370.
  • [27] X. Hu, X. Wu, F. Yang, Q. Wang, C. He, S. Liu, Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples, Talanta, 148 (2016) 29–36.
  • [28] D. Yu, X. Hu, S. Wei, Q. Wang, C. He, S. Liu, Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A, Journal of Chromatography A, 1396 (2015) 17–24.
  • [29] B. Osman, L. Uzun, N. Beşirli and A. Denizli, Microcontact imprinted surface plasmon resonance sensor for myoglobin detection, Mater. Sci. Eng. C, 33 (2013) 3609–3614.
  • [30] S. Lagergren, Zur theorie der sogenannten Adsorption gel oster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 1898; 25: 1-39.
  • [31] Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater, 136 (2006) 681 – 689.
  • [32] W.J. Weber Jr, J.C. Morris, Kinetics of adsorption on carbon from solutions. J. Sanitary Eng. Div. ASCE, 89 (1963) 31-60.
  • [33] M.I. Bautista-Toledo, J. Rivera-Utrilla, R. Ocampo-Pérez, F. Carrasco-Marín, M. Sánchez-Polo, Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste, Carbon, 73 (2014) 338–350.
  • [34] A.C. Arampatzidou, E.A. Deliyanni, Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenolA, Journal of Colloid and Interface Science, 466 (2016) 101–112.
Year 2019, Volume: 47 Issue: 3, 249 - 258, 23.10.2019
https://doi.org/10.15671/hjbc.617584

Abstract

Project Number

118 Z 021

References

  • [1] V.A. Santhi, T. Hairin, A.M. Mustafa, Simultaneous determination of organochlorine pesticides and bisphenol A in edible marine biota by GC–MS, Chemosphere, 86 (2012) 1066-1071.
  • [2] C.A. Staples, P.B. Dorn, G.M. Klecka, S.T. O’Block, L.R. Harris, A review of the environmental fate, effects, and exposures of bisphenol A, Chemosphere, 36 (1998)2149-2173.
  • [3] A. Ballesteros-Gomez, S.Rubio, D. Perez-Bendito, Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A,1216 (2009) 449-469.
  • [4] F.S. Vom Saal, C. Hughes, An Extensive New Literature Concerning Low-Dose Effects of Bisphenol A Shows the Need for a New Risk Assessment, Environ Health Perspect 113 (2005) 926-933.
  • [5] W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite, J. Colloid Interface Sci, 299 (2006)513-519.
  • [6] Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite, J. Colloid Interface Sci, 348 (2010)585-590.
  • [7] N. Genc,O. Kilicoglu, A.O Narci, Removal of Bisphenol A aqueous solution using surfactant-modified natural zeolite: Taguchi's experimental design, adsorption kinetic, equilibrium and thermodynamic study, Environmental Technology, 38:4 (2017) 424-432.
  • [8] Y. Yang, Z. Wang, T. He, Y. Dai, S. Xie, Sediment bacterial communities associated with anaerobic biodegradation of Bisphenol A, Microb Ecol, 70 (2015) 97–104.
  • [9] W. Ma, C. Nie, B. Chen, X. Cheng, X. Lun,F. Zeng, Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater, Journal of Environmental Sciences, 31 (2015) 154 – 163.
  • [10] J. Boonnorat, C. Chiemchaisri, W. Chiemchaisri, K. Yamamoto, Removals of phenolic compounds and phthalic acid esters in landfill leachate by microbial sludge of two-stage membrane bioreactor,Journal of Hazardous Materials, 277 (2014) 93–101.
  • [11] X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A, Journal of Hazardous Materials, 324 (2017) 665–672.
  • [12] H. Kuramitz, Y. Nakata, M. Kawasaki, S. Tanaka, Electrochemical oxidation of bisphenol A: Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 45 (2001)37-43.
  • [13] M. P. Pachamuthua, S. Karthikeyan, R. Maheswari, A.F. Lee, A. Ramanathan,Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1, Applied Surface Science, 393 (2017) 67–73.
  • [14] M. Umar, F. Roddick, L. Fan, H.A. Aziz, Application of ozone for the removal of bisphenol A from water and wastewater – A review, Chemosphere, 90 (2013)2197-2207.
  • [15] A. Chmayssema, S. Tahac, D. Hauchard, Scaled-up electrochemical reactor with a fixed bed three-dimensional cathode for electro-Fenton process: Application to the treatment of bisphenol A, Electrochimica Acta, 225 (2017) 435–442.
  • [16] Y. Yoon, P. Westerhoff, S.A. Snyder, M. Esparza, HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon, Water Res, 37 (2003) 3530-3537.
  • [17] W.T. Tsai, C.W. Lai, T.Y. Su, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater. B, 134 (2006)169-175.
  • [18] G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater, 164 (2009) 1275-1280.
  • [19] L. Joseph, L.K. Boateng, J.R.V. Flora, Y.G. Park, M. Badawy, Y. Yoon, Removal of bisphenol A and 17α-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon, Sep. Purif. Technol, 107 (2013) 37-47.
  • [20] L. Yan, D. Lv, X. Huang, H. Shi, G. Zhang, Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions, Water Science And Technology,74: 7 (2016) 1744-1751.
  • [21] B. Pan, D. Lin,H. Mashayekhi, B. Xing, Adsorption and hysteresis of Bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials,Environ. Sci. Technol, 42 (2008) 5480-5485.
  • [22] L. Joseph, J. Heo, Y.G. Park, J.R.V. Flora, Y. Yoon, Adsorption of bisphenol A and 17α-ethinyl estradiol on single walled carbon nanotubes from seawater and brackish water, Desalination 281 (2011) 68-74.
  • [23] Q. Zhou, Y. Wanga, J. Xiao, H. Fan, Adsorption and removal of bisphenol A, α-naphthol and β-naphthol from aqueous solution by Fe3O4@polyaniline core–shell nanomaterials, Synthetic Metals, 212 (2016) 113–122.
  • [24] M. Kitaoka, K. Hayashi, Adsorption of bisphenol A by cross-Linked ß-cyclodextrin polymer, J. Inclusion Phenom.Macrocyclic Chem, 44 (2002) 429-431.
  • [25] B. Osman, E. Tümay Özer, A. Kara, E. Yeşilova, N. Beşirli, Properties of magnetic microbeads in removing bisphenol-A from aqueous phase,J Porous Mater, 22 (2015)37–46.
  • [26] Y. Watabe, K. Hosoya, N. Tanaka, T. Kubo, T. Kondo, M. Morita, Novel surface modified molecularly imprinted polymer focused on the removal of interference in environmental water samples for chromatographic determination, J. Chromatogr. A, 1073 (2005) 363-370.
  • [27] X. Hu, X. Wu, F. Yang, Q. Wang, C. He, S. Liu, Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples, Talanta, 148 (2016) 29–36.
  • [28] D. Yu, X. Hu, S. Wei, Q. Wang, C. He, S. Liu, Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A, Journal of Chromatography A, 1396 (2015) 17–24.
  • [29] B. Osman, L. Uzun, N. Beşirli and A. Denizli, Microcontact imprinted surface plasmon resonance sensor for myoglobin detection, Mater. Sci. Eng. C, 33 (2013) 3609–3614.
  • [30] S. Lagergren, Zur theorie der sogenannten Adsorption gel oster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 1898; 25: 1-39.
  • [31] Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater, 136 (2006) 681 – 689.
  • [32] W.J. Weber Jr, J.C. Morris, Kinetics of adsorption on carbon from solutions. J. Sanitary Eng. Div. ASCE, 89 (1963) 31-60.
  • [33] M.I. Bautista-Toledo, J. Rivera-Utrilla, R. Ocampo-Pérez, F. Carrasco-Marín, M. Sánchez-Polo, Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste, Carbon, 73 (2014) 338–350.
  • [34] A.C. Arampatzidou, E.A. Deliyanni, Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenolA, Journal of Colloid and Interface Science, 466 (2016) 101–112.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bilgen Osman 0000-0001-8406-149X

Elif Tümay Özer This is me 0000-0002-5225-0146

Project Number 118 Z 021
Publication Date October 23, 2019
Acceptance Date September 9, 2019
Published in Issue Year 2019 Volume: 47 Issue: 3

Cite

APA Osman, B., & Tümay Özer, E. (2019). Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler ile Bisfenol A Uzaklaştırılması. Hacettepe Journal of Biology and Chemistry, 47(3), 249-258. https://doi.org/10.15671/hjbc.617584
AMA Osman B, Tümay Özer E. Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler ile Bisfenol A Uzaklaştırılması. HJBC. October 2019;47(3):249-258. doi:10.15671/hjbc.617584
Chicago Osman, Bilgen, and Elif Tümay Özer. “Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler Ile Bisfenol A Uzaklaştırılması”. Hacettepe Journal of Biology and Chemistry 47, no. 3 (October 2019): 249-58. https://doi.org/10.15671/hjbc.617584.
EndNote Osman B, Tümay Özer E (October 1, 2019) Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler ile Bisfenol A Uzaklaştırılması. Hacettepe Journal of Biology and Chemistry 47 3 249–258.
IEEE B. Osman and E. Tümay Özer, “Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler ile Bisfenol A Uzaklaştırılması”, HJBC, vol. 47, no. 3, pp. 249–258, 2019, doi: 10.15671/hjbc.617584.
ISNAD Osman, Bilgen - Tümay Özer, Elif. “Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler Ile Bisfenol A Uzaklaştırılması”. Hacettepe Journal of Biology and Chemistry 47/3 (October 2019), 249-258. https://doi.org/10.15671/hjbc.617584.
JAMA Osman B, Tümay Özer E. Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler ile Bisfenol A Uzaklaştırılması. HJBC. 2019;47:249–258.
MLA Osman, Bilgen and Elif Tümay Özer. “Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler Ile Bisfenol A Uzaklaştırılması”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 3, 2019, pp. 249-58, doi:10.15671/hjbc.617584.
Vancouver Osman B, Tümay Özer E. Bisphenol A Removal From Aqueous Phase via Polymeric Microbeads/ Polimerik Mikroküreler ile Bisfenol A Uzaklaştırılması. HJBC. 2019;47(3):249-58.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc