Research Article
BibTex RIS Cite
Year 2021, Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress, 157 - 166, 08.02.2021
https://doi.org/10.15671/hjbc.689446

Abstract

References

  • 1. B.M. Greenberg, X.-D. Huang, K. Gerhardt, B.R. Glick, J. Gurska, W. Wang, M. Lampi, A. Khalid, D. Isherwood, P. Chang, H. Wang, S.S. Wu, X.-M. Yu, D.G. Dixon, P. Gerwing, Field and laboratory tests of a multi-process phytoremediation system for decontamination of petroleum and salt impacted soils, In: Proceedings of the Ninth International in Situ and On-Site Remediation Symposium. A.R. Gavaskar, C.F. Silver, eds., Battelle Press, Columbus, 2017.
  • 2. T. Kösesakal, Tatlı Su Eğreltisi Azolla filiculoides Lam. kullanılarak petrol hidrokarbonlarının fitoremediasyonu. Doktora Tezi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, 2011.
  • 3. J. Chappell, Phytoremediation of TCE using Populus: Status Report, J. Chappell, Washington: US Environmental Protection Agency, Technology Innovation Office, 1997. (Electronic resource). Mode of access http://www.clu-in. com/phytoTCE. Htm, 1997.
  • 4. T. McIntyre, Phytoremediation of heavy metals from soils. Phytoremediation, Springer, Berlin, Heidelberg, pp. 97-123, 2003.
  • 5. A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes, Chemosphere, 83 (2011) 1297-1306.
  • 6. G. Favaro, D. De Leo, P. Pastore, F. Magno, A. Ballardin, Quantitative determination of chlorophenols in leather by pressurized liquid extraction and liquid chromatography with diode-array detection, J. Chromatogr. A, 1177 (2008) 36-42.
  • 7. U.G. Ahlborg, T.M. Thunberg, Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact, Crit. Rev. Toxicol., 7 (1980) 1-35.
  • 8. E.J. Hoekstra, H. de Weerd, E.W.B. de Leer, U.A.T.H. Brinkman, Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soils of a Douglas fir forest, Environ. Sci. Technol., 33 (1999) 2543-2549.
  • 9. M.A. Talano, D.C. Busso, C.E. Paisio, P.S. Gonzalez, S.A. Purro, M.I. Medina, E. Agostini, Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants. Environ. Sci. Pollut. Res., 19 (2012) 2202-2211.
  • 10. I. Stoilova, A. Krastanov, V. Stanchev, D. Daniel, M. Gerginova, Z. Alexieva, Z. Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enz. Microb. Tech., 39 (2006) 1036-1041.
  • 11. P., Jeffrey, M. Koplan, Toxicological Profile for chlorophenols. US Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry (ATSDR), 1999.
  • 12. A.D., Dimou, T.M., Sakellarides, F.K., Vosniakos, N., Giannoulis, E., Leneti, T. Albanis, Determination of phenolic compounds in the marine environment of Thermaikos Gulf, Northern Greece. Intern. J. Environ. Anal. Chem., 86 (2006) 119-130.
  • 13. F.W. Shaarani, B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol. Chem. Enginer. J., 169 (2011) 180-185.
  • 14. X. Shi, H. Leng, Y. Hu, Y. Liu, H. Duan, H. Sun, Y. Chen, Removal of 2,4-dichlorophenol in hydroponic solution by four Salix matsudana clones, Ecotoxicol. Environ. Saf., 86 (2012) 125-131.
  • 15. A. Kariñho-Betancourt, A.A. Agrawal, R. Halitschke, J. Núñez-arfán, Phylogenetic correlations among chemical and physical plant defenses change with ontogeny, New Phytol. 206 (2014) 796-806.
  • 16. APHA, AWWA, WEF, Standart methods for the examination of water and wastewater.American Public Health Association.Washington District of Columbia, (1998) 50-40.
  • 17. C.E. La Rotta, E. D’Elia, E.P.S. Bon, Choloroperoxidase mediated oxidation of chlorinated phenols using electrogenerated hydrogen peroxide. Elec. J. Biotechnol., 10 (2007) 24-36.
  • 18. F.H. Witham, D.F. Blayles, R.M. Devlin, Experiments in Plant Physiology. Van Nostrand Reinhold Company, New York. Pp, 55-56, 1971.
  • 19. P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H., Gartner, M.D. Provenzano, E.K., Fujimoto, N.M., Goeke, B.J. Olson, D.C., Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem., 150 (1985) 76-85. 1985.
  • 20. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95 (1979) 351-8.
  • 21. M.C. Rodriguez-Hernandez, R.G. De la-Cruz, E. Leyva, G. Navarro-Tovar, Typha latifolia as potential phytoremediator of 2, 4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes. Chemosphere, 173 (2017) 190-198.
  • 22. E. Genç, Ö. Atıcı, Chicken feather protein hydrolysate as a biostimulant improves the growth of wheat seedlings by affecting biochemical and physiological parameters. Turk. J. Bot., 43 (2019) 67-79.
  • 23. K. Buonasera, M. Lambreva, G. Rea, E. Touloupakis, M.T. Giardi, Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants. Anal. Bioanal. Chem. 401 (2011), 1139.
  • 24. O.O. Ayeni, P.A. Ndakidemi, R.G. Snyman, J.P. Odendaal, Chemical, biological and physiological indicators of metal pollution in wetlands. Sci. Res. Essays, 5 (2010), 1938-1949.
  • 25. G. Noctor, C.H. Foyer, Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology, 49 (1998), 249-279.

Investigating Usage Potential of Datura stramonium L. for Phytoremediation of 2,4-Dichlorophenol

Year 2021, Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress, 157 - 166, 08.02.2021
https://doi.org/10.15671/hjbc.689446

Abstract

In this work, the phytoremediation potential of 2,4-Dichlorophenol (2,4-DCP) from soil and wetlands by Datura stramonium L. (jimsonweed) was investigated. The medium of seedlings growing in a hydroponic system was adjusted to different concentrations (0.0, 75, 100, 125, 150, 175, 200, 225, 250 and 275 ppm) of 2,4-DCP. Four days later, the remediation rate of 2,4-DCP in the growth medium, and root-stem length, root-stem dry weight, lipid peroxidation (LPO), protein and photosynthetic pigment content of seedlings were evaluated. D. stramonium seedlings provided remediation of 2,4-DCP between 52-78% at all concentrations. In addition, the 2,4-DCP treatments inhibited the root-stem lengths and dry weights of seedlings compared to their controls, particularly at high doses such as 200-275 ppm, but not at low doses. The applications generally increased protein and LPO content of roots and leaves slightly, but did not affect chlorophyll. The results show that D. stramonium has a high usage potential for phytoremediation of 2,4-DCP.

References

  • 1. B.M. Greenberg, X.-D. Huang, K. Gerhardt, B.R. Glick, J. Gurska, W. Wang, M. Lampi, A. Khalid, D. Isherwood, P. Chang, H. Wang, S.S. Wu, X.-M. Yu, D.G. Dixon, P. Gerwing, Field and laboratory tests of a multi-process phytoremediation system for decontamination of petroleum and salt impacted soils, In: Proceedings of the Ninth International in Situ and On-Site Remediation Symposium. A.R. Gavaskar, C.F. Silver, eds., Battelle Press, Columbus, 2017.
  • 2. T. Kösesakal, Tatlı Su Eğreltisi Azolla filiculoides Lam. kullanılarak petrol hidrokarbonlarının fitoremediasyonu. Doktora Tezi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, 2011.
  • 3. J. Chappell, Phytoremediation of TCE using Populus: Status Report, J. Chappell, Washington: US Environmental Protection Agency, Technology Innovation Office, 1997. (Electronic resource). Mode of access http://www.clu-in. com/phytoTCE. Htm, 1997.
  • 4. T. McIntyre, Phytoremediation of heavy metals from soils. Phytoremediation, Springer, Berlin, Heidelberg, pp. 97-123, 2003.
  • 5. A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes, Chemosphere, 83 (2011) 1297-1306.
  • 6. G. Favaro, D. De Leo, P. Pastore, F. Magno, A. Ballardin, Quantitative determination of chlorophenols in leather by pressurized liquid extraction and liquid chromatography with diode-array detection, J. Chromatogr. A, 1177 (2008) 36-42.
  • 7. U.G. Ahlborg, T.M. Thunberg, Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact, Crit. Rev. Toxicol., 7 (1980) 1-35.
  • 8. E.J. Hoekstra, H. de Weerd, E.W.B. de Leer, U.A.T.H. Brinkman, Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soils of a Douglas fir forest, Environ. Sci. Technol., 33 (1999) 2543-2549.
  • 9. M.A. Talano, D.C. Busso, C.E. Paisio, P.S. Gonzalez, S.A. Purro, M.I. Medina, E. Agostini, Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants. Environ. Sci. Pollut. Res., 19 (2012) 2202-2211.
  • 10. I. Stoilova, A. Krastanov, V. Stanchev, D. Daniel, M. Gerginova, Z. Alexieva, Z. Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enz. Microb. Tech., 39 (2006) 1036-1041.
  • 11. P., Jeffrey, M. Koplan, Toxicological Profile for chlorophenols. US Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry (ATSDR), 1999.
  • 12. A.D., Dimou, T.M., Sakellarides, F.K., Vosniakos, N., Giannoulis, E., Leneti, T. Albanis, Determination of phenolic compounds in the marine environment of Thermaikos Gulf, Northern Greece. Intern. J. Environ. Anal. Chem., 86 (2006) 119-130.
  • 13. F.W. Shaarani, B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol. Chem. Enginer. J., 169 (2011) 180-185.
  • 14. X. Shi, H. Leng, Y. Hu, Y. Liu, H. Duan, H. Sun, Y. Chen, Removal of 2,4-dichlorophenol in hydroponic solution by four Salix matsudana clones, Ecotoxicol. Environ. Saf., 86 (2012) 125-131.
  • 15. A. Kariñho-Betancourt, A.A. Agrawal, R. Halitschke, J. Núñez-arfán, Phylogenetic correlations among chemical and physical plant defenses change with ontogeny, New Phytol. 206 (2014) 796-806.
  • 16. APHA, AWWA, WEF, Standart methods for the examination of water and wastewater.American Public Health Association.Washington District of Columbia, (1998) 50-40.
  • 17. C.E. La Rotta, E. D’Elia, E.P.S. Bon, Choloroperoxidase mediated oxidation of chlorinated phenols using electrogenerated hydrogen peroxide. Elec. J. Biotechnol., 10 (2007) 24-36.
  • 18. F.H. Witham, D.F. Blayles, R.M. Devlin, Experiments in Plant Physiology. Van Nostrand Reinhold Company, New York. Pp, 55-56, 1971.
  • 19. P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H., Gartner, M.D. Provenzano, E.K., Fujimoto, N.M., Goeke, B.J. Olson, D.C., Klenk, Measurement of protein using bicinchoninic acid. Anal. Biochem., 150 (1985) 76-85. 1985.
  • 20. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95 (1979) 351-8.
  • 21. M.C. Rodriguez-Hernandez, R.G. De la-Cruz, E. Leyva, G. Navarro-Tovar, Typha latifolia as potential phytoremediator of 2, 4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes. Chemosphere, 173 (2017) 190-198.
  • 22. E. Genç, Ö. Atıcı, Chicken feather protein hydrolysate as a biostimulant improves the growth of wheat seedlings by affecting biochemical and physiological parameters. Turk. J. Bot., 43 (2019) 67-79.
  • 23. K. Buonasera, M. Lambreva, G. Rea, E. Touloupakis, M.T. Giardi, Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants. Anal. Bioanal. Chem. 401 (2011), 1139.
  • 24. O.O. Ayeni, P.A. Ndakidemi, R.G. Snyman, J.P. Odendaal, Chemical, biological and physiological indicators of metal pollution in wetlands. Sci. Res. Essays, 5 (2010), 1938-1949.
  • 25. G. Noctor, C.H. Foyer, Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology, 49 (1998), 249-279.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zeynep Ceylan 0000-0003-1231-6929

Mohammad Moharramzadeh This is me 0000-0003-4235-8599

Ökkeş Atıcı 0000-0001-6256-5101

Publication Date February 8, 2021
Acceptance Date January 18, 2021
Published in Issue Year 2021 Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress

Cite

APA Ceylan, Z., Moharramzadeh, M., & Atıcı, Ö. (2021). Investigating Usage Potential of Datura stramonium L. for Phytoremediation of 2,4-Dichlorophenol. Hacettepe Journal of Biology and Chemistry, 49(2), 157-166. https://doi.org/10.15671/hjbc.689446
AMA Ceylan Z, Moharramzadeh M, Atıcı Ö. Investigating Usage Potential of Datura stramonium L. for Phytoremediation of 2,4-Dichlorophenol. HJBC. February 2021;49(2):157-166. doi:10.15671/hjbc.689446
Chicago Ceylan, Zeynep, Mohammad Moharramzadeh, and Ökkeş Atıcı. “Investigating Usage Potential of Datura Stramonium L. For Phytoremediation of 2,4-Dichlorophenol”. Hacettepe Journal of Biology and Chemistry 49, no. 2 (February 2021): 157-66. https://doi.org/10.15671/hjbc.689446.
EndNote Ceylan Z, Moharramzadeh M, Atıcı Ö (February 1, 2021) Investigating Usage Potential of Datura stramonium L. for Phytoremediation of 2,4-Dichlorophenol. Hacettepe Journal of Biology and Chemistry 49 2 157–166.
IEEE Z. Ceylan, M. Moharramzadeh, and Ö. Atıcı, “Investigating Usage Potential of Datura stramonium L. for Phytoremediation of 2,4-Dichlorophenol”, HJBC, vol. 49, no. 2, pp. 157–166, 2021, doi: 10.15671/hjbc.689446.
ISNAD Ceylan, Zeynep et al. “Investigating Usage Potential of Datura Stramonium L. For Phytoremediation of 2,4-Dichlorophenol”. Hacettepe Journal of Biology and Chemistry 49/2 (February 2021), 157-166. https://doi.org/10.15671/hjbc.689446.
JAMA Ceylan Z, Moharramzadeh M, Atıcı Ö. Investigating Usage Potential of Datura stramonium L. for Phytoremediation of 2,4-Dichlorophenol. HJBC. 2021;49:157–166.
MLA Ceylan, Zeynep et al. “Investigating Usage Potential of Datura Stramonium L. For Phytoremediation of 2,4-Dichlorophenol”. Hacettepe Journal of Biology and Chemistry, vol. 49, no. 2, 2021, pp. 157-66, doi:10.15671/hjbc.689446.
Vancouver Ceylan Z, Moharramzadeh M, Atıcı Ö. Investigating Usage Potential of Datura stramonium L. for Phytoremediation of 2,4-Dichlorophenol. HJBC. 2021;49(2):157-66.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc