Research Article
BibTex RIS Cite
Year 2018, Volume: 46 Issue: 3, 381 - 389, 01.09.2018

Abstract

References

  • D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7 (1996) 216-223.
  • D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett., 3 (2003) 1167-1171.
  • K.H. Hong, Preparation and properties of electrospun oly(vinyl alcohol)/silver fiber web as wound dressings, Poly. Eng. Sci., 47 (2007) 43-49.
  • B. Gupta, R. Agarwal, M.S. Alam, Textile-based smart wound dressings, Indian J. Fibre Text., 35 (2010) 174- 187.
  • A. Arslan, M. Şimşek, S.D. Aldemir, N.M. Kazaroğlu, M. Gümüşderelioğlu, Honey-based PET or PET/ chitosan fibrous wound dressings: effect of honey on electrospinning process, J. Biomat. Sci.-Polym. E., 25 (2014) 999-1012.
  • S. Çakmak, A.S. Çakmak, M. Gümüşderelioglu, RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study, Biomed. Mater., 8 (2013) 04501.
  • G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameter in the submicrometric and micrometric range via sol-gel chemistry and electrically forced liquid jets, J. Am. Chem. Soc, 125 (2003) 1154-1155.
  • E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites. Review of the synthetic routes and materials properties. Chem Mater. 13 (2001) 3516- 3523.
  • K.-U. Jeong, H.D. Chae, Lim C. II, H.K. Lee, J.-H. Ahn, C. Nah, Fabrication and characterization of electrolyte membranes based on organoclay/tripropyleneglycol diacrylate/poly(vinylidene fluoride) electrospun nanofiber composites, Polym. Int., 59 (2010) 249-255.
  • S.M. Nabirqudri, A.S. Roy, and M.V.N. Ambika Prasad, Electrical and mechanical properties of free-standing PMMA–MMT clay composites, J. Mater. Res., 29 (2014) 2957-2964.
  • D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova,J. Simonik, Polymer/clay nanocomposites based on MMT/ODA intercalates, Compos. Interface., 9 (2002) 529-540.
  • B.W. Chieng, N.A. Ibrahim, W.M.Z. Wan Yunus, Effect of organo-modified montmorillonite on poly(butylenesuccinate)/poly(butylene adipate-coterephthalate) nanocomposites, Express Polym. Lett., 4 (2010) 404-414.
  • Q. Zhuo, G. Xu, J. Wang, C. Qin, L. Dai, Poly(vinyl alcohol)/hydrotalcite composite nanofibre: preparation and characterization, Iran. Polym. J., 20 (2011) 357-365.
  • J.H. Juang, S. Bonner-Weir, Y. Ogawa, J.P. Vacanti, G.C. Weir, Outcome of subcutaneous islet transplantation improved by polymer device, Transplantation, 61 (1996) 1557-1561.
  • Y. Deng, X. Zhang, Y. Zhao, S. Liang, A. Xu, X. Gao, F. Deng, J. Fang, S. Wei, Peptide-decorated polyvinyl alcohol/hyaluronan nanofibers for human induced pluripotent stem cell culture, Carbohydr. Polym., 101 (2014) 36-39.
  • U.M. Subramanian, S.V. Kumar, N. Nagiah, U. T. Sivagnanam, Fabrication of polyvinyl alcoholpolyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. Int. J Polym. Mater. Po., 63 (2014) 476-485.
  • M. Kokabi, M. Sirousazar, Z.M. Hassan, PVA-clay nanocomposite hydrogels for wound dressing, Eur. Polym. J., 43 (2007) 773-781.
  • T. Galya, V. Sedlarik, I. Ku itka, R. Novotný, J. Sedla íková, P. Sáha, Antibacterial poly(vinyl alcohol) film containing silver nanoparticles: Preparation and characterization, J. Appl. Polym. Sci., 110 (2008) 3178-3185.
  • M. Jannesari, J. Varshosaz, M. Morshed, M. Zamani, Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs, Int. J. Nanomed., 6 (2011) 993-1003.
  • K.H. Hong, J.L. Park, I.H. Sul, J.H. Youk, T.J. Kang, Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles, J. Polym. Sci. Pol. Phys., 44 (2006) 2468-2474.
  • H.W. Lee, M.R. Karim, H.M. Ji, Electrospinning fabrication and characterization of poly (vinyl alcohol)/montmorillonite nanofiber mats, J. Appl. Polym. Sci., 113 (2009) 1860-1867.
  • K.E. Strawhecker, E. Manias, Structure and properties of poly(vinyl alcohol)/Na montmorillonite nanocomposites, Chem. Mater., 12 (2000) 2943-2949.
  • I.M. El-Sharbiny, S. Yahia, M.A. Messiery, M.F. Reichac, Preparation and physicochemical characterization of new nanocomposites based on -type chitosan and nano-hydroxyapatite as potential bone substitute materials, Int. J Polym. Mater. Po., 63 (2014) 213-220.
  • L. Lin, W. Z. Gong, S. Y. Wanga, Hollow PET fibers containing silver particles as antibacterial materials, J. Text. I., 102 (2011) 419-423.
  • S.T.C. Lin, D. Bhattacharyya, S. Fakirov, J. Cornish, Novel organic solvent free micro-/nano-fibrillar, nanoporous scaffolds for tissue engineering, Int. J Polym. Mater. Po., 63 (2014) 416-423.
  • J.C. Meredith, E.J. Amis, Lcst phase separation in biodegradable polymer blends: Poly(d,l-lactide) and poly(epsilon-caprolactone), Macromol. Chem. Phys., 201 (2000) 733-739.
  • M.A. Attawia, K.M. Herbert, C.T. Laurencin, Osteoblast-like cell adherance and migration through 3-dimensional porous polymer matrices, Biochem. Bioph. Res. Co., 213 (1995) 639-644.
  • Z.M.O. Rzayev, K. Salimi, Ö.Eğri, E. Pişkin, Functional copolymer/organo-MMT nanoarchitectures. XIX. Nanofabrication and characterization of poly(MA-alt1-octadecene)-g-PLA layered silicate nanocomposites with nanoporous core–shell morphology, Polym. Advan. Technol., 25 (2014), 294–306.
  • Z.M.O. Rzayev, D. Erdönmez, K. Erkan, M.Şimşek, U. Bunyatova, Functional Copolymer/OrganoMMT Nanoarchitectures. XXII. Fabrication and Characterization of Antifungal and Antibacterial Poly (Vinyl Alcohol-co-Vinyl Acetate/ODA-MMT/ AgNPs Nanofibers and Nanocoatings by eSpinning and c-Spinning Methods, Int. J. Polym. Mater. PO., 64 (2015), 267–278.
  • P.R. Rudolf, B.G Landes, Two-dimensional X-Ray diffraction and scattering of microcrystalline and polymeric materials, Spectroscopy, 9 (1994) 22-33.
  • Z.M.O. Rzayev, B. Şenol, B.E. Denkbaş, Functional copolymer/organo-montmorillonite nanoarchitectures. IX. Synthesis and nanostructure– morphology–thermal behaviour relationships of poly[(maleic anhydride)-alt-(acrylic acid)]/organomontmorillonite nanocomposites, Polym. Int., 60 (2011) 1446-1454.

PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications

Year 2018, Volume: 46 Issue: 3, 381 - 389, 01.09.2018

Abstract

Multifunctional nanofibers were fabricated by electrospinning of polyvinyl alcohol/octadecylamine montmorillonite
layered silicate nanocomposite as a matrix polymer and amphiphilic copolymer-g-biopolymer
(polylactic acid, PLA) as a biocompatible partner polymer. Crystal structure of the nanofibers significantly
changed due to in situ phase separation processing via different chemical and physical interfacial interactions.
Relative high thermal stability, high first melting and low crystallinity were observed for the matrix/polymer
nanofibers. Nanofibers exhibit low cytotoxicity and necrotic effect for MC3T3-E1 preosteoblast cells. 

References

  • D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7 (1996) 216-223.
  • D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett., 3 (2003) 1167-1171.
  • K.H. Hong, Preparation and properties of electrospun oly(vinyl alcohol)/silver fiber web as wound dressings, Poly. Eng. Sci., 47 (2007) 43-49.
  • B. Gupta, R. Agarwal, M.S. Alam, Textile-based smart wound dressings, Indian J. Fibre Text., 35 (2010) 174- 187.
  • A. Arslan, M. Şimşek, S.D. Aldemir, N.M. Kazaroğlu, M. Gümüşderelioğlu, Honey-based PET or PET/ chitosan fibrous wound dressings: effect of honey on electrospinning process, J. Biomat. Sci.-Polym. E., 25 (2014) 999-1012.
  • S. Çakmak, A.S. Çakmak, M. Gümüşderelioglu, RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study, Biomed. Mater., 8 (2013) 04501.
  • G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameter in the submicrometric and micrometric range via sol-gel chemistry and electrically forced liquid jets, J. Am. Chem. Soc, 125 (2003) 1154-1155.
  • E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites. Review of the synthetic routes and materials properties. Chem Mater. 13 (2001) 3516- 3523.
  • K.-U. Jeong, H.D. Chae, Lim C. II, H.K. Lee, J.-H. Ahn, C. Nah, Fabrication and characterization of electrolyte membranes based on organoclay/tripropyleneglycol diacrylate/poly(vinylidene fluoride) electrospun nanofiber composites, Polym. Int., 59 (2010) 249-255.
  • S.M. Nabirqudri, A.S. Roy, and M.V.N. Ambika Prasad, Electrical and mechanical properties of free-standing PMMA–MMT clay composites, J. Mater. Res., 29 (2014) 2957-2964.
  • D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova,J. Simonik, Polymer/clay nanocomposites based on MMT/ODA intercalates, Compos. Interface., 9 (2002) 529-540.
  • B.W. Chieng, N.A. Ibrahim, W.M.Z. Wan Yunus, Effect of organo-modified montmorillonite on poly(butylenesuccinate)/poly(butylene adipate-coterephthalate) nanocomposites, Express Polym. Lett., 4 (2010) 404-414.
  • Q. Zhuo, G. Xu, J. Wang, C. Qin, L. Dai, Poly(vinyl alcohol)/hydrotalcite composite nanofibre: preparation and characterization, Iran. Polym. J., 20 (2011) 357-365.
  • J.H. Juang, S. Bonner-Weir, Y. Ogawa, J.P. Vacanti, G.C. Weir, Outcome of subcutaneous islet transplantation improved by polymer device, Transplantation, 61 (1996) 1557-1561.
  • Y. Deng, X. Zhang, Y. Zhao, S. Liang, A. Xu, X. Gao, F. Deng, J. Fang, S. Wei, Peptide-decorated polyvinyl alcohol/hyaluronan nanofibers for human induced pluripotent stem cell culture, Carbohydr. Polym., 101 (2014) 36-39.
  • U.M. Subramanian, S.V. Kumar, N. Nagiah, U. T. Sivagnanam, Fabrication of polyvinyl alcoholpolyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. Int. J Polym. Mater. Po., 63 (2014) 476-485.
  • M. Kokabi, M. Sirousazar, Z.M. Hassan, PVA-clay nanocomposite hydrogels for wound dressing, Eur. Polym. J., 43 (2007) 773-781.
  • T. Galya, V. Sedlarik, I. Ku itka, R. Novotný, J. Sedla íková, P. Sáha, Antibacterial poly(vinyl alcohol) film containing silver nanoparticles: Preparation and characterization, J. Appl. Polym. Sci., 110 (2008) 3178-3185.
  • M. Jannesari, J. Varshosaz, M. Morshed, M. Zamani, Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs, Int. J. Nanomed., 6 (2011) 993-1003.
  • K.H. Hong, J.L. Park, I.H. Sul, J.H. Youk, T.J. Kang, Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles, J. Polym. Sci. Pol. Phys., 44 (2006) 2468-2474.
  • H.W. Lee, M.R. Karim, H.M. Ji, Electrospinning fabrication and characterization of poly (vinyl alcohol)/montmorillonite nanofiber mats, J. Appl. Polym. Sci., 113 (2009) 1860-1867.
  • K.E. Strawhecker, E. Manias, Structure and properties of poly(vinyl alcohol)/Na montmorillonite nanocomposites, Chem. Mater., 12 (2000) 2943-2949.
  • I.M. El-Sharbiny, S. Yahia, M.A. Messiery, M.F. Reichac, Preparation and physicochemical characterization of new nanocomposites based on -type chitosan and nano-hydroxyapatite as potential bone substitute materials, Int. J Polym. Mater. Po., 63 (2014) 213-220.
  • L. Lin, W. Z. Gong, S. Y. Wanga, Hollow PET fibers containing silver particles as antibacterial materials, J. Text. I., 102 (2011) 419-423.
  • S.T.C. Lin, D. Bhattacharyya, S. Fakirov, J. Cornish, Novel organic solvent free micro-/nano-fibrillar, nanoporous scaffolds for tissue engineering, Int. J Polym. Mater. Po., 63 (2014) 416-423.
  • J.C. Meredith, E.J. Amis, Lcst phase separation in biodegradable polymer blends: Poly(d,l-lactide) and poly(epsilon-caprolactone), Macromol. Chem. Phys., 201 (2000) 733-739.
  • M.A. Attawia, K.M. Herbert, C.T. Laurencin, Osteoblast-like cell adherance and migration through 3-dimensional porous polymer matrices, Biochem. Bioph. Res. Co., 213 (1995) 639-644.
  • Z.M.O. Rzayev, K. Salimi, Ö.Eğri, E. Pişkin, Functional copolymer/organo-MMT nanoarchitectures. XIX. Nanofabrication and characterization of poly(MA-alt1-octadecene)-g-PLA layered silicate nanocomposites with nanoporous core–shell morphology, Polym. Advan. Technol., 25 (2014), 294–306.
  • Z.M.O. Rzayev, D. Erdönmez, K. Erkan, M.Şimşek, U. Bunyatova, Functional Copolymer/OrganoMMT Nanoarchitectures. XXII. Fabrication and Characterization of Antifungal and Antibacterial Poly (Vinyl Alcohol-co-Vinyl Acetate/ODA-MMT/ AgNPs Nanofibers and Nanocoatings by eSpinning and c-Spinning Methods, Int. J. Polym. Mater. PO., 64 (2015), 267–278.
  • P.R. Rudolf, B.G Landes, Two-dimensional X-Ray diffraction and scattering of microcrystalline and polymeric materials, Spectroscopy, 9 (1994) 22-33.
  • Z.M.O. Rzayev, B. Şenol, B.E. Denkbaş, Functional copolymer/organo-montmorillonite nanoarchitectures. IX. Synthesis and nanostructure– morphology–thermal behaviour relationships of poly[(maleic anhydride)-alt-(acrylic acid)]/organomontmorillonite nanocomposites, Polym. Int., 60 (2011) 1446-1454.
There are 31 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Şimşek

Publication Date September 1, 2018
Acceptance Date September 3, 2018
Published in Issue Year 2018 Volume: 46 Issue: 3

Cite

APA Şimşek, M. (2018). PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications. Hacettepe Journal of Biology and Chemistry, 46(3), 381-389.
AMA Şimşek M. PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications. HJBC. September 2018;46(3):381-389.
Chicago Şimşek, Murat. “PVA Nanofibers Including Biopolymer-Grafted Copolymer for Potential Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 46, no. 3 (September 2018): 381-89.
EndNote Şimşek M (September 1, 2018) PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications. Hacettepe Journal of Biology and Chemistry 46 3 381–389.
IEEE M. Şimşek, “PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications”, HJBC, vol. 46, no. 3, pp. 381–389, 2018.
ISNAD Şimşek, Murat. “PVA Nanofibers Including Biopolymer-Grafted Copolymer for Potential Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 46/3 (September 2018), 381-389.
JAMA Şimşek M. PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications. HJBC. 2018;46:381–389.
MLA Şimşek, Murat. “PVA Nanofibers Including Biopolymer-Grafted Copolymer for Potential Biomedical Applications”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 3, 2018, pp. 381-9.
Vancouver Şimşek M. PVA Nanofibers Including Biopolymer-grafted Copolymer for Potential Biomedical Applications. HJBC. 2018;46(3):381-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc