Research Article
BibTex RIS Cite
Year 2020, Volume: 48 Issue: 1, 75 - 82, 17.04.2020
https://doi.org/10.15671/hjbc.629138

Abstract

References

  • (1) D.S. Sharp, B. Eskenazi, R. Harrison, P. Callas, A.H. Smith, Delayed health hazard of pesticide exposure, Am. J. Public Health, 7 (1986) 441-471.
  • (2) T.A. Slotkin, Developmental cholinotoxicants: nicotine and chlorpyrifos, Environ. Health Perspect., 107 (1999) 71-80.
  • (3) Y.C. Chen, J.J. Brazier M.D. Yan, P.R. Bargo, S.A. Prahl, Flourescence-based optical sensor design for molecularly imprinted polymers, Sensor Actuat. B-Chem., 102 (2004) 107-116.
  • (4) O.P. Luzardo, M. Almeida-González, N. Ruiz-Suárez, M. Zumbado, L.A. Henríquez-Hernández, M.J. Meilán, M. Camacho, L.D. Boada, Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases, Sci. and Justice, 55 (2015) 307-315.
  • (5) B. Gabrieli, K. Magali, R. Lucila, B.A. Martha Z. Renato, D.P. Osmar, An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up, Talanta, 161 (2016) 40-47.
  • (6) A. Kouzayha, A.R. Rabaa, M. Iskandarani, D. Beh, H. Budzinski, F. Jaber, Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography-Mass spectrometry, Am. J. Anal. Chem., 3 (2012) 257-265.
  • (7) E. Mauriz, A. Calle, L.M. Lechuga, J. Quintana, A. Montoya, J.J. Manclús, Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor, Anal. Chim. Acta, 561 (2006) 40-47.
  • (8) N. Kim, I.S. Park, D.K. Kim, High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor, Biosens. Bioelectron., 22 (2007) 1593-1599.
  • (9) M. Bakhshpour, A.K. Piskin, H. Yavuz, A. Denizli, Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor, Talanta, 204 (2019) 840-845.
  • (10) M. Bakhshpour, E. Özgür, N. Bereli, A. Denizli, Microcontact imprinted quartz crystal microbalance nanosensor for protein C recognition, Colloids and surfaces. B, 151 (2017) 264-270.
  • (11) Y. Saylan, S. Akgönüllü, D. Çimen, A. Derazshamshir, N. Bereli, F. Yılmaz, A. Denizli, Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensor Actuat. B-Chem., 241 (2017) 446-454.
  • (12) G. Sener, L. Uzun, R. Say, A. Denizli, Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor, Sensor Actuat. B-Chem., 160 (2011) 791-799.

Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor

Year 2020, Volume: 48 Issue: 1, 75 - 82, 17.04.2020
https://doi.org/10.15671/hjbc.629138

Abstract

In this study, Chlorpyrifos (Cps) imprinted
nanoparticles based QCM sensor were prepared for detection of chlorpyrifos
pesticide. Cps imprinted poly(ethylene glycol dimethacrylate-
N-metacryloyl-(L)-tryptophan) (PEDMATrp) nanoparticles were prepared and then
these nanoparticles were attached to the surface of QCM sensor chip. Also,
non-imprinted PEDMATrp QCM sensor was prepared without using the Cps molecule to
evaluate the imprinting efficiency. Cps imprinted and non-imprinted
nanoparticles were characterized by zeta-sizer and Fourier transform infrared
spectrophotometer-attenuated total reflection (FTIR-ATR) spectrophotometer. Cps
imprinted and non-imprinted QCM sensors were also characterized by atomic force
microscopy, ellipsometer, and contact angle measurements. The prepared sensors
were applied for selective Cps detection in aqueous solution for the range of 0.015-2.9
nM. The selectivity studies of the prepared PEDMATrp quartz crystal
microbalance sensor were examined by using competitive pesticide molecules such
as Diazinon and Parathion (0.75 nM), which are similar to Cps in size and
shape. The reusability studies of the prepared sensors were investigated by
applying the same pesticide concentration (1.45 nM), four times consecutively.

References

  • (1) D.S. Sharp, B. Eskenazi, R. Harrison, P. Callas, A.H. Smith, Delayed health hazard of pesticide exposure, Am. J. Public Health, 7 (1986) 441-471.
  • (2) T.A. Slotkin, Developmental cholinotoxicants: nicotine and chlorpyrifos, Environ. Health Perspect., 107 (1999) 71-80.
  • (3) Y.C. Chen, J.J. Brazier M.D. Yan, P.R. Bargo, S.A. Prahl, Flourescence-based optical sensor design for molecularly imprinted polymers, Sensor Actuat. B-Chem., 102 (2004) 107-116.
  • (4) O.P. Luzardo, M. Almeida-González, N. Ruiz-Suárez, M. Zumbado, L.A. Henríquez-Hernández, M.J. Meilán, M. Camacho, L.D. Boada, Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases, Sci. and Justice, 55 (2015) 307-315.
  • (5) B. Gabrieli, K. Magali, R. Lucila, B.A. Martha Z. Renato, D.P. Osmar, An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up, Talanta, 161 (2016) 40-47.
  • (6) A. Kouzayha, A.R. Rabaa, M. Iskandarani, D. Beh, H. Budzinski, F. Jaber, Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography-Mass spectrometry, Am. J. Anal. Chem., 3 (2012) 257-265.
  • (7) E. Mauriz, A. Calle, L.M. Lechuga, J. Quintana, A. Montoya, J.J. Manclús, Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor, Anal. Chim. Acta, 561 (2006) 40-47.
  • (8) N. Kim, I.S. Park, D.K. Kim, High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor, Biosens. Bioelectron., 22 (2007) 1593-1599.
  • (9) M. Bakhshpour, A.K. Piskin, H. Yavuz, A. Denizli, Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor, Talanta, 204 (2019) 840-845.
  • (10) M. Bakhshpour, E. Özgür, N. Bereli, A. Denizli, Microcontact imprinted quartz crystal microbalance nanosensor for protein C recognition, Colloids and surfaces. B, 151 (2017) 264-270.
  • (11) Y. Saylan, S. Akgönüllü, D. Çimen, A. Derazshamshir, N. Bereli, F. Yılmaz, A. Denizli, Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensor Actuat. B-Chem., 241 (2017) 446-454.
  • (12) G. Sener, L. Uzun, R. Say, A. Denizli, Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor, Sensor Actuat. B-Chem., 160 (2011) 791-799.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Monireh Bakhshpour 0000-0002-5737-720X

İlgım Göktürk This is me 0000-0001-7292-7241

Oğuz Çakır 0000-0002-8006-2054

Fatma Yılmaz 0000-0003-3260-1639

Zübeyde Baysal This is me 0000-0001-7682-4469

Adil Denizli 0000-0001-7548-5741

Publication Date April 17, 2020
Acceptance Date April 16, 2020
Published in Issue Year 2020 Volume: 48 Issue: 1

Cite

APA Bakhshpour, M., Göktürk, İ., Çakır, O., Yılmaz, F., et al. (2020). Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor. Hacettepe Journal of Biology and Chemistry, 48(1), 75-82. https://doi.org/10.15671/hjbc.629138
AMA Bakhshpour M, Göktürk İ, Çakır O, Yılmaz F, Baysal Z, Denizli A. Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor. HJBC. April 2020;48(1):75-82. doi:10.15671/hjbc.629138
Chicago Bakhshpour, Monireh, İlgım Göktürk, Oğuz Çakır, Fatma Yılmaz, Zübeyde Baysal, and Adil Denizli. “Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor”. Hacettepe Journal of Biology and Chemistry 48, no. 1 (April 2020): 75-82. https://doi.org/10.15671/hjbc.629138.
EndNote Bakhshpour M, Göktürk İ, Çakır O, Yılmaz F, Baysal Z, Denizli A (April 1, 2020) Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor. Hacettepe Journal of Biology and Chemistry 48 1 75–82.
IEEE M. Bakhshpour, İ. Göktürk, O. Çakır, F. Yılmaz, Z. Baysal, and A. Denizli, “Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor”, HJBC, vol. 48, no. 1, pp. 75–82, 2020, doi: 10.15671/hjbc.629138.
ISNAD Bakhshpour, Monireh et al. “Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor”. Hacettepe Journal of Biology and Chemistry 48/1 (April 2020), 75-82. https://doi.org/10.15671/hjbc.629138.
JAMA Bakhshpour M, Göktürk İ, Çakır O, Yılmaz F, Baysal Z, Denizli A. Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor. HJBC. 2020;48:75–82.
MLA Bakhshpour, Monireh et al. “Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor”. Hacettepe Journal of Biology and Chemistry, vol. 48, no. 1, 2020, pp. 75-82, doi:10.15671/hjbc.629138.
Vancouver Bakhshpour M, Göktürk İ, Çakır O, Yılmaz F, Baysal Z, Denizli A. Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor. HJBC. 2020;48(1):75-82.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc