Research Article
BibTex RIS Cite

Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels

Year 2020, Volume: 48 Issue: 2, 171 - 177, 19.04.2020
https://doi.org/10.15671/hjbc.649811

Abstract

In this study poly(hydroxyethyl methacrylate) (PHEMA) based activated carbon (AC) embedded cryogel discs were synthesized, characterized and their application for dye removal from aqueous solutions were investigated. The effect of pH and initial dye concentration on the adsorption capacity of the cryogels were studied in a batch system. Desorption of dyes was also studied and it was shown that synthesized composite system could be repeatedly used without significant loss in the adsorption capacity after five repetitive adsorption–desorption processes. 

References

  • T. Santhi, S. Manonmani, T. Smitha, Removal of Methyl Red drom Aqueous Solution by Activated Carbon Prepared from the Annona squmosa seed by Adsorption, 14 (2010) 11-18.
  • M.K. Purkait, A. Maiti, S. DasGupta, S. De, Removal of congo red using activated carbon and its regeneration, J. of Hazardous Mat., 145 (2007) 287-295.
  • C. Namasivayam, D.Kavitha, Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural waste, Dyes Pigments, 54 (2002) 47-58.
  • A.Kumar, V. Rajesh, R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. of Env. Management 93 (2012) 154-168.
  • W.Chu, C.Ma, Quantitative prediction of direct and indirect dye ozonation kinetics, Wat. Res. 34 (12) (2000) 3153-3160
  • B.K. Körbahti, K. Artut, C. Geçgel, A. Özer, Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures, Chem. Eng. J. 173 (2011) 677–688.
  • M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang ,Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science 209 (2014) 172–184
  • N.W. Wang, Y. Chu, F.Wu, Z.Zhao, X. Xu, Decolorization and degradation of Congo red by a newly isolated white rot fungus, International Biodeterioration & Biodegradation Ceriporia lacerata, from decayed mulberry branches, 117 (2017) 236-244.
  • F. Augusto, E. Carasek, R.G. Silva, S.R. Rivellino, A.D. Batista, E. Martendal, New sorbents for extraction and microextraction techniques, J. Chromatogr. A, 1217 (2010) 2533–2542.
  • B.L. Rivas, M. Jara, E.D. Pereira, Preparation and adsorption properties of the chelating resins containing carboxylic, sulfonic, and imidazole groups, J. Appl. Polym. Sci., 89 (10) (2003) 2852-2856.
  • B.L. Rivas, E. Pereira, M. Jara, C. Esparza, Resins with the ability to bind copper and uranyl ions, J. Appl. Polym. Sci., 99:3 (2006) 706-711.
  • E.Dana, A.Sayari, Preparation and characterization of PEG bis(amine) grafted PMMA/SPION composite nanoparticles, Desal., 285 (2012) 62-71.
  • S. Senel, L. Uzun, A. Kara, A. Denizli, Heavy Metal Removal from Synthetic Solutions with Magnetic Beads Under Magnetic Field Sci. Pure Appl. Chem., 45 (2008) 635–642.
  • D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, A modified Cellulose Adsorbent for the removal of Ni(II)from aqueous solutions, J. Chem. Technol. Biotechnol., 81(11) (2006) 1820.
  • D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions, J. Appl. Polym. Sci., 99 (6) (2005) 2888-2897.
  • W.L.Ningmei, L.Zhengkui, Synthesis and characterization of poly(HEMA/MALA) hydrogel and its application in removal of heavy metal ions from water Chem. Eng. J., 894 (2013) 215–216.
  • L. Onnby, C. Giorgi, F.M. Plieva, B. Mattiasson, Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels, Biotechnol. Prog., 26 (2010) 1295–1302.
  • O. Ozay, S. Ekici, Y. Barana, S. Kubilay, N. Aktas, N. Sahiner, Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments, Desalination, 260 (1–3) (2010) 57.
  • E. M. Dursun, R. Üzek, N. Bereli, S. Şenel, A. Denizli, Synthesis of novel monolithic cartridges with specific recognition sites for extraction of melamine, Reactive and Functional Polymers, Volume 109 (2016) 33-41.
  • E. Tamahkar, M. Bakhshpour, M. Andaç, A. Denizli, Ion imprinted cryogels for selective removal of Ni(II) ions from aqueous solutions, Separation and Purification Technology, 179, (2017) 36-44.
  • L. Uzun, H. Yavuz, R. Say, A. Ersöz, A. Denizli ,Poly(ethylene dimethacrylate-glycidyl methacrylate) Monolith as a Stationary Phase in Dye-Affinity Chromatography, Ind. Eng. Chem. Res. 43 (2004) 6507-6513.
  • H. Kirsebom, B. Mattiasson, I.Y. Galaev, Building Macroporous Materials from Microgels and Microbes via One-Step Cryogelation, Langmuir, 25 (2009) 8462.
  • H. Kirsebom, D. Topgaard, I.Y. Galaev, B. Mattiasson, Modulating the Porosity of Cryogels by Influencing the Nonfrozen Liquid Phase through the Addition of Inert Solutes, Langmuir, 26 (2010) 16129.
  • R.C.Mansal, M.Goyal, Activated Carbon Adsorption, Taylor & Francis Group
, LLC, CRC Press, Boca Raton, 2005.
  • S.Rattanapan, Jiraporn Srikram,P.Kongsune, Adsorption of Methyl Orange on Coffee Grounds Activated Carbon, Energy Procedia138 (2017) 949–954.
  • K.W. Jung, B. H. Choi, M. J. Hwang, J.W. Choi, S. H. Lee, J.-S. Chang, K.H. Ahn, Adsorptive removal of anionic azo dye from aqueous solution usingactivated carbon derived from extracted coffee residues, Journal of Cleaner Production 166 (2017) 360-368.
  • M. Daouda, O. Benturkia, Z. Keciraa, P. Girodsc, A. Donnot, Removal of reactive dye (BEZAKTIV Red S-MAX) from aqueous solutionby adsorption onto activated carbons prepared from date palm rachisand jujube stones
  • M. Baysal, K. Bilge, B. Yılmaz, M. Papila, Y.Yürüm, Preparation of high surface area activated carbon from waste-biomass ofsunflower piths: Kinetics and equilibrium studies on the dye removal, Journal of Environmental Chemical Engineering 6 (2018) 1702–1713
  • H.Trevi˜no-Cordero, L.G. Juárez-Aguilar, D.I. Mendoza-Castillo, V. Hernández-Montoya, Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water, 42 (2013) 315– 323.
  • S. Belloa, K. A. Adegokec, O. Oluwapamilerin Sarumia, O. Seun Lameed, Functionalized locust bean pod (Parkia biglobosa) activated carbon forRhodamine B dye removal, Heliyon 5 (2019) e02323.
  • D. Garg, C.B. Majumder, S.Kumara, B. Sarkar, Removal of Direct Blue-86 dye from aqueous solution using alginateen capsulated activated carbon (PnsAC-alginate) prepared from waste peanutshell, J. Env. Chem. Eng. 7 (2019) 103365.
  • N. Boudechiche, M. Fares, S. Ouyahia, H. Yazid, M. Trari, Z. Sadaoui, Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones
  • Alkan, M., Dogan, M., Turhan, Y., Demirbas, O., & Turan, P. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions. Chemical Engineering Journal, 139 (2008) 213.
Year 2020, Volume: 48 Issue: 2, 171 - 177, 19.04.2020
https://doi.org/10.15671/hjbc.649811

Abstract

References

  • T. Santhi, S. Manonmani, T. Smitha, Removal of Methyl Red drom Aqueous Solution by Activated Carbon Prepared from the Annona squmosa seed by Adsorption, 14 (2010) 11-18.
  • M.K. Purkait, A. Maiti, S. DasGupta, S. De, Removal of congo red using activated carbon and its regeneration, J. of Hazardous Mat., 145 (2007) 287-295.
  • C. Namasivayam, D.Kavitha, Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural waste, Dyes Pigments, 54 (2002) 47-58.
  • A.Kumar, V. Rajesh, R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. of Env. Management 93 (2012) 154-168.
  • W.Chu, C.Ma, Quantitative prediction of direct and indirect dye ozonation kinetics, Wat. Res. 34 (12) (2000) 3153-3160
  • B.K. Körbahti, K. Artut, C. Geçgel, A. Özer, Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures, Chem. Eng. J. 173 (2011) 677–688.
  • M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang ,Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science 209 (2014) 172–184
  • N.W. Wang, Y. Chu, F.Wu, Z.Zhao, X. Xu, Decolorization and degradation of Congo red by a newly isolated white rot fungus, International Biodeterioration & Biodegradation Ceriporia lacerata, from decayed mulberry branches, 117 (2017) 236-244.
  • F. Augusto, E. Carasek, R.G. Silva, S.R. Rivellino, A.D. Batista, E. Martendal, New sorbents for extraction and microextraction techniques, J. Chromatogr. A, 1217 (2010) 2533–2542.
  • B.L. Rivas, M. Jara, E.D. Pereira, Preparation and adsorption properties of the chelating resins containing carboxylic, sulfonic, and imidazole groups, J. Appl. Polym. Sci., 89 (10) (2003) 2852-2856.
  • B.L. Rivas, E. Pereira, M. Jara, C. Esparza, Resins with the ability to bind copper and uranyl ions, J. Appl. Polym. Sci., 99:3 (2006) 706-711.
  • E.Dana, A.Sayari, Preparation and characterization of PEG bis(amine) grafted PMMA/SPION composite nanoparticles, Desal., 285 (2012) 62-71.
  • S. Senel, L. Uzun, A. Kara, A. Denizli, Heavy Metal Removal from Synthetic Solutions with Magnetic Beads Under Magnetic Field Sci. Pure Appl. Chem., 45 (2008) 635–642.
  • D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, A modified Cellulose Adsorbent for the removal of Ni(II)from aqueous solutions, J. Chem. Technol. Biotechnol., 81(11) (2006) 1820.
  • D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions, J. Appl. Polym. Sci., 99 (6) (2005) 2888-2897.
  • W.L.Ningmei, L.Zhengkui, Synthesis and characterization of poly(HEMA/MALA) hydrogel and its application in removal of heavy metal ions from water Chem. Eng. J., 894 (2013) 215–216.
  • L. Onnby, C. Giorgi, F.M. Plieva, B. Mattiasson, Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels, Biotechnol. Prog., 26 (2010) 1295–1302.
  • O. Ozay, S. Ekici, Y. Barana, S. Kubilay, N. Aktas, N. Sahiner, Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments, Desalination, 260 (1–3) (2010) 57.
  • E. M. Dursun, R. Üzek, N. Bereli, S. Şenel, A. Denizli, Synthesis of novel monolithic cartridges with specific recognition sites for extraction of melamine, Reactive and Functional Polymers, Volume 109 (2016) 33-41.
  • E. Tamahkar, M. Bakhshpour, M. Andaç, A. Denizli, Ion imprinted cryogels for selective removal of Ni(II) ions from aqueous solutions, Separation and Purification Technology, 179, (2017) 36-44.
  • L. Uzun, H. Yavuz, R. Say, A. Ersöz, A. Denizli ,Poly(ethylene dimethacrylate-glycidyl methacrylate) Monolith as a Stationary Phase in Dye-Affinity Chromatography, Ind. Eng. Chem. Res. 43 (2004) 6507-6513.
  • H. Kirsebom, B. Mattiasson, I.Y. Galaev, Building Macroporous Materials from Microgels and Microbes via One-Step Cryogelation, Langmuir, 25 (2009) 8462.
  • H. Kirsebom, D. Topgaard, I.Y. Galaev, B. Mattiasson, Modulating the Porosity of Cryogels by Influencing the Nonfrozen Liquid Phase through the Addition of Inert Solutes, Langmuir, 26 (2010) 16129.
  • R.C.Mansal, M.Goyal, Activated Carbon Adsorption, Taylor & Francis Group
, LLC, CRC Press, Boca Raton, 2005.
  • S.Rattanapan, Jiraporn Srikram,P.Kongsune, Adsorption of Methyl Orange on Coffee Grounds Activated Carbon, Energy Procedia138 (2017) 949–954.
  • K.W. Jung, B. H. Choi, M. J. Hwang, J.W. Choi, S. H. Lee, J.-S. Chang, K.H. Ahn, Adsorptive removal of anionic azo dye from aqueous solution usingactivated carbon derived from extracted coffee residues, Journal of Cleaner Production 166 (2017) 360-368.
  • M. Daouda, O. Benturkia, Z. Keciraa, P. Girodsc, A. Donnot, Removal of reactive dye (BEZAKTIV Red S-MAX) from aqueous solutionby adsorption onto activated carbons prepared from date palm rachisand jujube stones
  • M. Baysal, K. Bilge, B. Yılmaz, M. Papila, Y.Yürüm, Preparation of high surface area activated carbon from waste-biomass ofsunflower piths: Kinetics and equilibrium studies on the dye removal, Journal of Environmental Chemical Engineering 6 (2018) 1702–1713
  • H.Trevi˜no-Cordero, L.G. Juárez-Aguilar, D.I. Mendoza-Castillo, V. Hernández-Montoya, Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water, 42 (2013) 315– 323.
  • S. Belloa, K. A. Adegokec, O. Oluwapamilerin Sarumia, O. Seun Lameed, Functionalized locust bean pod (Parkia biglobosa) activated carbon forRhodamine B dye removal, Heliyon 5 (2019) e02323.
  • D. Garg, C.B. Majumder, S.Kumara, B. Sarkar, Removal of Direct Blue-86 dye from aqueous solution using alginateen capsulated activated carbon (PnsAC-alginate) prepared from waste peanutshell, J. Env. Chem. Eng. 7 (2019) 103365.
  • N. Boudechiche, M. Fares, S. Ouyahia, H. Yazid, M. Trari, Z. Sadaoui, Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones
  • Alkan, M., Dogan, M., Turhan, Y., Demirbas, O., & Turan, P. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions. Chemical Engineering Journal, 139 (2008) 213.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ceren Haktanır This is me 0000-0002-2498-7896

Publication Date April 19, 2020
Acceptance Date April 19, 2020
Published in Issue Year 2020 Volume: 48 Issue: 2

Cite

APA Haktanır, C. (2020). Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels. Hacettepe Journal of Biology and Chemistry, 48(2), 171-177. https://doi.org/10.15671/hjbc.649811
AMA Haktanır C. Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels. HJBC. April 2020;48(2):171-177. doi:10.15671/hjbc.649811
Chicago Haktanır, Ceren. “Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels”. Hacettepe Journal of Biology and Chemistry 48, no. 2 (April 2020): 171-77. https://doi.org/10.15671/hjbc.649811.
EndNote Haktanır C (April 1, 2020) Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels. Hacettepe Journal of Biology and Chemistry 48 2 171–177.
IEEE C. Haktanır, “Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels”, HJBC, vol. 48, no. 2, pp. 171–177, 2020, doi: 10.15671/hjbc.649811.
ISNAD Haktanır, Ceren. “Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels”. Hacettepe Journal of Biology and Chemistry 48/2 (April 2020), 171-177. https://doi.org/10.15671/hjbc.649811.
JAMA Haktanır C. Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels. HJBC. 2020;48:171–177.
MLA Haktanır, Ceren. “Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels”. Hacettepe Journal of Biology and Chemistry, vol. 48, no. 2, 2020, pp. 171-7, doi:10.15671/hjbc.649811.
Vancouver Haktanır C. Removal of Dyes from Aqueous Solution Using Activated Carbon Embedded Cryogels. HJBC. 2020;48(2):171-7.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc