Review
BibTex RIS Cite
Year 2020, The 100 Year of Polymers, 507 - 525, 01.11.2020
https://doi.org/10.15671/hjbc.797525

Abstract

References

  • 1. O. Okay, General properties of hydrogels. in G. Gerlach and K.-F. Arndt, eds., Hydrogel sensors and actuators, Springer Series on Chemical Sensors and Biosensors, 6 (2009) 1-14.
  • 2. Y. Tanaka, J.P. Gong, Y. Osada, Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci. 30 (2005) 1−9.
  • 3. P. Calvert, Hydrogels for soft machines. Adv. Mater. 21 (2009) 743−756.
  • 4. O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185 (1960) 117–118.
  • 5. T. Tanaka, Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40 (1978) 820-823.
  • 6. H. Staudinger, E. Husemann, Über hochpolymere Verbindungen, 116. Über das begrenzt quellbare Polystyrol. Ber. Dtsch. Chem. Ges. 68 (1935) 1618-1634.
  • 7. H.R. Brown, A model of the fracture of double network gels. Macromolecules 40 (2007) 3815−3818.
  • 8. A. Ahagon, A.N. Gent, Threshold fracture energies for elastomers. J. Polym. Sci. Polym. Phys. Ed. 12 (1975) 1903−1911.
  • 9. C. Creton, 50th Anniversary perspective: Networks and gels: Soft but dynamic and tough. Macromolecules 50 (2017) 8297−8316.
  • 10. J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6 (2010) 2583-2590.
  • 11. X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10 (2014) 672-687.
  • 12. J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength, Adv. Mater. 15 (2003) 1155–1158.
  • 13. Q. Chen, D. Wei, H. Chen, L. Zhu, C. Jiao, G. Liu, L. Huang, J. Yang, L. Wang, J. Zheng, Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network, Macromolecules 48 (2015) 8003–8010.
  • 14. J. Li, Z. Suo, J.J. Vlassak, Stiff, strong, and tough hydrogels with good chemical stability, J. Mater. Chem. B 2 (2014) 6708–6713.
  • 15. J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature 489 (2012) 133–136.
  • 16. L. Zhang, J. Zhao, J. Zhu, C. He, H. Wang, Anisotropic tough poly(vinyl alcohol) hydrogels, Soft Matter 8 (2012) 10439–10447.
  • 17. K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Adv. Mater. 14 (2002) 1120–1124.
  • 18. T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, J.P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nat. Mater. 12 (2013) 932–937.
  • 19. X. Hu, M. Vatankhah-Varnoosfaderani, J. Zhou, Q. Li, S.S. Sheiko, Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels, Adv. Mater. 27 (2015) 6899–6905.
  • 20. B. Kurt, U. Gulyuz, D.D. Demir, O. Okay, High-strength semi-crystalline hydrogels with self-healing and shape memory functions. Eur. Polym. J. 81 (2016) 12-23.
  • 21. C. Bilici, S. Ide, O. Okay, Yielding behavior of tough semicrystalline hydrogels. Macromolecules 50 (2017) 3647-3654.
  • 22. M.D. Hager, S. van der Zwaag, U.S. Schubert (eds) (2016) Self-healing Materials. Adv. Polym. Sci. 273 (2016) 413 pp
  • 23. D.L. Taylor, M. in het Panhuis, Self-healing hydrogels. Adv. Mater. 28 (2016) 9060-9093
  • 24. O. Okay, Self-healing hydrogels formed via hydrophobic interactions. Adv. Polym. Sci. 268 (2015) 101-142.
  • 25. O. Okay, Semicrystalline physical hydrogels with shape-memory and self-healing properties. J. Mater. Chem. B 7 (2019) 1581-1596.
  • 26. C. Creton, O. Okay (eds) (2020) Self-healing and self-recovering hydrogels. Adv. Polym. Sci. 285, 388 pp.
  • 27. S. Talebian, M. Mehrali, N. Taebnia, C.P. Pennisi, F.B. Kadumudi, J. Foroughi, M. Hasany, M. Nikkhah, M. Akbari, G. Orive, A. Dolatshahi‐Pirouz, Self‐healing hydrogels: the next paradigm shift in tissue engineering? Adv. Sci. 6 (2019) 1801664.
  • 28. Q. Li, C. Liu, J. Wen, Y. Wu, Y. Shan, J. Liao, The design, mechanism and biomedical application of self-healing hydrogels. Chin. Chem. Lett. 28 (2017) 1857-1874.
  • 29. S. Strandman, X.X. Zhu, Self-healing supramolecular hydrogels based on reversible physical interactions. Gels 2 (2016) 16 (1-31).
  • 30. W. Wang, Y. Zhang, W. Liu, Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71 (2017) 1-25.
  • 31. A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem., Int. Ed. 41 (2002) 2034−2057.
  • 32. C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17 (2007) 1543−1558.
  • 33. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22 (2010) 3388−3410
  • 34. Y. Osada, A. Matsuda, Shape memory in hydrogels. Nature 376 (1995) 219.
  • 35. B. Gyarmati, B.A. Szilágyi, A. Szilágyi, Reversible interactions in self-healing and shape memory hydrogels. Eur. Polym. J. 93 (2017) 642-669.
  • 36. U. Nöchel, C.S. Reddy, N.K. Uttamchand, K. Kratz, M. Behl, A. Lendlein, Shape-memory properties of hydrogels having a poly(ε-caprolactone) crosslinker and switching segment in an aqueous environment. Eur. Polym. J. 49 (2013) 2457−2466.
  • 37. C. Bilici, O. Okay, Shape memory hydrogels via micellar copolymerization of acrylic acid and n-octadecyl acrylate in aqueous media. Macromolecules 46 (2013) 3125−3131.
  • 38. C. Bilici, V. Can, U. Nöchel, M. Behl, A. Lendlein, O. Okay, Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 49 (2016) 7442-7449.
  • 39. J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Macro Lett. 2 (2013) 86−89.
  • 40. X. Dai, Y. Zhang, L. Gao, T. Bai, W. Wang, Y. Cui, W. Liu, A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 27 (2015) 3566–3571.
  • 41. K.E. Maly, C. Dauphin, J.D. Wuest, Self-assembly of columnar mesophases from diaminotriazines. J. Mater. Chem. 16 (2006) 4695–4700.
  • 42. B. Liu, W. Liu, Poly(vinyl diaminotriazine): from molecular recognition to high-strength hydrogels. Macromol. Rapid. Commun. 39 (2018) 1800190
  • 43. M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers, E.W. Meijer, Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136 (2014) 6969−6977.
  • 44. H. Ding, X.N. Zhang, S.Y. Zheng, Y. Song, Z.L. Wu, Q. Zheng, Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH responsiveness. Polymer 131 (2017) 95-103.
  • 45. X.N. Zhang, Y.J. Wang, S. Sun, L. Hou, P. Wu, Z.L. Wu, Q. Zheng, A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules 51 (2018) 8136−8146.
  • 46. G. Song, L. Zhang, C. He, D.-C. Fang, P.G. Whitten, H. Wang, Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46 (2013) 7423-7435.
  • 47. E. Su, O. Okay, A self-healing and highly stretchable polyelectrolyte hydrogel via cooperative hydrogen-bonding as a superabsorbent polymer. Macromolecules 52 (2019) 3257-3267.
  • 48. A.T. Uzumcu, O. Guney, O. Okay, Highly stretchable DNA/clay hydrogels with self-healing ability. ACS Appl Mater Interfaces 10 (2018) 8296-8306.
  • 49. A. Hill, F. Candau, J. Selb, Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis. Macromolecules 26 (1993) 4521-4532.
  • 50. S. Abdurrahmanoglu, V. Can, O. Okay, Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50 (2009) 5449-5455.
  • 51. S. Abdurrahmanoglu, M. Cilingir, O. Okay, Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide hydrogels. Polymer 52 (2011) 694-699.
  • 52. D.C. Tuncaboylu, M. Sahin, A. Argun, W. Oppermann, O. Okay, Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45 (2012) 1991-2000.
  • 53. D.C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53 (2012) 5513-5522.
  • 54. V. Can, Z. Kochovski, V. Reiter, N. Severin, M. Siebenbürger, B. Kent, J. Just, J.P. Rabe, M. Ballauff, O. Okay, Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49 (2016) 2281-2287.
  • 55. M.P. Algi, O. Okay, Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur. Polym. J. 59 (2014) 113-121.
  • 56. U. Gulyuz, O. Okay, Self-healing poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J. 72 (2015) 12-22.
  • 57. U. Gulyuz, O. Okay, Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47 (2014) 6889-6899.

Self-Healing and Shape-Memory Hydrogels

Year 2020, The 100 Year of Polymers, 507 - 525, 01.11.2020
https://doi.org/10.15671/hjbc.797525

Abstract

Hydrogels are soft and smart materials with great similarity to biological systems. In the past decade, a significant progress has been achieved to produce mechanically strong and tough hydrogels. Another major challenge in gel science is to generate self-healing and shape-memory functions in hydrogels to extend their application areas. Several strategies have been developed to create self-healing ability in hydrogels by replacing the chemically cross-linked polymer network with a reversible one. Moreover, a combination of strong and weak physical cross-links was used to produce hydrogels with both self-healing and shape-memory behavior. In this review, I present recent developments in the field of self-healing and shape memory hydrogels by mainly focusing our achievements.

References

  • 1. O. Okay, General properties of hydrogels. in G. Gerlach and K.-F. Arndt, eds., Hydrogel sensors and actuators, Springer Series on Chemical Sensors and Biosensors, 6 (2009) 1-14.
  • 2. Y. Tanaka, J.P. Gong, Y. Osada, Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci. 30 (2005) 1−9.
  • 3. P. Calvert, Hydrogels for soft machines. Adv. Mater. 21 (2009) 743−756.
  • 4. O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185 (1960) 117–118.
  • 5. T. Tanaka, Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40 (1978) 820-823.
  • 6. H. Staudinger, E. Husemann, Über hochpolymere Verbindungen, 116. Über das begrenzt quellbare Polystyrol. Ber. Dtsch. Chem. Ges. 68 (1935) 1618-1634.
  • 7. H.R. Brown, A model of the fracture of double network gels. Macromolecules 40 (2007) 3815−3818.
  • 8. A. Ahagon, A.N. Gent, Threshold fracture energies for elastomers. J. Polym. Sci. Polym. Phys. Ed. 12 (1975) 1903−1911.
  • 9. C. Creton, 50th Anniversary perspective: Networks and gels: Soft but dynamic and tough. Macromolecules 50 (2017) 8297−8316.
  • 10. J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6 (2010) 2583-2590.
  • 11. X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10 (2014) 672-687.
  • 12. J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength, Adv. Mater. 15 (2003) 1155–1158.
  • 13. Q. Chen, D. Wei, H. Chen, L. Zhu, C. Jiao, G. Liu, L. Huang, J. Yang, L. Wang, J. Zheng, Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network, Macromolecules 48 (2015) 8003–8010.
  • 14. J. Li, Z. Suo, J.J. Vlassak, Stiff, strong, and tough hydrogels with good chemical stability, J. Mater. Chem. B 2 (2014) 6708–6713.
  • 15. J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature 489 (2012) 133–136.
  • 16. L. Zhang, J. Zhao, J. Zhu, C. He, H. Wang, Anisotropic tough poly(vinyl alcohol) hydrogels, Soft Matter 8 (2012) 10439–10447.
  • 17. K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Adv. Mater. 14 (2002) 1120–1124.
  • 18. T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, J.P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nat. Mater. 12 (2013) 932–937.
  • 19. X. Hu, M. Vatankhah-Varnoosfaderani, J. Zhou, Q. Li, S.S. Sheiko, Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels, Adv. Mater. 27 (2015) 6899–6905.
  • 20. B. Kurt, U. Gulyuz, D.D. Demir, O. Okay, High-strength semi-crystalline hydrogels with self-healing and shape memory functions. Eur. Polym. J. 81 (2016) 12-23.
  • 21. C. Bilici, S. Ide, O. Okay, Yielding behavior of tough semicrystalline hydrogels. Macromolecules 50 (2017) 3647-3654.
  • 22. M.D. Hager, S. van der Zwaag, U.S. Schubert (eds) (2016) Self-healing Materials. Adv. Polym. Sci. 273 (2016) 413 pp
  • 23. D.L. Taylor, M. in het Panhuis, Self-healing hydrogels. Adv. Mater. 28 (2016) 9060-9093
  • 24. O. Okay, Self-healing hydrogels formed via hydrophobic interactions. Adv. Polym. Sci. 268 (2015) 101-142.
  • 25. O. Okay, Semicrystalline physical hydrogels with shape-memory and self-healing properties. J. Mater. Chem. B 7 (2019) 1581-1596.
  • 26. C. Creton, O. Okay (eds) (2020) Self-healing and self-recovering hydrogels. Adv. Polym. Sci. 285, 388 pp.
  • 27. S. Talebian, M. Mehrali, N. Taebnia, C.P. Pennisi, F.B. Kadumudi, J. Foroughi, M. Hasany, M. Nikkhah, M. Akbari, G. Orive, A. Dolatshahi‐Pirouz, Self‐healing hydrogels: the next paradigm shift in tissue engineering? Adv. Sci. 6 (2019) 1801664.
  • 28. Q. Li, C. Liu, J. Wen, Y. Wu, Y. Shan, J. Liao, The design, mechanism and biomedical application of self-healing hydrogels. Chin. Chem. Lett. 28 (2017) 1857-1874.
  • 29. S. Strandman, X.X. Zhu, Self-healing supramolecular hydrogels based on reversible physical interactions. Gels 2 (2016) 16 (1-31).
  • 30. W. Wang, Y. Zhang, W. Liu, Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71 (2017) 1-25.
  • 31. A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem., Int. Ed. 41 (2002) 2034−2057.
  • 32. C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17 (2007) 1543−1558.
  • 33. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22 (2010) 3388−3410
  • 34. Y. Osada, A. Matsuda, Shape memory in hydrogels. Nature 376 (1995) 219.
  • 35. B. Gyarmati, B.A. Szilágyi, A. Szilágyi, Reversible interactions in self-healing and shape memory hydrogels. Eur. Polym. J. 93 (2017) 642-669.
  • 36. U. Nöchel, C.S. Reddy, N.K. Uttamchand, K. Kratz, M. Behl, A. Lendlein, Shape-memory properties of hydrogels having a poly(ε-caprolactone) crosslinker and switching segment in an aqueous environment. Eur. Polym. J. 49 (2013) 2457−2466.
  • 37. C. Bilici, O. Okay, Shape memory hydrogels via micellar copolymerization of acrylic acid and n-octadecyl acrylate in aqueous media. Macromolecules 46 (2013) 3125−3131.
  • 38. C. Bilici, V. Can, U. Nöchel, M. Behl, A. Lendlein, O. Okay, Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 49 (2016) 7442-7449.
  • 39. J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Macro Lett. 2 (2013) 86−89.
  • 40. X. Dai, Y. Zhang, L. Gao, T. Bai, W. Wang, Y. Cui, W. Liu, A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 27 (2015) 3566–3571.
  • 41. K.E. Maly, C. Dauphin, J.D. Wuest, Self-assembly of columnar mesophases from diaminotriazines. J. Mater. Chem. 16 (2006) 4695–4700.
  • 42. B. Liu, W. Liu, Poly(vinyl diaminotriazine): from molecular recognition to high-strength hydrogels. Macromol. Rapid. Commun. 39 (2018) 1800190
  • 43. M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers, E.W. Meijer, Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136 (2014) 6969−6977.
  • 44. H. Ding, X.N. Zhang, S.Y. Zheng, Y. Song, Z.L. Wu, Q. Zheng, Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH responsiveness. Polymer 131 (2017) 95-103.
  • 45. X.N. Zhang, Y.J. Wang, S. Sun, L. Hou, P. Wu, Z.L. Wu, Q. Zheng, A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules 51 (2018) 8136−8146.
  • 46. G. Song, L. Zhang, C. He, D.-C. Fang, P.G. Whitten, H. Wang, Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46 (2013) 7423-7435.
  • 47. E. Su, O. Okay, A self-healing and highly stretchable polyelectrolyte hydrogel via cooperative hydrogen-bonding as a superabsorbent polymer. Macromolecules 52 (2019) 3257-3267.
  • 48. A.T. Uzumcu, O. Guney, O. Okay, Highly stretchable DNA/clay hydrogels with self-healing ability. ACS Appl Mater Interfaces 10 (2018) 8296-8306.
  • 49. A. Hill, F. Candau, J. Selb, Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis. Macromolecules 26 (1993) 4521-4532.
  • 50. S. Abdurrahmanoglu, V. Can, O. Okay, Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50 (2009) 5449-5455.
  • 51. S. Abdurrahmanoglu, M. Cilingir, O. Okay, Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide hydrogels. Polymer 52 (2011) 694-699.
  • 52. D.C. Tuncaboylu, M. Sahin, A. Argun, W. Oppermann, O. Okay, Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45 (2012) 1991-2000.
  • 53. D.C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53 (2012) 5513-5522.
  • 54. V. Can, Z. Kochovski, V. Reiter, N. Severin, M. Siebenbürger, B. Kent, J. Just, J.P. Rabe, M. Ballauff, O. Okay, Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49 (2016) 2281-2287.
  • 55. M.P. Algi, O. Okay, Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur. Polym. J. 59 (2014) 113-121.
  • 56. U. Gulyuz, O. Okay, Self-healing poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J. 72 (2015) 12-22.
  • 57. U. Gulyuz, O. Okay, Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47 (2014) 6889-6899.
There are 57 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Oğuz Okay 0000-0003-2717-4150

Publication Date November 1, 2020
Acceptance Date October 14, 2020
Published in Issue Year 2020 The 100 Year of Polymers

Cite

APA Okay, O. (2020). Self-Healing and Shape-Memory Hydrogels. Hacettepe Journal of Biology and Chemistry, 48(5), 507-525. https://doi.org/10.15671/hjbc.797525
AMA Okay O. Self-Healing and Shape-Memory Hydrogels. HJBC. November 2020;48(5):507-525. doi:10.15671/hjbc.797525
Chicago Okay, Oğuz. “Self-Healing and Shape-Memory Hydrogels”. Hacettepe Journal of Biology and Chemistry 48, no. 5 (November 2020): 507-25. https://doi.org/10.15671/hjbc.797525.
EndNote Okay O (November 1, 2020) Self-Healing and Shape-Memory Hydrogels. Hacettepe Journal of Biology and Chemistry 48 5 507–525.
IEEE O. Okay, “Self-Healing and Shape-Memory Hydrogels”, HJBC, vol. 48, no. 5, pp. 507–525, 2020, doi: 10.15671/hjbc.797525.
ISNAD Okay, Oğuz. “Self-Healing and Shape-Memory Hydrogels”. Hacettepe Journal of Biology and Chemistry 48/5 (November 2020), 507-525. https://doi.org/10.15671/hjbc.797525.
JAMA Okay O. Self-Healing and Shape-Memory Hydrogels. HJBC. 2020;48:507–525.
MLA Okay, Oğuz. “Self-Healing and Shape-Memory Hydrogels”. Hacettepe Journal of Biology and Chemistry, vol. 48, no. 5, 2020, pp. 507-25, doi:10.15671/hjbc.797525.
Vancouver Okay O. Self-Healing and Shape-Memory Hydrogels. HJBC. 2020;48(5):507-25.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc