Review
BibTex RIS Cite
Year 2020, The 100 Year of Polymers, 425 - 445, 01.11.2020
https://doi.org/10.15671/hjbc.809902

Abstract

References

  • 1. Yilgor, I., E. Yilgor, and G.L. Wilkes, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 2015. 58: p. A1-A36.
  • 2. Schollenberger, C.S., H. Scott, and G.H. Moore, Polyurethane VC, a virtually cross-linked elastomer. Rubber World, 1958. 137: p. 549-555.
  • 3. Saunders, J.H. and K.C. Frisch, Polyurethanes: Chemistry and Technology. 1962, New York: Interscience Publishers.
  • 4. Hepburn, C., Polyurethane elastomers. Second edition ed. 1992, London, UK: Elsevier Science Publishers.
  • 5. Lambla, N.M.K., K.A. Woodhouse, and S.L. Cooper, Polyurethanes in Biomedical Applications. 1998, Boca Raton, FL, USA: CRC Press.
  • 6. Krol, P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007. 52(6): p. 915-1015.
  • 7. Delebecq, E., et al., On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chemical Reviews, 2013. 113(1): p. 80-118.
  • 8. Herrington, R. and K. Hock, Flexible Polyurethane Foams. 1991, USA: Dow Plastics.
  • 9. Yilgor, I. and J.E. McGrath, EFFECT OF CATALYSTS ON THE REACTION BETWEEN A CYCLOALIPHATIC DIISOCYANATE (H-MDI) AND NORMAL-BUTANOL. Journal of Applied Polymer Science, 1985. 30(4): p. 1733-1739.
  • 10. Sato, M., The rate of reaction of isocyanates with alcohols. II. Journal of Organic Chemistry, 1962. 27(3): p. 819-825.
  • 11. Yilgor, E., I. Yilgor, and E. Yurtsever, Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer, 2002. 43(24): p. 6551-6559.
  • 12. Sami, S., et al., Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer, 2014. 55(18): p. 4563-4576.
  • 13. Bayer, O., Verfahren zur Herstellung von Polyurethanen bzw. Polyharnstoffen. 1938: Germany.
  • 14. Bayer, O., Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angewandte Chemie-International Edition, 1947. 59(9): p. 257-272.
  • 15. Hermes, M.E., Enough for One Lifetime: Wallace Carothers, Inventor of Nylon. . 1996, Washington DC, USA: ACS.
  • 16. Keifer, D.H., The Establishment of Modern Polymer Science By Wallace H. Carothers 2000, USA: ACS.
  • 17. Hentschel, T. and H. Munstedt, Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer, 2001. 42(7): p. 3195-3203.
  • 18. Woods, G., The ICI polyurethanes Book. 1990, USA: John Wiley and Sons.
  • 19. Yilgor, I., et al., SILOXANE-UREA SEGMENTED CO-POLYMERS .1. SYNTHESIS AND CHARACTERIZATION OF MODEL POLYMERS FROM MDI AND ALPHA,OMEGA-BIS(AMINOPROPYL)POLYDIMETHYLSILOXANE. Polymer Bulletin, 1982. 8(11-1): p. 535-542.
  • 20. Yilgor, E., et al., Isopropyl alcohol: an unusual, powerful, ‘green’ solvent for the preparation of silicone–urea copolymers with high urea contents. Polymer, 2003. 44(26): p. 7787-7793.
  • 21. Yilgor, E. and I. Yilgor, Hydrogen bonding: a critical parameter in designing silicone copolymers. Polymer, 2001. 42(19): p. 7953-7959.
  • 22. Benrendt, G. and N.B. W., The Chemical Recycling of Polyurethanes Journal of the University of Chemical Technology and Metallurgy, 2009. 44(1): p. 3-23.
  • 23. Recycling of polyurethane foams. 2018, USA: William Andrew Applied Science Publishers, Elsevier.
  • 24. Polyurethane market. 2020; Available from: https://www.marketsandmarkets.com/Market-Reports/polyurethane-market-151784541.html
  • 25. Global Polyurethane Market (2019 to 2023). 2020; Available from: https://www.businesswire.com/news/home/20200320005325/en/Global-Polyurethane-Market-2019-2023---Identify.
  • 26. Polyurethane Market Analysis Report By Product (Rigid Foam, Flexible Foam, Coatings), By Application (Furniture & Interiors, Construction, Automotive), And Segment Forecasts, 2019 - 2025. 2020; Available from: https://www.grandviewresearch.com/industry-analysis/polyurethane-pu-market.
  • 27. Flory, P.J., Principles of Polymer Chemistry. 1953, Ithaca, USA: Cornell University Press.
  • 28. Castro, J.M. and C.W. Macosco, STUDIES OF MOLD FILLING AND CURING IN THE REACTION INJECTION-MOLDING PROCESS. AIChE Journal, 1982. 28(2): p. 250-260.
  • 29. Camargo, R.E., et al., PHASE-SEPARATION STUDIES IN RIM POLYURETHANES CATALYST AND HARD SEGMENT CRYSTALLINITY EFFECTS. Polymer, 1985. 26(8): p. 1145-1154.
  • 30. Dusek, K., M. Spirkova, and I. Havlicek, NETWORK FORMATION OF POLYURETHANES DUE TO SIDE REACTIONS. Macromolecules, 1990. 23(6): p. 1774-1781.
  • 31. Dusek, K., M. Spirkova, and M. Ilavsky, NETWORK FORMATION IN POLYURETHANES DUE TO ALLOPHANATE AND BIURET FORMATION - GEL FRACTION AND EQUILIBRIUM MODULUS. Makromolekulare Chemie-Macromolecular Symposia, 1991. 45: p. 87-95.
  • 32. Flory, P.J., Thermodynamics of high polymer solutions. Journal of Chemical Physics, 1942. 10: p. 51-61.
  • 33. Huggins, M.L., Thermodynamic properties of solutions of long-chain compounds. Annals of New York Academy of Sciences, 1942. 43: p. 1-32.
  • 34. Robeson, L.M., Polymer Blends: A Comprehensive Review. 2007, Munich, Germany: Carl Hanser Verlag. 687.
  • 35. Leibler, L., THEORY OF MICROPHASE SEPARATION IN BLOCK CO-POLYMERS. Macromolecules, 1980. 13(6): p. 1602-1617.
  • 36. Krevelen, D.W.V., Properties of Polymers. 1990, Amsterdam, Netherlands: Elsevier Science Publishers.
  • 37. F. E. Bailey, J. and J.V. Koleske, Poly(ethylene oxide). 1976, New York, USA: Academic Press.
  • 38. Ertem, S.P., et al., Effect of soft segment molecular weight on tensile properties of poly(propylene oxide) based polyurethaneureas. Polymer, 2012. 53(21): p. 4614-4622.
  • 39. Dreyfuss, P., Poly(tetrahydrofuran). 1982, New York, USA: Gordon and Breach Science Publishers.
  • 40. Woodruff, M.A. and D.W. Hutmacher, The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 2010. 35(10): p. 1217-1256.
  • 41. Yilgor, E. and I. Yilgor, Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science, 2014. 39(6): p. 1165-1195.
  • 42. Tyagi, D., et al., SILOXANE-UREA SEGMENTED CO-POLYMERS .2. INVESTIGATION OF MECHANICAL-BEHAVIOR. Polymer Bulletin, 1982. 8(11-1): p. 543-550.
  • 43. Yilgor, I., et al., SEGMENTED ORGANOSILOXANE COPOLYMERS .1. SYNTHESIS OF SILOXANE UREA COPOLYMERS. Polymer, 1984. 25(12): p. 1800-1806.
  • 44. Yilgor, I. and J.E. McGrath, POLYSILOXANE CONTAINING COPOLYMERS - A SURVEY OF RECENT DEVELOPMENTS. Advances in Polymer Science, 1988. 86: p. 1-86.
  • 45. Yilgor, E., et al., Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers. Polymer, 2000. 41(3): p. 849-857.
  • 46. Campanella, A., L.M. Bonnaillie, and R.P. Wool, Polyurethane Foams from Soyoil-Based Polyols. Journal of Applied Polymer Science, 2009. 112: p. 2567-2578.
  • 47. Zhang, X.D., et al., Role of Silicone Surfactant in Flexible Polyurethane Foam. Journals of Colloid and Interface Science, 1999. 215: p. 270-279.
  • 48. Chattopadhyay, D.K. and K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007. 32: p. 352-418.
  • 49. Yilgor, I. and E. Yilgor, Hydrophilic polyurethaneurea membranes: influence of soft block composition on the water vapor permeation rates. Polymer, 1999. 40(20): p. 5575-5581.
  • 50. Klinedinst, D.B., et al., Structure - Property behavior of new segmented polyurethanes and polyureas without use of chain extenders. Rubber Chemistry and Technology, 2005. 78(5): p. 737-753.
  • 51. Sheth, J.P., et al., Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer, 2005. 46(18): p. 7317-7322.
  • 52. Das, S., et al., Effect of symmetry and H-bond strength of hard segments on the structure-property relationships of segmented, nonchain extended polyurethanes and polyureas. Journal of Macromolecular Science Part B-Physics, 2007. 46(5): p. 853-875.
  • 53. Yildirim, E., et al., Temperature-dependent changes in the hydrogen bonded hard segment network and microphase morphology in a model polyurethane: Experimental and simulation studies. Journal of Polymer Science Part B-Polymer Physics, 2018. 56(2): p. 182-192.
  • 54. Yilgor, I. and E. Yilgor, Structure-morphology-property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders. Polymer Reviews, 2007. 47(4): p. 487-510.
  • 55. Yildirim, E., et al., Multiscale Modeling of the Morphology and Properties of Segmented Silicone-Urea Copolymers. Journal of Inorganic and Organometallic Polymers and Materials, 2012. 22(3): p. 604-616.
  • 56. Jewrajka, S.K., et al., Polyisobutylene-Based Polyurethanes. II. Polyureas Containing Mixed PIB/PTMO Soft Segments. Journal of Polymer Science Part a-Polymer Chemistry, 2009. 47(11): p. 2787-2797.
  • 57. Kang, J., et al., PIB-Based Polyurethanes. IV. The Morphology of Polyurethanes Containing Soft Co-Segments. Journal of Polymer Science Part a-Polymer Chemistry, 2009. 47(22): p. 6180-6190.
  • 58. Hernandez, R., et al., A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities. Macromolecules, 2008. 41(24): p. 9767-9776.
  • 59. Sheth, J.P., et al., Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer, 2004. 45(20): p. 6919-6932.
  • 60. Yilgor, I., et al., Contribution of soft segment entanglement on the tensile properties of silicone-urea copolymers with low hard segment contents. Polymer, 2009. 50(19): p. 4432-4437.
  • 61. Yilgor, I., et al., Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents. Polymer, 2011. 52(2): p. 266-274. 62. Aneja, A. and G.L. Wilkes, A systematic series of 'model' PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer, 2003. 44(23): p. 7221-7228.
  • 63. Versteegen, R.M., R.P. Sijbesma, and E.W. Meijer, Synthesis and characterization of segmented copoly(ether urea)s with uniform hard segments. Macromolecules, 2005. 38(8): p. 3176-3184.
  • 64. Versteegen, R.M., et al., Properties and morphology of segmented copoly(ether urea)s with uniform hard segments. Macromolecules, 2006. 39(2): p. 772-783.
  • 65. De, D. and R.J. Gaymans, Thermoplastic Polyurethanes with TDI-Based Monodisperse Hard Segments. Macromolecular Materials and Engineering, 2009. 294(6-7): p. 405-413.
  • 66. Prisacariu, C. and E. Scortanu, Influence of the type of chain extender and urethane group content on the mechanical properties of polyurethane elastomers with flexible hard segments. High Performance Polymers, 2011. 23(4): p. 308-313.
  • 67. Yilgor, I., et al., FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer, 2006. 47(11): p. 4105-4114.
  • 68. Sheth, J.P., et al., Time-dependent morphology development in a segmented polyurethane with monodisperse hard segments based on 1,4-phenylene diisocyanate. Macromolecules, 2005. 38(24): p. 10074-10079.
  • 69. Yilgor, I., et al., Time-Dependent Morphology Development in Segmented Polyetherurea Copolymers Based on Aromatic Diisocyanates. Journal of Polymer Science Part B-Polymer Physics, 2009. 47(5): p. 471-483.

Polyurethanes: Design, synthesis and structure-property behavior of versatile materials

Year 2020, The 100 Year of Polymers, 425 - 445, 01.11.2020
https://doi.org/10.15671/hjbc.809902

Abstract

Polyurethanes are one of the most important classes of polymeric materials. This is mainly due to the availability of a very large number of inherently different starting materials that allows the design and synthesis of polyurethane based materials with a wide range of properties for numerous applications. In this short review, important physical and chemical factors and parameters that have a significant effect on the properties of polyurethanes are discussed. Critical contribution of hydrogen bonding on the structure-morphology-property behavior of these materials was emphasized by both experimental data and molecular simulation studies. Influence of the chemical structures, solubility parameters and molecular weights of the soft and hard segments on morphology and properties were discussed. Important issues regarding the reaction chemistry, synthetic method used and thermal history on structure and performance of polyurethanes were explained. We hope this article, which is prepared to celebrate the 100th anniversary of Polymer Science, will be useful to those who are newcomers to the field, but also to the experienced researchers to better understand the structure-property behavior of polyurethanes and tailor-design novel structures for various applications.

References

  • 1. Yilgor, I., E. Yilgor, and G.L. Wilkes, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 2015. 58: p. A1-A36.
  • 2. Schollenberger, C.S., H. Scott, and G.H. Moore, Polyurethane VC, a virtually cross-linked elastomer. Rubber World, 1958. 137: p. 549-555.
  • 3. Saunders, J.H. and K.C. Frisch, Polyurethanes: Chemistry and Technology. 1962, New York: Interscience Publishers.
  • 4. Hepburn, C., Polyurethane elastomers. Second edition ed. 1992, London, UK: Elsevier Science Publishers.
  • 5. Lambla, N.M.K., K.A. Woodhouse, and S.L. Cooper, Polyurethanes in Biomedical Applications. 1998, Boca Raton, FL, USA: CRC Press.
  • 6. Krol, P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007. 52(6): p. 915-1015.
  • 7. Delebecq, E., et al., On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chemical Reviews, 2013. 113(1): p. 80-118.
  • 8. Herrington, R. and K. Hock, Flexible Polyurethane Foams. 1991, USA: Dow Plastics.
  • 9. Yilgor, I. and J.E. McGrath, EFFECT OF CATALYSTS ON THE REACTION BETWEEN A CYCLOALIPHATIC DIISOCYANATE (H-MDI) AND NORMAL-BUTANOL. Journal of Applied Polymer Science, 1985. 30(4): p. 1733-1739.
  • 10. Sato, M., The rate of reaction of isocyanates with alcohols. II. Journal of Organic Chemistry, 1962. 27(3): p. 819-825.
  • 11. Yilgor, E., I. Yilgor, and E. Yurtsever, Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer, 2002. 43(24): p. 6551-6559.
  • 12. Sami, S., et al., Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer, 2014. 55(18): p. 4563-4576.
  • 13. Bayer, O., Verfahren zur Herstellung von Polyurethanen bzw. Polyharnstoffen. 1938: Germany.
  • 14. Bayer, O., Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angewandte Chemie-International Edition, 1947. 59(9): p. 257-272.
  • 15. Hermes, M.E., Enough for One Lifetime: Wallace Carothers, Inventor of Nylon. . 1996, Washington DC, USA: ACS.
  • 16. Keifer, D.H., The Establishment of Modern Polymer Science By Wallace H. Carothers 2000, USA: ACS.
  • 17. Hentschel, T. and H. Munstedt, Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer, 2001. 42(7): p. 3195-3203.
  • 18. Woods, G., The ICI polyurethanes Book. 1990, USA: John Wiley and Sons.
  • 19. Yilgor, I., et al., SILOXANE-UREA SEGMENTED CO-POLYMERS .1. SYNTHESIS AND CHARACTERIZATION OF MODEL POLYMERS FROM MDI AND ALPHA,OMEGA-BIS(AMINOPROPYL)POLYDIMETHYLSILOXANE. Polymer Bulletin, 1982. 8(11-1): p. 535-542.
  • 20. Yilgor, E., et al., Isopropyl alcohol: an unusual, powerful, ‘green’ solvent for the preparation of silicone–urea copolymers with high urea contents. Polymer, 2003. 44(26): p. 7787-7793.
  • 21. Yilgor, E. and I. Yilgor, Hydrogen bonding: a critical parameter in designing silicone copolymers. Polymer, 2001. 42(19): p. 7953-7959.
  • 22. Benrendt, G. and N.B. W., The Chemical Recycling of Polyurethanes Journal of the University of Chemical Technology and Metallurgy, 2009. 44(1): p. 3-23.
  • 23. Recycling of polyurethane foams. 2018, USA: William Andrew Applied Science Publishers, Elsevier.
  • 24. Polyurethane market. 2020; Available from: https://www.marketsandmarkets.com/Market-Reports/polyurethane-market-151784541.html
  • 25. Global Polyurethane Market (2019 to 2023). 2020; Available from: https://www.businesswire.com/news/home/20200320005325/en/Global-Polyurethane-Market-2019-2023---Identify.
  • 26. Polyurethane Market Analysis Report By Product (Rigid Foam, Flexible Foam, Coatings), By Application (Furniture & Interiors, Construction, Automotive), And Segment Forecasts, 2019 - 2025. 2020; Available from: https://www.grandviewresearch.com/industry-analysis/polyurethane-pu-market.
  • 27. Flory, P.J., Principles of Polymer Chemistry. 1953, Ithaca, USA: Cornell University Press.
  • 28. Castro, J.M. and C.W. Macosco, STUDIES OF MOLD FILLING AND CURING IN THE REACTION INJECTION-MOLDING PROCESS. AIChE Journal, 1982. 28(2): p. 250-260.
  • 29. Camargo, R.E., et al., PHASE-SEPARATION STUDIES IN RIM POLYURETHANES CATALYST AND HARD SEGMENT CRYSTALLINITY EFFECTS. Polymer, 1985. 26(8): p. 1145-1154.
  • 30. Dusek, K., M. Spirkova, and I. Havlicek, NETWORK FORMATION OF POLYURETHANES DUE TO SIDE REACTIONS. Macromolecules, 1990. 23(6): p. 1774-1781.
  • 31. Dusek, K., M. Spirkova, and M. Ilavsky, NETWORK FORMATION IN POLYURETHANES DUE TO ALLOPHANATE AND BIURET FORMATION - GEL FRACTION AND EQUILIBRIUM MODULUS. Makromolekulare Chemie-Macromolecular Symposia, 1991. 45: p. 87-95.
  • 32. Flory, P.J., Thermodynamics of high polymer solutions. Journal of Chemical Physics, 1942. 10: p. 51-61.
  • 33. Huggins, M.L., Thermodynamic properties of solutions of long-chain compounds. Annals of New York Academy of Sciences, 1942. 43: p. 1-32.
  • 34. Robeson, L.M., Polymer Blends: A Comprehensive Review. 2007, Munich, Germany: Carl Hanser Verlag. 687.
  • 35. Leibler, L., THEORY OF MICROPHASE SEPARATION IN BLOCK CO-POLYMERS. Macromolecules, 1980. 13(6): p. 1602-1617.
  • 36. Krevelen, D.W.V., Properties of Polymers. 1990, Amsterdam, Netherlands: Elsevier Science Publishers.
  • 37. F. E. Bailey, J. and J.V. Koleske, Poly(ethylene oxide). 1976, New York, USA: Academic Press.
  • 38. Ertem, S.P., et al., Effect of soft segment molecular weight on tensile properties of poly(propylene oxide) based polyurethaneureas. Polymer, 2012. 53(21): p. 4614-4622.
  • 39. Dreyfuss, P., Poly(tetrahydrofuran). 1982, New York, USA: Gordon and Breach Science Publishers.
  • 40. Woodruff, M.A. and D.W. Hutmacher, The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 2010. 35(10): p. 1217-1256.
  • 41. Yilgor, E. and I. Yilgor, Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science, 2014. 39(6): p. 1165-1195.
  • 42. Tyagi, D., et al., SILOXANE-UREA SEGMENTED CO-POLYMERS .2. INVESTIGATION OF MECHANICAL-BEHAVIOR. Polymer Bulletin, 1982. 8(11-1): p. 543-550.
  • 43. Yilgor, I., et al., SEGMENTED ORGANOSILOXANE COPOLYMERS .1. SYNTHESIS OF SILOXANE UREA COPOLYMERS. Polymer, 1984. 25(12): p. 1800-1806.
  • 44. Yilgor, I. and J.E. McGrath, POLYSILOXANE CONTAINING COPOLYMERS - A SURVEY OF RECENT DEVELOPMENTS. Advances in Polymer Science, 1988. 86: p. 1-86.
  • 45. Yilgor, E., et al., Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers. Polymer, 2000. 41(3): p. 849-857.
  • 46. Campanella, A., L.M. Bonnaillie, and R.P. Wool, Polyurethane Foams from Soyoil-Based Polyols. Journal of Applied Polymer Science, 2009. 112: p. 2567-2578.
  • 47. Zhang, X.D., et al., Role of Silicone Surfactant in Flexible Polyurethane Foam. Journals of Colloid and Interface Science, 1999. 215: p. 270-279.
  • 48. Chattopadhyay, D.K. and K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007. 32: p. 352-418.
  • 49. Yilgor, I. and E. Yilgor, Hydrophilic polyurethaneurea membranes: influence of soft block composition on the water vapor permeation rates. Polymer, 1999. 40(20): p. 5575-5581.
  • 50. Klinedinst, D.B., et al., Structure - Property behavior of new segmented polyurethanes and polyureas without use of chain extenders. Rubber Chemistry and Technology, 2005. 78(5): p. 737-753.
  • 51. Sheth, J.P., et al., Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer, 2005. 46(18): p. 7317-7322.
  • 52. Das, S., et al., Effect of symmetry and H-bond strength of hard segments on the structure-property relationships of segmented, nonchain extended polyurethanes and polyureas. Journal of Macromolecular Science Part B-Physics, 2007. 46(5): p. 853-875.
  • 53. Yildirim, E., et al., Temperature-dependent changes in the hydrogen bonded hard segment network and microphase morphology in a model polyurethane: Experimental and simulation studies. Journal of Polymer Science Part B-Polymer Physics, 2018. 56(2): p. 182-192.
  • 54. Yilgor, I. and E. Yilgor, Structure-morphology-property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders. Polymer Reviews, 2007. 47(4): p. 487-510.
  • 55. Yildirim, E., et al., Multiscale Modeling of the Morphology and Properties of Segmented Silicone-Urea Copolymers. Journal of Inorganic and Organometallic Polymers and Materials, 2012. 22(3): p. 604-616.
  • 56. Jewrajka, S.K., et al., Polyisobutylene-Based Polyurethanes. II. Polyureas Containing Mixed PIB/PTMO Soft Segments. Journal of Polymer Science Part a-Polymer Chemistry, 2009. 47(11): p. 2787-2797.
  • 57. Kang, J., et al., PIB-Based Polyurethanes. IV. The Morphology of Polyurethanes Containing Soft Co-Segments. Journal of Polymer Science Part a-Polymer Chemistry, 2009. 47(22): p. 6180-6190.
  • 58. Hernandez, R., et al., A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities. Macromolecules, 2008. 41(24): p. 9767-9776.
  • 59. Sheth, J.P., et al., Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer, 2004. 45(20): p. 6919-6932.
  • 60. Yilgor, I., et al., Contribution of soft segment entanglement on the tensile properties of silicone-urea copolymers with low hard segment contents. Polymer, 2009. 50(19): p. 4432-4437.
  • 61. Yilgor, I., et al., Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents. Polymer, 2011. 52(2): p. 266-274. 62. Aneja, A. and G.L. Wilkes, A systematic series of 'model' PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer, 2003. 44(23): p. 7221-7228.
  • 63. Versteegen, R.M., R.P. Sijbesma, and E.W. Meijer, Synthesis and characterization of segmented copoly(ether urea)s with uniform hard segments. Macromolecules, 2005. 38(8): p. 3176-3184.
  • 64. Versteegen, R.M., et al., Properties and morphology of segmented copoly(ether urea)s with uniform hard segments. Macromolecules, 2006. 39(2): p. 772-783.
  • 65. De, D. and R.J. Gaymans, Thermoplastic Polyurethanes with TDI-Based Monodisperse Hard Segments. Macromolecular Materials and Engineering, 2009. 294(6-7): p. 405-413.
  • 66. Prisacariu, C. and E. Scortanu, Influence of the type of chain extender and urethane group content on the mechanical properties of polyurethane elastomers with flexible hard segments. High Performance Polymers, 2011. 23(4): p. 308-313.
  • 67. Yilgor, I., et al., FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer, 2006. 47(11): p. 4105-4114.
  • 68. Sheth, J.P., et al., Time-dependent morphology development in a segmented polyurethane with monodisperse hard segments based on 1,4-phenylene diisocyanate. Macromolecules, 2005. 38(24): p. 10074-10079.
  • 69. Yilgor, I., et al., Time-Dependent Morphology Development in Segmented Polyetherurea Copolymers Based on Aromatic Diisocyanates. Journal of Polymer Science Part B-Polymer Physics, 2009. 47(5): p. 471-483.
There are 68 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İskender Yılgör This is me 0000-0002-7756-4192

Emel Yılgör 0000-0001-9133-3377

Publication Date November 1, 2020
Acceptance Date October 14, 2020
Published in Issue Year 2020 The 100 Year of Polymers

Cite

APA Yılgör, İ., & Yılgör, E. (2020). Polyurethanes: Design, synthesis and structure-property behavior of versatile materials. Hacettepe Journal of Biology and Chemistry, 48(5), 425-445. https://doi.org/10.15671/hjbc.809902
AMA Yılgör İ, Yılgör E. Polyurethanes: Design, synthesis and structure-property behavior of versatile materials. HJBC. November 2020;48(5):425-445. doi:10.15671/hjbc.809902
Chicago Yılgör, İskender, and Emel Yılgör. “Polyurethanes: Design, Synthesis and Structure-Property Behavior of Versatile Materials”. Hacettepe Journal of Biology and Chemistry 48, no. 5 (November 2020): 425-45. https://doi.org/10.15671/hjbc.809902.
EndNote Yılgör İ, Yılgör E (November 1, 2020) Polyurethanes: Design, synthesis and structure-property behavior of versatile materials. Hacettepe Journal of Biology and Chemistry 48 5 425–445.
IEEE İ. Yılgör and E. Yılgör, “Polyurethanes: Design, synthesis and structure-property behavior of versatile materials”, HJBC, vol. 48, no. 5, pp. 425–445, 2020, doi: 10.15671/hjbc.809902.
ISNAD Yılgör, İskender - Yılgör, Emel. “Polyurethanes: Design, Synthesis and Structure-Property Behavior of Versatile Materials”. Hacettepe Journal of Biology and Chemistry 48/5 (November 2020), 425-445. https://doi.org/10.15671/hjbc.809902.
JAMA Yılgör İ, Yılgör E. Polyurethanes: Design, synthesis and structure-property behavior of versatile materials. HJBC. 2020;48:425–445.
MLA Yılgör, İskender and Emel Yılgör. “Polyurethanes: Design, Synthesis and Structure-Property Behavior of Versatile Materials”. Hacettepe Journal of Biology and Chemistry, vol. 48, no. 5, 2020, pp. 425-4, doi:10.15671/hjbc.809902.
Vancouver Yılgör İ, Yılgör E. Polyurethanes: Design, synthesis and structure-property behavior of versatile materials. HJBC. 2020;48(5):425-4.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc