Research Article
BibTex RIS Cite
Year 2020, Volume: 48 Issue: 2, 125 - 135, 19.04.2020
https://doi.org/10.15671/hjbc.529104

Abstract

References

  • 1. T. Noyhouzer, D. Mandler, Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode, Anal. Chim. Acta 684 (2011) 1-7.2. T. Peng, H. Yang, K. Dai, X. Pu, K. Hirao, Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates, Chem. Phys. Lett. 379 (2003) 432-436.3. M. Alanyalıoğlu, F. Bayrakçeken, Ü. Demir, Preparation of PbS thin films: A new electrochemical route for underpotential deposition, Electrochim. Acta 54 (2009) 6554-6559.4. M.M. Momeni, A.A. Mozafari, The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide–titania films, J. Mater. Sci.-Mater. El. 27 (2016) 10658-10666.5. M.M. Momeni, M. Mahvari, Y. Ghaveb, Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel, J. Electroanal. Chem. 832 (2019) 7-23.6. S. Taguchi, M. Kondo, H. Mori, A. Aramata, Formation of zinc–oxianion complex adlayer by underpotential deposition of Zn on Au(111) electrode: Preferential formation of zinc monohydrogen phosphate complex in weakly acidic solutions, Electrochim. Acta 111 (2013) 642-655. 7. J.O’M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry, 2nd Ed., Vol. 2A, Kluwer Academic/Plenum Publishers, 2000.8. İ.Y. Erdoğan, T. Öznülüer, F. Bülbül, Ü. Demir, Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method, Thin Solid Films 517 (2009) 5419-5424. 9. I. Sisman, M. Alanyalioglu, U. Demir, Atom-by-Atom Growth of CdS Thin Films by an Electrochemical Co-deposition Method:  Effects of pH on the Growth Mechanism and Structure, J. Phys. Chem. C 111 (2007) 2670-2674.10. T. Oznuluer, I. Erdogan, I. Sisman, U. Demir, Electrochemical atom-by-atom growth of PbS by modified ECALE method, Chem. Mater. 17 (2005) 935-937.11. X. Zhang, X. Shi, C. Wang, Optimization of electrochemical aspects for epitaxial depositing nanoscale ZnSe thin films, J. Solid State Electrochem. 13 (2009) 469-475.12. J.L. Stickney, The Chalkboard: Electrochemical Atomic Layer Deposition, Electrochem. Soc. Interface 20 (2011) 28-30.13. V. Sudha, M.V. Sangaranarayanan, Underpotential deposition of metals – Progress and prospects in modelling, J. Chem. Sci., 117 (2005) 207-218.14. İ. Şişman, Ü. Demir, Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition, J. Electroanal. Chem, 651 (2011) 222-227.15. J. Puiso, S. Tamulevicius, G. Laukaitis, S. Lindroos, M. Leskela, V. Snitka, Growth of PbS thin films on silicon substrate by SILAR technique, Thin Solid Films 403 (2002) 457-461.16. M. Biçer, A.O. Aydın, İ. Şişman, Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates, Electrochim. Acta 55 (2010) 3749-3755.17. D. Fernando, M. Khan, Y. Vasquez, Control of the crystalline phase and morphology of CdS deposited on microstructured surfaces by chemical bath deposition, Mater. Sci. Semicond. Process. 30 (2015) 174-180. 18. W. Zhu, J.Y. Yang, X.H. Gao, J. Hou, S.Q. Bao, X.A. Fan, The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE, Electrochim. Acta 50 (2005) 5465-5472.19. S. Cheng, G. Chen, Y. Chen, C. Huang, Effect of deposition potential and bath temperature on the electrodeposition of SnS film, Opt. Mater. 29 (2006) 439-444.20. M.E. Hyde, R.G. Compton, A review of the analysis of multiple nucleation with diffusion controlled growth, J. Electroanal. Chem. 549 (2003) 1-12.21. H.V.M. Hamelers, A. ter Heijne, N. Stein, R.A. Rozendal, C.J.N. Buisman, Butler–Volmer–Monod model for describing bio-anode polarization curves, Bioresour. Technol. 102 (2011) 381-387.22. U. Demir, C. Shannon, Electrochemistry of Cd at (√3×√3)R30°-S/Au(111): Kinetics of Structural Changes in CdS Monolayers, Langmuir 12 (1996) 6091-6097.23. M.H. Hölzle, C.W. Apsel, T. Will, D.M. Kolb, Copper Deposition onto Au(111) in the Presence of Thiourea, J. Electrochem. Soc. 142 (1995) 3741-3749.24. F.G. Cottrell, Der reststrom bei galvanischer polarisation, betrachtet als ein diffusionsproblem, Z. Physik Chem. 42 (1902) 385-431.25. I. Petersson, E. Ahlberg, Kinetics of the electrodeposition of PbSn alloys: Part I. At glassy carbon electrodes, J. Electroanal. Chem. 485 (2000) 166-177.

Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode

Year 2020, Volume: 48 Issue: 2, 125 - 135, 19.04.2020
https://doi.org/10.15671/hjbc.529104

Abstract

A new, simple
and cost-effective electrochemical route was demontrated in this work. CdS and
PbS thin films were grown on polycrystalline gold electrode using co-deposition
and ECALE techniques based on accumulation layer by layer. The deposition
potentials of cadmium, lead and sulfur were determined separately by cyclic
voltammetry. Thin films were created from an electrolyte containing
0.01 mol L-1 CdSO4,
0.01 mol L-1 Na2S
and
0.01 mol L-1 Pb(CH3COO)2 in 0.01 mol L-1
EDTA (pH = 3.00).
The influence of bath temperature at the deposition potential was
studied to determine the crystallinity of deposits. From the chronoamperometry
results including the transients which were obtained within the under potential
region, the overall shape of the experimental depositions was proposed and the
growth process was considered.  

References

  • 1. T. Noyhouzer, D. Mandler, Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode, Anal. Chim. Acta 684 (2011) 1-7.2. T. Peng, H. Yang, K. Dai, X. Pu, K. Hirao, Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates, Chem. Phys. Lett. 379 (2003) 432-436.3. M. Alanyalıoğlu, F. Bayrakçeken, Ü. Demir, Preparation of PbS thin films: A new electrochemical route for underpotential deposition, Electrochim. Acta 54 (2009) 6554-6559.4. M.M. Momeni, A.A. Mozafari, The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide–titania films, J. Mater. Sci.-Mater. El. 27 (2016) 10658-10666.5. M.M. Momeni, M. Mahvari, Y. Ghaveb, Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel, J. Electroanal. Chem. 832 (2019) 7-23.6. S. Taguchi, M. Kondo, H. Mori, A. Aramata, Formation of zinc–oxianion complex adlayer by underpotential deposition of Zn on Au(111) electrode: Preferential formation of zinc monohydrogen phosphate complex in weakly acidic solutions, Electrochim. Acta 111 (2013) 642-655. 7. J.O’M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry, 2nd Ed., Vol. 2A, Kluwer Academic/Plenum Publishers, 2000.8. İ.Y. Erdoğan, T. Öznülüer, F. Bülbül, Ü. Demir, Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method, Thin Solid Films 517 (2009) 5419-5424. 9. I. Sisman, M. Alanyalioglu, U. Demir, Atom-by-Atom Growth of CdS Thin Films by an Electrochemical Co-deposition Method:  Effects of pH on the Growth Mechanism and Structure, J. Phys. Chem. C 111 (2007) 2670-2674.10. T. Oznuluer, I. Erdogan, I. Sisman, U. Demir, Electrochemical atom-by-atom growth of PbS by modified ECALE method, Chem. Mater. 17 (2005) 935-937.11. X. Zhang, X. Shi, C. Wang, Optimization of electrochemical aspects for epitaxial depositing nanoscale ZnSe thin films, J. Solid State Electrochem. 13 (2009) 469-475.12. J.L. Stickney, The Chalkboard: Electrochemical Atomic Layer Deposition, Electrochem. Soc. Interface 20 (2011) 28-30.13. V. Sudha, M.V. Sangaranarayanan, Underpotential deposition of metals – Progress and prospects in modelling, J. Chem. Sci., 117 (2005) 207-218.14. İ. Şişman, Ü. Demir, Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition, J. Electroanal. Chem, 651 (2011) 222-227.15. J. Puiso, S. Tamulevicius, G. Laukaitis, S. Lindroos, M. Leskela, V. Snitka, Growth of PbS thin films on silicon substrate by SILAR technique, Thin Solid Films 403 (2002) 457-461.16. M. Biçer, A.O. Aydın, İ. Şişman, Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates, Electrochim. Acta 55 (2010) 3749-3755.17. D. Fernando, M. Khan, Y. Vasquez, Control of the crystalline phase and morphology of CdS deposited on microstructured surfaces by chemical bath deposition, Mater. Sci. Semicond. Process. 30 (2015) 174-180. 18. W. Zhu, J.Y. Yang, X.H. Gao, J. Hou, S.Q. Bao, X.A. Fan, The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE, Electrochim. Acta 50 (2005) 5465-5472.19. S. Cheng, G. Chen, Y. Chen, C. Huang, Effect of deposition potential and bath temperature on the electrodeposition of SnS film, Opt. Mater. 29 (2006) 439-444.20. M.E. Hyde, R.G. Compton, A review of the analysis of multiple nucleation with diffusion controlled growth, J. Electroanal. Chem. 549 (2003) 1-12.21. H.V.M. Hamelers, A. ter Heijne, N. Stein, R.A. Rozendal, C.J.N. Buisman, Butler–Volmer–Monod model for describing bio-anode polarization curves, Bioresour. Technol. 102 (2011) 381-387.22. U. Demir, C. Shannon, Electrochemistry of Cd at (√3×√3)R30°-S/Au(111): Kinetics of Structural Changes in CdS Monolayers, Langmuir 12 (1996) 6091-6097.23. M.H. Hölzle, C.W. Apsel, T. Will, D.M. Kolb, Copper Deposition onto Au(111) in the Presence of Thiourea, J. Electrochem. Soc. 142 (1995) 3741-3749.24. F.G. Cottrell, Der reststrom bei galvanischer polarisation, betrachtet als ein diffusionsproblem, Z. Physik Chem. 42 (1902) 385-431.25. I. Petersson, E. Ahlberg, Kinetics of the electrodeposition of PbSn alloys: Part I. At glassy carbon electrodes, J. Electroanal. Chem. 485 (2000) 166-177.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Özge Sürücü 0000-0002-5618-0341

Publication Date April 19, 2020
Acceptance Date April 18, 2020
Published in Issue Year 2020 Volume: 48 Issue: 2

Cite

APA Sürücü, Ö. (2020). Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode. Hacettepe Journal of Biology and Chemistry, 48(2), 125-135. https://doi.org/10.15671/hjbc.529104
AMA Sürücü Ö. Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode. HJBC. April 2020;48(2):125-135. doi:10.15671/hjbc.529104
Chicago Sürücü, Özge. “Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode”. Hacettepe Journal of Biology and Chemistry 48, no. 2 (April 2020): 125-35. https://doi.org/10.15671/hjbc.529104.
EndNote Sürücü Ö (April 1, 2020) Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode. Hacettepe Journal of Biology and Chemistry 48 2 125–135.
IEEE Ö. Sürücü, “Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode”, HJBC, vol. 48, no. 2, pp. 125–135, 2020, doi: 10.15671/hjbc.529104.
ISNAD Sürücü, Özge. “Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode”. Hacettepe Journal of Biology and Chemistry 48/2 (April 2020), 125-135. https://doi.org/10.15671/hjbc.529104.
JAMA Sürücü Ö. Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode. HJBC. 2020;48:125–135.
MLA Sürücü, Özge. “Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode”. Hacettepe Journal of Biology and Chemistry, vol. 48, no. 2, 2020, pp. 125-3, doi:10.15671/hjbc.529104.
Vancouver Sürücü Ö. Electrodeposition of Cadmium Sulfide and Lead (II) Sulfide onto Polycrystalline Gold Electrode. HJBC. 2020;48(2):125-3.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc