Research Article
BibTex RIS Cite
Year 2018, Volume: 46 Issue: 3, 321 - 328, 01.09.2018

Abstract

References

  • M. Campàs, R. Carpentier, R. Rouillon, Plant tissueand photosynthesis-based biosensors, Biotechnol. Adv., 26 (2008) 370–378.
  • J.S. Sidwell, G.A. Rechnitz, Progress and challenges for biosensors using plant tissue materials, Biosensors, 2 (1986) 221-233.
  • M. Lieberman, A. Marks, A. Peet, Marks’ Basic Medical Biochemistry: A Clinical Approach (4 ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 175. ISBN 9781608315727 2013.
  • M.A. Mohsin, B.D. Liu, X.L. Zhang, W.J. Yang, L.S. Liu, X. Jiang, Cellular-membrane inspired surface modification of well aligned ZnO nanorods for chemosensing of epinephrine, RSC Adv., 7 (2017) 3012-3020.
  • P. Bougnères, C.L. Stunff, C. Pecqueur, E. Pinglier, P. Adnot, D.J. Ricquier, In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity, Clin. Invest., 99 (1997) 2568-2573.
  • P. Solich, C.K. Polydorou, M.A. Koupparis, C.E. Efstathiou, Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation, J. Pharm. Biomed. Anal., 22 (2000) 781–789.
  • M.H. Sorouraddin, J.L. Manzoori, E. Kargarzadeh, A. M.H. Shabani, Spectrophotometric determination of some catecholamine drugs using sodium bismuthate. J. Pharm. Biomed. Anal., 18 (1998) 877–881.
  • V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures, J. Chromatogr. B., 847 (2007) 88–94.
  • M.A. Fotopoulou, P.C. Ioannou, Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography, Anal. Chim. Acta. 462 (2002) 179– 185.
  • A. Kojo, E. Nalewajko, Determination of Epinephrine by Flow-Injection Analysis Using Luminol Hexacyanoferrate(III). Chemiluminescence Detection, Chem. Anal., (Warsaw), 49 (2004) 653.
  • W.K. Adeniyi, A.R. Wright, Novel fluorimetric assay of trace analysis of epinephrine in human serum, Spectrochim. Acta A., 74 (2009) 1001–1004.
  • P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin, A. Bulatov, Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine, Anal. Chim. Acta., 911 (2016) 69-74.
  • S. Wei, G. Song, J.M. Lin, Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J. Chromatogr. A., 1098 (2005) 166–171.
  • F. Alpat, K. Özdemir, S. Kilinc, Voltammetric determination of epinephrine in pharmaceutical sample with a tyrosinase nanobiosensor, J. Sensors. 2016 Article ID 5653975, 9 pages.
  • S.F. Fabiana, M. Yamashita, L. Angnes, Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors Biosen. Bioelectr., 21 (2006) 2283–2289.
  • E. Akyilmaz, E. Dinckaya, A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum, Talanta, 53 (2000) 505-509.
  • S.M. Chen, K.T. Peng, The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on Cobalt(II) hexacyanoferrate films, J. Electroanal. Chem., 547 (2003) 179-189.
  • H.S. Wang, D.Q. Huang, R. Liu, Study on the electrochemical behavior of epinephrine at a poly(3- methylthiophene)-modified glassy carbon electrode, J. Electroanal. Chem., 570 (2004) 83-90.
  • M. Siddiq, K.D. Dolan, Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.), Food Chem., 218 (2017) 216–220.

Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine

Year 2018, Volume: 46 Issue: 3, 321 - 328, 01.09.2018

Abstract

A plant tissue based biosensor was proposed for voltammetric determination of epinephrine (EP) in
pharmaceutical samples. The tissue homogenate was immobilized by crosslinking with glutaraldehyde
on the glassy carbon. The polyphenol oxidase enzymes present in fibers of a myrtle tree fruits maintained
high bioactivity on this biomaterial, catalyzing the oxidation of epinephrine to epinephrinequinone. Under
optimize working conditions, the biosensor showed a linear response in the range of 10–100 µM. The limit of
detection (LOD) was calculated as 3.2 × 10−6 mol L-1 (3.2 µM) (3σper slope). The reproducibility, expressed as the
relative standard deviation (RSD) for seven consecutive determinations of 5.0 × 10-5 mol L-1 EP was 4.6%. The
biosensor retained 70% activity after 11 days of storage in a phosphate buffer at 4°C. The applicability of this
biosensor was demonstrated with the analysis of real samples and a good correlation was obtained between
results acquired by the biosensor and those measured by spectrophotometric method. Such favorable results
obtained with the myrtle tissue homogenate based biosensor, joined with the simplicity and low-cost of its
preparation turns these procedures very attractive for EP quantification in pharmaceutical products.

References

  • M. Campàs, R. Carpentier, R. Rouillon, Plant tissueand photosynthesis-based biosensors, Biotechnol. Adv., 26 (2008) 370–378.
  • J.S. Sidwell, G.A. Rechnitz, Progress and challenges for biosensors using plant tissue materials, Biosensors, 2 (1986) 221-233.
  • M. Lieberman, A. Marks, A. Peet, Marks’ Basic Medical Biochemistry: A Clinical Approach (4 ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 175. ISBN 9781608315727 2013.
  • M.A. Mohsin, B.D. Liu, X.L. Zhang, W.J. Yang, L.S. Liu, X. Jiang, Cellular-membrane inspired surface modification of well aligned ZnO nanorods for chemosensing of epinephrine, RSC Adv., 7 (2017) 3012-3020.
  • P. Bougnères, C.L. Stunff, C. Pecqueur, E. Pinglier, P. Adnot, D.J. Ricquier, In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity, Clin. Invest., 99 (1997) 2568-2573.
  • P. Solich, C.K. Polydorou, M.A. Koupparis, C.E. Efstathiou, Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation, J. Pharm. Biomed. Anal., 22 (2000) 781–789.
  • M.H. Sorouraddin, J.L. Manzoori, E. Kargarzadeh, A. M.H. Shabani, Spectrophotometric determination of some catecholamine drugs using sodium bismuthate. J. Pharm. Biomed. Anal., 18 (1998) 877–881.
  • V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures, J. Chromatogr. B., 847 (2007) 88–94.
  • M.A. Fotopoulou, P.C. Ioannou, Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography, Anal. Chim. Acta. 462 (2002) 179– 185.
  • A. Kojo, E. Nalewajko, Determination of Epinephrine by Flow-Injection Analysis Using Luminol Hexacyanoferrate(III). Chemiluminescence Detection, Chem. Anal., (Warsaw), 49 (2004) 653.
  • W.K. Adeniyi, A.R. Wright, Novel fluorimetric assay of trace analysis of epinephrine in human serum, Spectrochim. Acta A., 74 (2009) 1001–1004.
  • P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin, A. Bulatov, Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine, Anal. Chim. Acta., 911 (2016) 69-74.
  • S. Wei, G. Song, J.M. Lin, Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J. Chromatogr. A., 1098 (2005) 166–171.
  • F. Alpat, K. Özdemir, S. Kilinc, Voltammetric determination of epinephrine in pharmaceutical sample with a tyrosinase nanobiosensor, J. Sensors. 2016 Article ID 5653975, 9 pages.
  • S.F. Fabiana, M. Yamashita, L. Angnes, Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors Biosen. Bioelectr., 21 (2006) 2283–2289.
  • E. Akyilmaz, E. Dinckaya, A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum, Talanta, 53 (2000) 505-509.
  • S.M. Chen, K.T. Peng, The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on Cobalt(II) hexacyanoferrate films, J. Electroanal. Chem., 547 (2003) 179-189.
  • H.S. Wang, D.Q. Huang, R. Liu, Study on the electrochemical behavior of epinephrine at a poly(3- methylthiophene)-modified glassy carbon electrode, J. Electroanal. Chem., 570 (2004) 83-90.
  • M. Siddiq, K.D. Dolan, Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.), Food Chem., 218 (2017) 216–220.
There are 19 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Adnan Ayna

Erol Akyılmaz This is me

Publication Date September 1, 2018
Acceptance Date July 6, 2018
Published in Issue Year 2018 Volume: 46 Issue: 3

Cite

APA Ayna, A., & Akyılmaz, E. (2018). Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine. Hacettepe Journal of Biology and Chemistry, 46(3), 321-328.
AMA Ayna A, Akyılmaz E. Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine. HJBC. September 2018;46(3):321-328.
Chicago Ayna, Adnan, and Erol Akyılmaz. “Development of a Biosensor Based on Myrtle (Myrtus Communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine”. Hacettepe Journal of Biology and Chemistry 46, no. 3 (September 2018): 321-28.
EndNote Ayna A, Akyılmaz E (September 1, 2018) Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine. Hacettepe Journal of Biology and Chemistry 46 3 321–328.
IEEE A. Ayna and E. Akyılmaz, “Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine”, HJBC, vol. 46, no. 3, pp. 321–328, 2018.
ISNAD Ayna, Adnan - Akyılmaz, Erol. “Development of a Biosensor Based on Myrtle (Myrtus Communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine”. Hacettepe Journal of Biology and Chemistry 46/3 (September 2018), 321-328.
JAMA Ayna A, Akyılmaz E. Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine. HJBC. 2018;46:321–328.
MLA Ayna, Adnan and Erol Akyılmaz. “Development of a Biosensor Based on Myrtle (Myrtus Communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 3, 2018, pp. 321-8.
Vancouver Ayna A, Akyılmaz E. Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine. HJBC. 2018;46(3):321-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc