Research Article
BibTex RIS Cite
Year 2021, Volume: 49 Issue: 1, 25 - 36, 01.01.2021
https://doi.org/10.15671/hjbc.680564

Abstract

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • 1. M. DellaGreca, M. Brigante, M. Isidori, A. Nardelli, L. Previtera, M. Rubino, F. Temussi, Phototransformation and ecotoxicity of the drug Naproxen-Na, Environ. Chem. Lett., 1 (2003) 237-241.
  • 2. R. Runkel, M. Chaplin, G. Boost, E. Segre, E. Forchielli, Absorption, distribution, metabolism, and excretion of naproxen in various laboratory animals and human subjects, J. Pharm. Sci., 61 (1972) 703-708.
  • 3. J.V. Andersen, S.H. Hansen, Simultaneous quantitative determination of naproxen, its metabolite 6-Odesmethylnaproxen and their five conjugates in plasma and urine samples by highperformance liquid chromatography on dynamically modified silica, J. Chromatogr., 10 (1992) 325-33.
  • 4. J.O. Miners, S. Coulter, R.H. Tukey, M.E. Veronese, D.J. Birkett, Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R-and S-naproxen, Biomed. PharmacothEr., 51 (1996) 1003-1008.
  • 5. D.F. Zhong, L. Sun, L. Liu, H.H. Huang, Microbial transformation of naproxen by Cunninghamella species, Acta Pharmacol. Sin., 24 (2003) 442-447.
  • 6. N.M. Davies, K.E. Anderson, Clinical pharmacokinetics of naproxen, Clin. Pharmacokinet., 32 (1997) 268-293.
  • 7. T. Tracy, C. Marra, S. Wrighton, F. Gonzalez, K. Korzekwa, Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation, Eur. J. Clin. Pharmacol., 52 (1997) 293-298.
  • 8. K. Fent, A. A. Weston, D. Caminada, Erratum to “Ecotoxicology of human pharmaceuticals”[Aquatic Toxicology 76 (2006) 122–159], Aquat. Toxicol., 78 (2006a) 207.
  • 9. D. Domaradzka, U. Guzik, D. Wojcieszyńska, Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs, Rev. Environ. Sci. Biotechnol., 14 (2015) 229-239.
  • 10. H. Hühnerfuss, S. Selke, M. Scheurell, M.R. Shah, S. Nadeem, The drug naproxen and its transformation products as an example for emerging environmental pollutants, Organohalog. Compd., 72 (2010) 467-470.
  • 11. L.D. Buckberry, Cytotoxicity Testing Using Cell Lines, Animal Cell Biotechnology, Humana Press, Totowa, NJ, 1999.
  • 12. M. Isidori, M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera, M. Rubino, Ecotoxicity of naproxen and its phototransformation products, Sci. Total. Environ., 348 (2005) 93-101.
  • 13. F.A. Alherz, D.A. Almarghalani, N.A. Hussein, K. Kurogi, M.C. Liu, A reappraisal of the 6-O-desmethylnaproxen-sulfating activity of the human cytosolic sulfotransferases, Can. J. Physiol. Pharmacol., 95 (2017) 647-651.
  • 14. XXXXXXXXXXXXXXX
  • 15. I. Correia, R. Arantes-Rodrigues, R. Pinto-Leite, I. Gaivão, Effects of naproxen on cell proliferation and genotoxicity in MG-63 osteosarcoma cell line, J. Toxicol. Env. Heal. A, 77 (2014) 916-923.
  • 16. B.I. Cohen, M.K. Pagnillo, B.L. Musikant, A.S. Deutsch, An in vitro study of the cytotoxicity of two root canal sealers, J. Endod., 26 (2000) 228-229.
  • 17. M. Akyol, Z. Akın Polat, S. Özçelik, Ö. Kaya, The effects of strontium chloride on viability of mouse connective tissue fibroblast cells, C.M.J., 35 (2013) 33-38.
  • 18. J. Carmichael, W.G. DeGraff, A.F. Gazdar, J.D. Minna, J.B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 47 (1987) 936-942.
  • 19. S. Mohan, A. Bustamam, S. Ibrahim, A.S. Al-Zubairi, M. Aspollah, R. Abdullah, M.M. Elhassan, In vitro ultramorphological assessment of apoptosis on CEMss induced by linoleic acid-rich fraction from Typhonium flagelliforme tuber, Evid. Based Complement. Alternat. Med., (2011) 2011.
  • 20. A. Wahab, S. Ibrahim, A.B. Abdul, A.S. Alzubairi, M. Mohamed Elhassan, S.Mohan, In vitro ultramorphological assessment of apoptosis induced by zerumbone on (HeLa), BioMed. Res. Int., (2009) 2009.
  • 21. G. Tan, M. Kaya, A. Tevlek, I. Sargin, T. Baran, Antitumor activity of chitosan from mayfly with comparison to commercially available low, medium and high molecular weight chitosans, In Vitro Cell. Dev. Biol. Anim., 54 (2018) 366-374.
  • 22. E. Marco-Urrea, M. Pérez-Trujillo, P. Blánquez, T. Vicent, G.Caminal, Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR, Bioresour. Technol., 101 (2010) 2159-2166.
  • 23. E. Ricciotti, G.A. FitzGerald, Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol., 31 (2011) 986-1000.
  • 24. C.E. Smith, S. Soti, T.A. Jones, A. Nakagawa, D. Xue, H. Yin, Non-steroidal anti-inflammatory drugs are caspase inhibitors, Cell Chem. Biol., 24 (2017) 281-292. 25. K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 76 (2006b) 122-159.
  • 26. C. Carlsson, A.K. Johansson, G. Alvan, K. Bergman, T. Kühler, Are pharmaceuticals potent environmental pollutants?: Part I: Environmental risk assessments of selected active pharmaceutical ingredients, Sci. Total Environ., 364 (2006) 67-87.
  • 27. S. Selke, M. Scheurell, M.R. Shah, H. Hühnerfuss, Identification and enantioselective gas chromatographic mass-spectrometric separation of O-desmethylnaproxen, the main metabolite of the drug naproxen, as a new environmental contaminant, J. Chromatogr. A., 1217 (2010) 419-423.
  • 28. G. Lucena,C. Reyes-Botella, O. García-Martínez, J. Ramos-Torrecillas, E.D.L., Bertos, C. Ruiz, Effect of NSAIDs on the aminopeptidase activity of cultured human osteoblasts, Mol. Cell. Endocrinol., 426 (2016) 146-154.
  • 29. E. De Luna-Bertos, J. Ramos-Torrecillas, O. García-Martínez, A. Guildford, M. Santin, C. Ruiz, Therapeutic doses of nonsteroidal anti-inflammatory drugs inhibit osteosarcoma MG-63 osteoblast-like cells maturation, viability, and biomineralization potential, Sci. World J., (2013) 2013.
  • 30. H. Axelsson, C. Lönnroth, M. Andersson, K. Lundholm, Mechanisms behind COX-1 and COX-2 inhibition of tumor growth in vivo, Int. J. Oncol., 37 (2010) 1143.
  • 31. L. Díaz‐Rodríguez, O. García‐Martínez, M. Arroyo‐Morales, C. Reyes‐Botella, C. Ruiz, Antigenic Phenotype and Phagocytic Capacity of MG‐63 Osteosarcoma Line, Ann. N. Y. Acad. Sci., 1173 (2009) E46-E54.
  • 32. L. Díaz-Rodríguez, O. García-Martínez, E. De Luna-Bertos, J. Ramos-Torrecillas, C. Ruiz, Effect of ibuprofen on proliferation, differentiation, antigenic expression, and phagocytic capacity of osteoblasts, J. Bone Miner. Metab., 30 (2012a) 554-560.
  • 33. L. Díaz-Rodríguez, O. García-Martínez, M.A. Morales, L. Rodríguez-Pérez, B. Rubio-Ruiz, C. Ruiz, Effects of indomethacin, nimesulide, and diclofenac on human MG-63 osteosarcoma cell line, Biol. Res. Nurs., 14 (2012b) 98-107.
  • 34. E. De Luna-Bertos, J. Ramos-Torrecillas, O. García-Martínez, L. Diaz-Rodriguez, C. Ruiz, Effect of aspirin on cell growth of human MG-63 osteosarcoma line, Sci. World J., (2012) 2012.
  • 35. A. Aresta, T. Carbonara, F. Palmisano, C.G. Zambonin, Profiling urinary metabolites of naproxen by liquid chromatography–electrospray mass spectrometry, J. Pharm. Biomed. Anal., 41 (2006) 1312-1316.

In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells

Year 2021, Volume: 49 Issue: 1, 25 - 36, 01.01.2021
https://doi.org/10.15671/hjbc.680564

Abstract

The aim of this in vitro study was assessment of the cytotoxic level of 6-O-desmethylnaproxen. A mouse connective tissue fibroblast cell line, L929 was exposed to naproxen and 6-O-desmethylnaproxen in different concentrations for 24- and 48- hours. Cell viability was tested by MTT, while apoptosis was determined by AO/PI double staining method. The control group was free from any agent (DMEM only) and accepted as 100% cell viability. The IC50 results indicated that the inhibition of 50% cell viability was resulted by the highest concentration of 6-O-desmethylnaproxen (0.7 µg/mL) while none of naproxen concentration was caused 50% cell dead. Consequently, to avoid the unacceptable side effects of naproxen metabolites that evacuated by urine; further studies should be conducted to determine the accumulation of naproxen metabolites.

Project Number

Yok

References

  • 1. M. DellaGreca, M. Brigante, M. Isidori, A. Nardelli, L. Previtera, M. Rubino, F. Temussi, Phototransformation and ecotoxicity of the drug Naproxen-Na, Environ. Chem. Lett., 1 (2003) 237-241.
  • 2. R. Runkel, M. Chaplin, G. Boost, E. Segre, E. Forchielli, Absorption, distribution, metabolism, and excretion of naproxen in various laboratory animals and human subjects, J. Pharm. Sci., 61 (1972) 703-708.
  • 3. J.V. Andersen, S.H. Hansen, Simultaneous quantitative determination of naproxen, its metabolite 6-Odesmethylnaproxen and their five conjugates in plasma and urine samples by highperformance liquid chromatography on dynamically modified silica, J. Chromatogr., 10 (1992) 325-33.
  • 4. J.O. Miners, S. Coulter, R.H. Tukey, M.E. Veronese, D.J. Birkett, Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R-and S-naproxen, Biomed. PharmacothEr., 51 (1996) 1003-1008.
  • 5. D.F. Zhong, L. Sun, L. Liu, H.H. Huang, Microbial transformation of naproxen by Cunninghamella species, Acta Pharmacol. Sin., 24 (2003) 442-447.
  • 6. N.M. Davies, K.E. Anderson, Clinical pharmacokinetics of naproxen, Clin. Pharmacokinet., 32 (1997) 268-293.
  • 7. T. Tracy, C. Marra, S. Wrighton, F. Gonzalez, K. Korzekwa, Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation, Eur. J. Clin. Pharmacol., 52 (1997) 293-298.
  • 8. K. Fent, A. A. Weston, D. Caminada, Erratum to “Ecotoxicology of human pharmaceuticals”[Aquatic Toxicology 76 (2006) 122–159], Aquat. Toxicol., 78 (2006a) 207.
  • 9. D. Domaradzka, U. Guzik, D. Wojcieszyńska, Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs, Rev. Environ. Sci. Biotechnol., 14 (2015) 229-239.
  • 10. H. Hühnerfuss, S. Selke, M. Scheurell, M.R. Shah, S. Nadeem, The drug naproxen and its transformation products as an example for emerging environmental pollutants, Organohalog. Compd., 72 (2010) 467-470.
  • 11. L.D. Buckberry, Cytotoxicity Testing Using Cell Lines, Animal Cell Biotechnology, Humana Press, Totowa, NJ, 1999.
  • 12. M. Isidori, M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera, M. Rubino, Ecotoxicity of naproxen and its phototransformation products, Sci. Total. Environ., 348 (2005) 93-101.
  • 13. F.A. Alherz, D.A. Almarghalani, N.A. Hussein, K. Kurogi, M.C. Liu, A reappraisal of the 6-O-desmethylnaproxen-sulfating activity of the human cytosolic sulfotransferases, Can. J. Physiol. Pharmacol., 95 (2017) 647-651.
  • 14. XXXXXXXXXXXXXXX
  • 15. I. Correia, R. Arantes-Rodrigues, R. Pinto-Leite, I. Gaivão, Effects of naproxen on cell proliferation and genotoxicity in MG-63 osteosarcoma cell line, J. Toxicol. Env. Heal. A, 77 (2014) 916-923.
  • 16. B.I. Cohen, M.K. Pagnillo, B.L. Musikant, A.S. Deutsch, An in vitro study of the cytotoxicity of two root canal sealers, J. Endod., 26 (2000) 228-229.
  • 17. M. Akyol, Z. Akın Polat, S. Özçelik, Ö. Kaya, The effects of strontium chloride on viability of mouse connective tissue fibroblast cells, C.M.J., 35 (2013) 33-38.
  • 18. J. Carmichael, W.G. DeGraff, A.F. Gazdar, J.D. Minna, J.B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 47 (1987) 936-942.
  • 19. S. Mohan, A. Bustamam, S. Ibrahim, A.S. Al-Zubairi, M. Aspollah, R. Abdullah, M.M. Elhassan, In vitro ultramorphological assessment of apoptosis on CEMss induced by linoleic acid-rich fraction from Typhonium flagelliforme tuber, Evid. Based Complement. Alternat. Med., (2011) 2011.
  • 20. A. Wahab, S. Ibrahim, A.B. Abdul, A.S. Alzubairi, M. Mohamed Elhassan, S.Mohan, In vitro ultramorphological assessment of apoptosis induced by zerumbone on (HeLa), BioMed. Res. Int., (2009) 2009.
  • 21. G. Tan, M. Kaya, A. Tevlek, I. Sargin, T. Baran, Antitumor activity of chitosan from mayfly with comparison to commercially available low, medium and high molecular weight chitosans, In Vitro Cell. Dev. Biol. Anim., 54 (2018) 366-374.
  • 22. E. Marco-Urrea, M. Pérez-Trujillo, P. Blánquez, T. Vicent, G.Caminal, Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR, Bioresour. Technol., 101 (2010) 2159-2166.
  • 23. E. Ricciotti, G.A. FitzGerald, Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol., 31 (2011) 986-1000.
  • 24. C.E. Smith, S. Soti, T.A. Jones, A. Nakagawa, D. Xue, H. Yin, Non-steroidal anti-inflammatory drugs are caspase inhibitors, Cell Chem. Biol., 24 (2017) 281-292. 25. K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 76 (2006b) 122-159.
  • 26. C. Carlsson, A.K. Johansson, G. Alvan, K. Bergman, T. Kühler, Are pharmaceuticals potent environmental pollutants?: Part I: Environmental risk assessments of selected active pharmaceutical ingredients, Sci. Total Environ., 364 (2006) 67-87.
  • 27. S. Selke, M. Scheurell, M.R. Shah, H. Hühnerfuss, Identification and enantioselective gas chromatographic mass-spectrometric separation of O-desmethylnaproxen, the main metabolite of the drug naproxen, as a new environmental contaminant, J. Chromatogr. A., 1217 (2010) 419-423.
  • 28. G. Lucena,C. Reyes-Botella, O. García-Martínez, J. Ramos-Torrecillas, E.D.L., Bertos, C. Ruiz, Effect of NSAIDs on the aminopeptidase activity of cultured human osteoblasts, Mol. Cell. Endocrinol., 426 (2016) 146-154.
  • 29. E. De Luna-Bertos, J. Ramos-Torrecillas, O. García-Martínez, A. Guildford, M. Santin, C. Ruiz, Therapeutic doses of nonsteroidal anti-inflammatory drugs inhibit osteosarcoma MG-63 osteoblast-like cells maturation, viability, and biomineralization potential, Sci. World J., (2013) 2013.
  • 30. H. Axelsson, C. Lönnroth, M. Andersson, K. Lundholm, Mechanisms behind COX-1 and COX-2 inhibition of tumor growth in vivo, Int. J. Oncol., 37 (2010) 1143.
  • 31. L. Díaz‐Rodríguez, O. García‐Martínez, M. Arroyo‐Morales, C. Reyes‐Botella, C. Ruiz, Antigenic Phenotype and Phagocytic Capacity of MG‐63 Osteosarcoma Line, Ann. N. Y. Acad. Sci., 1173 (2009) E46-E54.
  • 32. L. Díaz-Rodríguez, O. García-Martínez, E. De Luna-Bertos, J. Ramos-Torrecillas, C. Ruiz, Effect of ibuprofen on proliferation, differentiation, antigenic expression, and phagocytic capacity of osteoblasts, J. Bone Miner. Metab., 30 (2012a) 554-560.
  • 33. L. Díaz-Rodríguez, O. García-Martínez, M.A. Morales, L. Rodríguez-Pérez, B. Rubio-Ruiz, C. Ruiz, Effects of indomethacin, nimesulide, and diclofenac on human MG-63 osteosarcoma cell line, Biol. Res. Nurs., 14 (2012b) 98-107.
  • 34. E. De Luna-Bertos, J. Ramos-Torrecillas, O. García-Martínez, L. Diaz-Rodriguez, C. Ruiz, Effect of aspirin on cell growth of human MG-63 osteosarcoma line, Sci. World J., (2012) 2012.
  • 35. A. Aresta, T. Carbonara, F. Palmisano, C.G. Zambonin, Profiling urinary metabolites of naproxen by liquid chromatography–electrospray mass spectrometry, J. Pharm. Biomed. Anal., 41 (2006) 1312-1316.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Esin Akbay 0000-0002-0797-8322

Y. Doruk Aracagök This is me

Ali Hakan Göker 0000-0002-9366-6949

Mehmet Ali Onur 0000-0002-3630-7982

Nilüfer Cihangir 0000-0002-0830-635X

Project Number Yok
Publication Date January 1, 2021
Acceptance Date October 8, 2020
Published in Issue Year 2021 Volume: 49 Issue: 1

Cite

APA Akbay, E., Aracagök, Y. D., Göker, A. H., Onur, M. A., et al. (2021). In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells. Hacettepe Journal of Biology and Chemistry, 49(1), 25-36. https://doi.org/10.15671/hjbc.680564
AMA Akbay E, Aracagök YD, Göker AH, Onur MA, Cihangir N. In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells. HJBC. January 2021;49(1):25-36. doi:10.15671/hjbc.680564
Chicago Akbay, Esin, Y. Doruk Aracagök, Ali Hakan Göker, Mehmet Ali Onur, and Nilüfer Cihangir. “In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells”. Hacettepe Journal of Biology and Chemistry 49, no. 1 (January 2021): 25-36. https://doi.org/10.15671/hjbc.680564.
EndNote Akbay E, Aracagök YD, Göker AH, Onur MA, Cihangir N (January 1, 2021) In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells. Hacettepe Journal of Biology and Chemistry 49 1 25–36.
IEEE E. Akbay, Y. D. Aracagök, A. H. Göker, M. A. Onur, and N. Cihangir, “In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells”, HJBC, vol. 49, no. 1, pp. 25–36, 2021, doi: 10.15671/hjbc.680564.
ISNAD Akbay, Esin et al. “In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells”. Hacettepe Journal of Biology and Chemistry 49/1 (January 2021), 25-36. https://doi.org/10.15671/hjbc.680564.
JAMA Akbay E, Aracagök YD, Göker AH, Onur MA, Cihangir N. In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells. HJBC. 2021;49:25–36.
MLA Akbay, Esin et al. “In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells”. Hacettepe Journal of Biology and Chemistry, vol. 49, no. 1, 2021, pp. 25-36, doi:10.15671/hjbc.680564.
Vancouver Akbay E, Aracagök YD, Göker AH, Onur MA, Cihangir N. In Vitro Evaluation Of Naproxen Metabolite, O-Desmethylnaproxen On A Mouse Connective Tissue Fibroblast Cells. HJBC. 2021;49(1):25-36.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc