Research Article
BibTex RIS Cite
Year 2021, Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress, 133 - 145, 08.02.2021
https://doi.org/10.15671/hjbc.687387

Abstract

References

  • 1. Ramírez, E. E. P., de la Luz Asunción, M., Rivalcoba, V. S., Hernández, A. L. M. and Santos, C. V., 2017, Removal of Phenolic Compounds from Water by Adsorption and Photocatalysis, In: Phenolic Compounds-Natural Sources, Importance and Applications, Eds: IntechOpen, p.
  • 2. Uddin, M., Islam, M. and Abedin, M., 2007, Adsorption of phenol from aqueous solution by water hyacinth ash, ARPN Journal of Engineering and Applied Sciences, 2 (2), 11-17.
  • 3. Gami, A. A., Shukor, M. Y., Khalil, K. A., Dahalan, F. A., Khalid, A. and Ahmad, S. A., Phenol and its toxicity: A short review.
  • 4. Mohammed, N. A., Abu-Zurayk, R. A., Hamadneh, I. and Al-Dujaili, A. H., 2018, Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies, Journal of environmental management, 226, 377-385.
  • 5. Shin, W.-s., 2017, Adsorption characteristics of phenol and heavy metals on biochar from Hizikia fusiformis, Environmental earth sciences, 76 (22), 782.
  • 6. Nuhoglu, Y. and Malkoc, E., 2009, Thermodynamic and kinetic studies for environmentaly friendly Ni (II) biosorption using waste pomace of olive oil factory, Bioresource technology, 100 (8), 2375-2380.
  • 7. Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribó, M. and Albiach, M. R., 2008, Composting olive mill pomace and other residues from rural southeastern Spain, Waste management, 28 (12), 2585-2592.
  • 8. Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E., 2012, Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products, Journal of Environmental Management, 96 (1), 35-42.
  • 9. Malkoc, E., Nuhoglu, Y. and Dundar, M., 2006, Adsorption of chromium (VI) on pomace an olive oil industry waste: batch and column studies, Journal of hazardous materials, 138 (1), 142-151.
  • 10. Martín-Lara, M., Pagnanelli, F., Mainelli, S., Calero, M. and Toro, L., 2008, Chemical treatment of olive pomace: Effect on acid-basic properties and metal biosorption capacity, Journal of hazardous materials, 156 (1), 448-457.
  • 11. Erekici, M., 2009, Doğal adsorbanlarla (mısır koçanı, çam kozalağı, pirina, kireç) arsenik giderimi, Yüksek Lisans Tezi, Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, Manisa, 79s.
  • 12. Bozkan, H., 2012, Azo boyalarının zeytin atığı (pirina) kullanılarak adsorpsiyon metodu ile giderimi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • 13. Dağdelen, S., 2012, Remazol Brillant Blue R Boyasının Sulu Çözeltiden Uzaklaştırılması için Zeytin Posasının (Pirina) Adsorbent Olarak Kullanımının Araştırılması, Kilis.
  • 14. Trakal, L., Šigut, R., Šillerová, H., Faturíková, D. and Komárek, M., 2014, Copper removal from aqueous solution using biochar: effect of chemical activation, Arabian Journal of Chemistry, 7 (1), 43-52.
  • 15. Elouear, Z., Bouzid, J., Boujelben, N. and Amor, R. B., 2009, Study of adsorbent derived from exhausted olive pomace for the removal of Pb2+ and Zn2+ from aqueous solutions, Environmental Engineering Science, 26 (4), 767-774.
  • 16. Komnitsas, K. A. and Zaharaki, D., 2016, Morphology of modified biochar and its potential for phenol removal from aqueous solutions, Frontiers in Environmental Science, 4, 26.
  • 17. Zhang, Y., Tang, Z., Liu, S., Xu, H. and Song, Z., 2018, Study on adsorption of phenol from aqueous media using biochar of Chinese herb residue, IOP Conference Series: Materials Science and Engineering, 022044.
  • 18. Xin, O., Yitong, H., Xi, C. andJiawei, C., 2017, Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution, Water Science and Technology, 75 (5), 1177-1184.
  • 19. Reddy, D. H. K. and Lee, S.-M., 2014, Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103.
  • 20. Yap, M., Mubarak, N., Sahu, J. and Abdullah, E., 2017, Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater, Journal of Industrial and Engineering Chemistry, 45, 287-295.
  • 21. “5530 PHENOLS (2017)”, Standard Methods For the Examination of Water and Wastewater.
  • 22. Langmuir, I., 1918, The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Ch emical society, 40 (9), 1361-1403.
  • 23. Dada, A., Olalekan, A., Olatunya, A. and Dada, O., 2012, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR Journal of Applied Chemistry, 3 (1), 38-45.
  • 24. Rahimi, M., Wadi, D. and Vadi, M., 2014, Langmuir, freundlich and temkin adsorption isotherm of captopril an ace inhibitor (or angiotensin-converting-enzyme inhibitor) is a pharmaceutical drug used for the treatment of hypertension by multi-wall carbon nanotube, Ind. J. Fund. Appl. Life Sci., 4, 933-937.
  • 25. Cheng, W. P., Gao, W., Cui, X., Ma, J. H. and Li, R. F., 2016, Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite, Journal of the Taiwan Institute of Chemical Engineers, 62, 192-198.
  • 26. Abdelwahab, O. and Amin, N., 2013, Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies, The Egyptian Journal of Aquatic Research, 39 (4), 215-223.
  • 27. Sun, J., Liu, X., Zhang, F., Zhou, J., Wu, J., Alsaedi, A., Hayat, T. and Li, J., 2019, Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 22-30.
  • 28. Erhayem, M., Al-Tohami, F., Mohamed, R. and Ahmida, K., 2015, Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinus officinalis leaves, American Journal of Analytical Chemistry, 6 (01), 1.
  • 29. Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A. and Walker, G. M., 2006, Sorption of Zn (II), Pb (II), and Co (II) using natural sorbents: equilibrium and kinetic studies, Water research, 40 (14), 2645-2658.
  • 30. Kayacan, S., 2007, Kömür ve koklarla sulu çözeltilerden boyar maddelerin uzaklaştırılması, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Yüksek Lisans Tezi.
  • 31. Soni, U., Bajpai, J., Singh, S. K. and Bajpai, A., 2017, Evaluation of chitosan-carbon based biocomposite for efficient removal of phenols from aqueous solutions, Journal of water process engineering, 16, 56-63.
  • 32. Ge, M., Wang, X., Du, M., Liang, G., Hu, G. and SM, J., 2019, Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: Kinetic and equilibrium studies, Materials, 12 (1), 96.
  • 33. Ho, Y.-S. and McKay, G., 1999, Pseudo-second order model for sorption processes, Process biochemistry, 34 (5), 451-465.
  • 34. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang, W. and Wang, K., 2012, Adsorption of methylene blue from aqueous solution by graphene, Colloids and Surfaces B: Biointerfaces, 90, 197-203.
  • 35. Özkaya, B., 2006, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of hazardous materials, 129(1-3), 158-163.
  • 36. Loredo-Cancino, M., Soto-Regalado, E., García-Reyes, R. B., Cerino-Córdova, F. D. J., Garza-González, M. T., Alcalá-Rodríguez, M. M., & Dávila-Guzmán, N. E.,2016, Adsorption and desorption of phenol onto barley husk-activated carbon in an airlift reactor. Desalination and Water Treatment, 57(2), 845-860.
  • 37. Liu, X., Wan, Y., Liu, P., Fu, Y., & Zou, W.,2018, A novel activated carbon prepared from grapefruit peel and its application in removal of phenolic compounds. Water Science and Technology, 77(10), 2517-2527.

Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics

Year 2021, Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress, 133 - 145, 08.02.2021
https://doi.org/10.15671/hjbc.687387

Abstract

In this study, magnetic biochar obtained from pyrolysis of pretreated olive pomace by iron chloride was used as adsorbent to remove phenol and the adsorption capacity of phenol was revealed. Batch experiments were performed as a function of pH, contact time, adsorbent dosage, temperature, and phenol concentration. Moreover, adsorption kinetics and thermodynamics of phenol adsorption onto magnetic biochar were also evaluated in the study. The optimum conditions for maximum adsorption capacity were obtained at pH of 5.7, dosage of biochar 0.14 g and 60 minutes contact time. In this study, three adsorption isotherms, namely Langmuir, Freundlich and Temkin, were applied to fit the equilibrium data of adsorption of phenol onto magnetic biochar. Results showed that correlation coefficients (R2) for three isotherm models decreased with the temperature increment from 20°C to 40°C and the most suitable isotherm model for adsorption was Freundlich. As for kinetics of the adsorption process, the best described model was found as pseudo-second order. In adsorption thermodynamics part, the negative ΔH° and ΔG° values demonstrated that adsorption was exothermic, feasible and was more spontaneous at lower temperatures.

References

  • 1. Ramírez, E. E. P., de la Luz Asunción, M., Rivalcoba, V. S., Hernández, A. L. M. and Santos, C. V., 2017, Removal of Phenolic Compounds from Water by Adsorption and Photocatalysis, In: Phenolic Compounds-Natural Sources, Importance and Applications, Eds: IntechOpen, p.
  • 2. Uddin, M., Islam, M. and Abedin, M., 2007, Adsorption of phenol from aqueous solution by water hyacinth ash, ARPN Journal of Engineering and Applied Sciences, 2 (2), 11-17.
  • 3. Gami, A. A., Shukor, M. Y., Khalil, K. A., Dahalan, F. A., Khalid, A. and Ahmad, S. A., Phenol and its toxicity: A short review.
  • 4. Mohammed, N. A., Abu-Zurayk, R. A., Hamadneh, I. and Al-Dujaili, A. H., 2018, Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies, Journal of environmental management, 226, 377-385.
  • 5. Shin, W.-s., 2017, Adsorption characteristics of phenol and heavy metals on biochar from Hizikia fusiformis, Environmental earth sciences, 76 (22), 782.
  • 6. Nuhoglu, Y. and Malkoc, E., 2009, Thermodynamic and kinetic studies for environmentaly friendly Ni (II) biosorption using waste pomace of olive oil factory, Bioresource technology, 100 (8), 2375-2380.
  • 7. Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribó, M. and Albiach, M. R., 2008, Composting olive mill pomace and other residues from rural southeastern Spain, Waste management, 28 (12), 2585-2592.
  • 8. Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E., 2012, Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products, Journal of Environmental Management, 96 (1), 35-42.
  • 9. Malkoc, E., Nuhoglu, Y. and Dundar, M., 2006, Adsorption of chromium (VI) on pomace an olive oil industry waste: batch and column studies, Journal of hazardous materials, 138 (1), 142-151.
  • 10. Martín-Lara, M., Pagnanelli, F., Mainelli, S., Calero, M. and Toro, L., 2008, Chemical treatment of olive pomace: Effect on acid-basic properties and metal biosorption capacity, Journal of hazardous materials, 156 (1), 448-457.
  • 11. Erekici, M., 2009, Doğal adsorbanlarla (mısır koçanı, çam kozalağı, pirina, kireç) arsenik giderimi, Yüksek Lisans Tezi, Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, Manisa, 79s.
  • 12. Bozkan, H., 2012, Azo boyalarının zeytin atığı (pirina) kullanılarak adsorpsiyon metodu ile giderimi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • 13. Dağdelen, S., 2012, Remazol Brillant Blue R Boyasının Sulu Çözeltiden Uzaklaştırılması için Zeytin Posasının (Pirina) Adsorbent Olarak Kullanımının Araştırılması, Kilis.
  • 14. Trakal, L., Šigut, R., Šillerová, H., Faturíková, D. and Komárek, M., 2014, Copper removal from aqueous solution using biochar: effect of chemical activation, Arabian Journal of Chemistry, 7 (1), 43-52.
  • 15. Elouear, Z., Bouzid, J., Boujelben, N. and Amor, R. B., 2009, Study of adsorbent derived from exhausted olive pomace for the removal of Pb2+ and Zn2+ from aqueous solutions, Environmental Engineering Science, 26 (4), 767-774.
  • 16. Komnitsas, K. A. and Zaharaki, D., 2016, Morphology of modified biochar and its potential for phenol removal from aqueous solutions, Frontiers in Environmental Science, 4, 26.
  • 17. Zhang, Y., Tang, Z., Liu, S., Xu, H. and Song, Z., 2018, Study on adsorption of phenol from aqueous media using biochar of Chinese herb residue, IOP Conference Series: Materials Science and Engineering, 022044.
  • 18. Xin, O., Yitong, H., Xi, C. andJiawei, C., 2017, Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution, Water Science and Technology, 75 (5), 1177-1184.
  • 19. Reddy, D. H. K. and Lee, S.-M., 2014, Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103.
  • 20. Yap, M., Mubarak, N., Sahu, J. and Abdullah, E., 2017, Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater, Journal of Industrial and Engineering Chemistry, 45, 287-295.
  • 21. “5530 PHENOLS (2017)”, Standard Methods For the Examination of Water and Wastewater.
  • 22. Langmuir, I., 1918, The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Ch emical society, 40 (9), 1361-1403.
  • 23. Dada, A., Olalekan, A., Olatunya, A. and Dada, O., 2012, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR Journal of Applied Chemistry, 3 (1), 38-45.
  • 24. Rahimi, M., Wadi, D. and Vadi, M., 2014, Langmuir, freundlich and temkin adsorption isotherm of captopril an ace inhibitor (or angiotensin-converting-enzyme inhibitor) is a pharmaceutical drug used for the treatment of hypertension by multi-wall carbon nanotube, Ind. J. Fund. Appl. Life Sci., 4, 933-937.
  • 25. Cheng, W. P., Gao, W., Cui, X., Ma, J. H. and Li, R. F., 2016, Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite, Journal of the Taiwan Institute of Chemical Engineers, 62, 192-198.
  • 26. Abdelwahab, O. and Amin, N., 2013, Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies, The Egyptian Journal of Aquatic Research, 39 (4), 215-223.
  • 27. Sun, J., Liu, X., Zhang, F., Zhou, J., Wu, J., Alsaedi, A., Hayat, T. and Li, J., 2019, Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 22-30.
  • 28. Erhayem, M., Al-Tohami, F., Mohamed, R. and Ahmida, K., 2015, Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinus officinalis leaves, American Journal of Analytical Chemistry, 6 (01), 1.
  • 29. Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A. and Walker, G. M., 2006, Sorption of Zn (II), Pb (II), and Co (II) using natural sorbents: equilibrium and kinetic studies, Water research, 40 (14), 2645-2658.
  • 30. Kayacan, S., 2007, Kömür ve koklarla sulu çözeltilerden boyar maddelerin uzaklaştırılması, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Yüksek Lisans Tezi.
  • 31. Soni, U., Bajpai, J., Singh, S. K. and Bajpai, A., 2017, Evaluation of chitosan-carbon based biocomposite for efficient removal of phenols from aqueous solutions, Journal of water process engineering, 16, 56-63.
  • 32. Ge, M., Wang, X., Du, M., Liang, G., Hu, G. and SM, J., 2019, Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: Kinetic and equilibrium studies, Materials, 12 (1), 96.
  • 33. Ho, Y.-S. and McKay, G., 1999, Pseudo-second order model for sorption processes, Process biochemistry, 34 (5), 451-465.
  • 34. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang, W. and Wang, K., 2012, Adsorption of methylene blue from aqueous solution by graphene, Colloids and Surfaces B: Biointerfaces, 90, 197-203.
  • 35. Özkaya, B., 2006, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of hazardous materials, 129(1-3), 158-163.
  • 36. Loredo-Cancino, M., Soto-Regalado, E., García-Reyes, R. B., Cerino-Córdova, F. D. J., Garza-González, M. T., Alcalá-Rodríguez, M. M., & Dávila-Guzmán, N. E.,2016, Adsorption and desorption of phenol onto barley husk-activated carbon in an airlift reactor. Desalination and Water Treatment, 57(2), 845-860.
  • 37. Liu, X., Wan, Y., Liu, P., Fu, Y., & Zou, W.,2018, A novel activated carbon prepared from grapefruit peel and its application in removal of phenolic compounds. Water Science and Technology, 77(10), 2517-2527.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gamze Göktepeli This is me 0000-0002-1019-4182

Sevil Yıldız This is me 0000-0002-1019-4182

Esra Yel 0000-0002-1019-4182

Publication Date February 8, 2021
Acceptance Date January 5, 2021
Published in Issue Year 2021 Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress

Cite

APA Göktepeli, G., Yıldız, S., & Yel, E. (2021). Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics. Hacettepe Journal of Biology and Chemistry, 49(2), 133-145. https://doi.org/10.15671/hjbc.687387
AMA Göktepeli G, Yıldız S, Yel E. Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics. HJBC. February 2021;49(2):133-145. doi:10.15671/hjbc.687387
Chicago Göktepeli, Gamze, Sevil Yıldız, and Esra Yel. “Phenol Adsorption on Magnetic Biochar Derived from Olive Pomace: Equilibrium, Kinetic and Thermodynamics”. Hacettepe Journal of Biology and Chemistry 49, no. 2 (February 2021): 133-45. https://doi.org/10.15671/hjbc.687387.
EndNote Göktepeli G, Yıldız S, Yel E (February 1, 2021) Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics. Hacettepe Journal of Biology and Chemistry 49 2 133–145.
IEEE G. Göktepeli, S. Yıldız, and E. Yel, “Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics”, HJBC, vol. 49, no. 2, pp. 133–145, 2021, doi: 10.15671/hjbc.687387.
ISNAD Göktepeli, Gamze et al. “Phenol Adsorption on Magnetic Biochar Derived from Olive Pomace: Equilibrium, Kinetic and Thermodynamics”. Hacettepe Journal of Biology and Chemistry 49/2 (February 2021), 133-145. https://doi.org/10.15671/hjbc.687387.
JAMA Göktepeli G, Yıldız S, Yel E. Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics. HJBC. 2021;49:133–145.
MLA Göktepeli, Gamze et al. “Phenol Adsorption on Magnetic Biochar Derived from Olive Pomace: Equilibrium, Kinetic and Thermodynamics”. Hacettepe Journal of Biology and Chemistry, vol. 49, no. 2, 2021, pp. 133-45, doi:10.15671/hjbc.687387.
Vancouver Göktepeli G, Yıldız S, Yel E. Phenol adsorption on magnetic biochar derived from olive pomace: Equilibrium, kinetic and thermodynamics. HJBC. 2021;49(2):133-45.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc