Research Article
BibTex RIS Cite
Year 2020, Volume: 48 Issue: 2, 179 - 190, 19.04.2020
https://doi.org/10.15671/hjbc.710711

Abstract

References

  • L. Chen, L.Chen, M. Dotzert, C.W.J. Melling, J. Zhang, Nanostructured biosensor using bioluminescence quenching technique for glucose detection, J. Nanobiotechnol., 15 (2017) 59.
  • B. Wang, J.I. Anzai, Recent progress in lectin-based biosensors, Materials, 8 (2015) 8590-8607.
  • M.J. Rego, S.M. Almeida, S.A. Bezerra, L.B. Carvalho Junior, E.I. Beltrao, Magnetic Parkia pendula seed gum as matrix for Concanavalin A lectin immobilization and its application in affinity purification, Anais da Academia Brasileira de Ciências 86 (2014) 1351-1358.
  • C. Altunbaş, M. Uygun, D.A. Uygun, S. Akgöl, A. Denizli, Immobilization of inulinase on concanavalin A-attached super macroporous cryogel for production of high-fructose syrup, Appl.Biochem. Biotechnol., 170 (2013) 1909-21.
  • M. Bayraktaroğlu, H. Orhan, S. Evli, S. Akgöl, D. Aktaş Uygun,M. Uygun (2018), Lectin attached affinity cryogels for amyloglucosidase adsorption, J. Carboh. Chem., 37 (2018) 302-317.
  • A.K. Locke, B.M. Cummins, A.A. Abraham, G.L. Coté, PEGylation of Concanavalin A to improve its stability for an in vivo glucose sensing assay, Anal. Chem., 86 (2014) 9091-9097.
  • B.M. Cummins, J.T. Garza, G.L. Coté, Optimization of a concanavalin A-based glucose sensor using fluorescence anisotropy, Anal. Chem. 85 (2013) 5397-5404.
  • B.M. Cummins, M. Li, A.K. Locke, D.J. Birch, G.Vigh, G.L. Coté, Overcoming the aggregation problem: A new type of fluorescent ligand for ConA-based glucose sensing, Biosen. Bioelectr., 63 (2015) 53-60.
  • S. Akgöl, G. Bayramoğlu, Y. Kacar, A. Denizli, M.Y. Arıca, Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) reactive membrane utilised for cholesterol oxidase immobilisation, Polym. Int., 51 (2002) 1316-1322.
  • Q.L. Li, W.X. Gu, H. Gao, Y.W. Yang, Self-assembly and applications of poly (glycidyl methacrylate) s and their derivatives, Chem. Commun., 50 (2014) 13201-13215.
  • J. Wang, Z. Wu, G. Wang, K. Matyjaszewski, In situ crosslinking of nanoparticles in polymerization-induced self-assembly via ARGET ATRP of glycidyl methacrylate, Macromol. Rapid Commun., 40 (2019) 1800332.
  • G. Kocak, G. Solmaz, C. Tuncer, V. Bütün, Modification of glycidyl methacrylate based block copolymers and their aqueous solution behaviours, Europ. Polym. J., 110 (2019) 364-377.
  • V.N. Dobrovolsky, M.M. Pacheco-Martinez, L.P. McDaniel, M.G. Pearce, W. Ding, In vivo genotoxicity assessment of acrylamide and glycidyl methacrylate, Food Chem. Toxicol. 87 (2016) 120-127.
  • P. Alpay, D.A. Uygun, Usage of immobilized papain for enzymatic hydrolysis of proteins, J. Molec. Cat. B: Enzym., 111,(2015) 56-63.
  • B. Akkaya, L. Uzun, E.B. Altintaş, F. Candan, A. Denizli, Concanavalin A immobilized monosize and magnetic poly (glycidyl methacrylate) beads for use in yeast invertase adsorption, J. Macromol. Sc. Part A: Pure Appl. Chem., 46 (2009) 232-239.
  • B. Akkaya, H. Yavuz, F. Candan, A. Denizli, Concanavalin A immobilized magnetic poly (glycidyl methacrylate) beads for antibody purification, J. Appl. Polym. Sc., 125 (2012) 1867-1874.
  • L.B. Bangs, Uniform Latex Particles, Seragen Diagnostics Incorporated, (1984).
  • C.I. Kuru, C. Türkcan, M. Uygun, B. Okutucu, S. Akgöl, Preparation and characterization of silanized poly (HEMA) nanoparticles for recognition of sugars, Artif. Cells, Nanomed. Biotechnol. 44 (2016) 835-841.
  • R.R.L. De Oliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji, F.L. Leite, Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications, at. force microsc.-imaging, meas, Manip. Surfaces At. Scale, InTech, (2012) 147-175.
  • B.J. Zhao, H.M. Wu, Enamel surface roughness after interproximal enamel reduction with different methods in vitro, Shanghai Kou Qiang Yi Xue 20 (2011) 51-54. R. Xu, Progress in nanoparticles characterization: Sizing and zeta potential measurement, Particuology 6 (2008) 112-115.
  • M. Larsson, A. Hill, J. Duffy, Suspension stability; why particle size, zeta potential and rheology are important, Annu. Trans. Nord. Rheol. Soc., 20 (2012) 209-214.
  • N. Idil, I. Perçin, V. Karakoç, H. Yavuz, N. Aksöz, A. Denizli, Concanavalin A immobilized magnetic poly (glycidyl methacrylate) beads for prostate specific antigen binding, Coll. Surf. B Biointerf., 134 (2015) 461-468.
  • S.P. Gaucher, J.A. Leary, Stereochemical differentiation of mannose, glucose, galactose, and talose using zinc (II) diethylenetriamine and ESI-ion trap mass spectrometry, Anal. Chem., 70 (1998) 3009-3014.
  • E.D. Feyzioğlu, A.N. Öztürk, M. Koruyucu, G. Kök, Y. Salman, S. Akgöl, Mannose based polymeric nanoparticles for lectin separation, Separ. Sci. Technol., 53 (2018) 2365-2375.
  • V. Antonyuk, S. Grama, Z. Plichta, I. Magorivska, D. Horak, R. Stoika, Use of specific polysaccharide-immobilized monodisperse poly (glycidyl methacrylate) core–silica shell microspheres for affinity purification of lectins, Biomed. Chromatogr., 29 (2015) 783-787.

Lectin Affinity Based Recognition Nanomaterial for Glucose

Year 2020, Volume: 48 Issue: 2, 179 - 190, 19.04.2020
https://doi.org/10.15671/hjbc.710711

Abstract

Glucose is an important biomolecule because it is an important source of energy for cells and is used as an intermediate/metabolic agent. Selective recognition of glucose is important for diagnosing many metabolic diseases. In this study, lectin ligand (Con A) attached p(GMA) nanopolymer was synthesized and characterized. The best interaction of p(GMA)-ConA nanopolymer and glucose was determined to be 10mM glucose concentration at pH = 8.0. In the selectivity assay, p(GMA)-Con A was found to be 2-fold selective for glucose than galactose. Lectin affinity based nanopolymeric system that is selective, with high surface area, low cost and highly biocompatible with high adsorption capacity has been developed for recognition of glucose.

References

  • L. Chen, L.Chen, M. Dotzert, C.W.J. Melling, J. Zhang, Nanostructured biosensor using bioluminescence quenching technique for glucose detection, J. Nanobiotechnol., 15 (2017) 59.
  • B. Wang, J.I. Anzai, Recent progress in lectin-based biosensors, Materials, 8 (2015) 8590-8607.
  • M.J. Rego, S.M. Almeida, S.A. Bezerra, L.B. Carvalho Junior, E.I. Beltrao, Magnetic Parkia pendula seed gum as matrix for Concanavalin A lectin immobilization and its application in affinity purification, Anais da Academia Brasileira de Ciências 86 (2014) 1351-1358.
  • C. Altunbaş, M. Uygun, D.A. Uygun, S. Akgöl, A. Denizli, Immobilization of inulinase on concanavalin A-attached super macroporous cryogel for production of high-fructose syrup, Appl.Biochem. Biotechnol., 170 (2013) 1909-21.
  • M. Bayraktaroğlu, H. Orhan, S. Evli, S. Akgöl, D. Aktaş Uygun,M. Uygun (2018), Lectin attached affinity cryogels for amyloglucosidase adsorption, J. Carboh. Chem., 37 (2018) 302-317.
  • A.K. Locke, B.M. Cummins, A.A. Abraham, G.L. Coté, PEGylation of Concanavalin A to improve its stability for an in vivo glucose sensing assay, Anal. Chem., 86 (2014) 9091-9097.
  • B.M. Cummins, J.T. Garza, G.L. Coté, Optimization of a concanavalin A-based glucose sensor using fluorescence anisotropy, Anal. Chem. 85 (2013) 5397-5404.
  • B.M. Cummins, M. Li, A.K. Locke, D.J. Birch, G.Vigh, G.L. Coté, Overcoming the aggregation problem: A new type of fluorescent ligand for ConA-based glucose sensing, Biosen. Bioelectr., 63 (2015) 53-60.
  • S. Akgöl, G. Bayramoğlu, Y. Kacar, A. Denizli, M.Y. Arıca, Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) reactive membrane utilised for cholesterol oxidase immobilisation, Polym. Int., 51 (2002) 1316-1322.
  • Q.L. Li, W.X. Gu, H. Gao, Y.W. Yang, Self-assembly and applications of poly (glycidyl methacrylate) s and their derivatives, Chem. Commun., 50 (2014) 13201-13215.
  • J. Wang, Z. Wu, G. Wang, K. Matyjaszewski, In situ crosslinking of nanoparticles in polymerization-induced self-assembly via ARGET ATRP of glycidyl methacrylate, Macromol. Rapid Commun., 40 (2019) 1800332.
  • G. Kocak, G. Solmaz, C. Tuncer, V. Bütün, Modification of glycidyl methacrylate based block copolymers and their aqueous solution behaviours, Europ. Polym. J., 110 (2019) 364-377.
  • V.N. Dobrovolsky, M.M. Pacheco-Martinez, L.P. McDaniel, M.G. Pearce, W. Ding, In vivo genotoxicity assessment of acrylamide and glycidyl methacrylate, Food Chem. Toxicol. 87 (2016) 120-127.
  • P. Alpay, D.A. Uygun, Usage of immobilized papain for enzymatic hydrolysis of proteins, J. Molec. Cat. B: Enzym., 111,(2015) 56-63.
  • B. Akkaya, L. Uzun, E.B. Altintaş, F. Candan, A. Denizli, Concanavalin A immobilized monosize and magnetic poly (glycidyl methacrylate) beads for use in yeast invertase adsorption, J. Macromol. Sc. Part A: Pure Appl. Chem., 46 (2009) 232-239.
  • B. Akkaya, H. Yavuz, F. Candan, A. Denizli, Concanavalin A immobilized magnetic poly (glycidyl methacrylate) beads for antibody purification, J. Appl. Polym. Sc., 125 (2012) 1867-1874.
  • L.B. Bangs, Uniform Latex Particles, Seragen Diagnostics Incorporated, (1984).
  • C.I. Kuru, C. Türkcan, M. Uygun, B. Okutucu, S. Akgöl, Preparation and characterization of silanized poly (HEMA) nanoparticles for recognition of sugars, Artif. Cells, Nanomed. Biotechnol. 44 (2016) 835-841.
  • R.R.L. De Oliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji, F.L. Leite, Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications, at. force microsc.-imaging, meas, Manip. Surfaces At. Scale, InTech, (2012) 147-175.
  • B.J. Zhao, H.M. Wu, Enamel surface roughness after interproximal enamel reduction with different methods in vitro, Shanghai Kou Qiang Yi Xue 20 (2011) 51-54. R. Xu, Progress in nanoparticles characterization: Sizing and zeta potential measurement, Particuology 6 (2008) 112-115.
  • M. Larsson, A. Hill, J. Duffy, Suspension stability; why particle size, zeta potential and rheology are important, Annu. Trans. Nord. Rheol. Soc., 20 (2012) 209-214.
  • N. Idil, I. Perçin, V. Karakoç, H. Yavuz, N. Aksöz, A. Denizli, Concanavalin A immobilized magnetic poly (glycidyl methacrylate) beads for prostate specific antigen binding, Coll. Surf. B Biointerf., 134 (2015) 461-468.
  • S.P. Gaucher, J.A. Leary, Stereochemical differentiation of mannose, glucose, galactose, and talose using zinc (II) diethylenetriamine and ESI-ion trap mass spectrometry, Anal. Chem., 70 (1998) 3009-3014.
  • E.D. Feyzioğlu, A.N. Öztürk, M. Koruyucu, G. Kök, Y. Salman, S. Akgöl, Mannose based polymeric nanoparticles for lectin separation, Separ. Sci. Technol., 53 (2018) 2365-2375.
  • V. Antonyuk, S. Grama, Z. Plichta, I. Magorivska, D. Horak, R. Stoika, Use of specific polysaccharide-immobilized monodisperse poly (glycidyl methacrylate) core–silica shell microspheres for affinity purification of lectins, Biomed. Chromatogr., 29 (2015) 783-787.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kevser Kuşat 0000-0003-4700-7835

Cansu Kuru This is me 0000-0003-4290-6823

Fulden Ulucan 0000-0001-5567-0261

Sinan Akgöl This is me 0000-0003-2836-7181

Publication Date April 19, 2020
Acceptance Date April 10, 2020
Published in Issue Year 2020 Volume: 48 Issue: 2

Cite

APA Kuşat, K., Kuru, C., Ulucan, F., Akgöl, S. (2020). Lectin Affinity Based Recognition Nanomaterial for Glucose. Hacettepe Journal of Biology and Chemistry, 48(2), 179-190. https://doi.org/10.15671/hjbc.710711
AMA Kuşat K, Kuru C, Ulucan F, Akgöl S. Lectin Affinity Based Recognition Nanomaterial for Glucose. HJBC. April 2020;48(2):179-190. doi:10.15671/hjbc.710711
Chicago Kuşat, Kevser, Cansu Kuru, Fulden Ulucan, and Sinan Akgöl. “Lectin Affinity Based Recognition Nanomaterial for Glucose”. Hacettepe Journal of Biology and Chemistry 48, no. 2 (April 2020): 179-90. https://doi.org/10.15671/hjbc.710711.
EndNote Kuşat K, Kuru C, Ulucan F, Akgöl S (April 1, 2020) Lectin Affinity Based Recognition Nanomaterial for Glucose. Hacettepe Journal of Biology and Chemistry 48 2 179–190.
IEEE K. Kuşat, C. Kuru, F. Ulucan, and S. Akgöl, “Lectin Affinity Based Recognition Nanomaterial for Glucose”, HJBC, vol. 48, no. 2, pp. 179–190, 2020, doi: 10.15671/hjbc.710711.
ISNAD Kuşat, Kevser et al. “Lectin Affinity Based Recognition Nanomaterial for Glucose”. Hacettepe Journal of Biology and Chemistry 48/2 (April 2020), 179-190. https://doi.org/10.15671/hjbc.710711.
JAMA Kuşat K, Kuru C, Ulucan F, Akgöl S. Lectin Affinity Based Recognition Nanomaterial for Glucose. HJBC. 2020;48:179–190.
MLA Kuşat, Kevser et al. “Lectin Affinity Based Recognition Nanomaterial for Glucose”. Hacettepe Journal of Biology and Chemistry, vol. 48, no. 2, 2020, pp. 179-90, doi:10.15671/hjbc.710711.
Vancouver Kuşat K, Kuru C, Ulucan F, Akgöl S. Lectin Affinity Based Recognition Nanomaterial for Glucose. HJBC. 2020;48(2):179-90.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc