Research Article
BibTex RIS Cite
Year 2021, Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress, 175 - 187, 08.02.2021
https://doi.org/10.15671/hjbc.795908

Abstract

References

  • [1] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B. (1992). doi:10.1103/PhysRevB.46.15578.
  • [2] G. Nootz, L.A. Padilha, L. Levina, V. Sukhovatkin, S. Webster, L. Brzozowski, E.H. Sargent, D.J. Hagan, E.W. Van Stryland, Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots, Phys. Rev. B - Condens. Matter Mater. Phys. (2011). doi:10.1103/PhysRevB.83.155302.
  • [3] M.C. Beard, Multiple exciton generation in semiconductor quantum dots, J. Phys. Chem. Lett. 2 (2011) 1282–1288. doi:10.1021/jz200166y.
  • [4] M.C. Beard, A.G. Midgett, M.C. Hanna, J.M. Luther, B.K. Hughes, A.J. Nozik, Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: Implications for enhancement of solar energy conversion, Nano Lett. 10 (2010) 3019–3027. doi:10.1021/nl101490z.
  • [5] P. Ramasamy, N. Kim, Y.S. Kang, O. Ramirez, J.S. Lee, Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots, Chem. Mater. (2017). doi:10.1021/acs.chemmater.7b02204.
  • [6] M. Greben, A. Fucikova, J. Valenta, Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions, J. Appl. Phys. (2015). doi:10.1063/1.4917388.
  • [7] V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, M. Ishikawa, Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues, Biotechnol. Adv. (2010). doi:10.1016/j.biotechadv.2009.11.007.
  • [8] F. Zhang, S. Wang, L. Wang, Q. Lin, H. Shen, W. Cao, C. Yang, H. Wang, L. Yu, Z. Du, J. Xue, L.S. Li, Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets, Nanoscale. (2016). doi:10.1039/c6nr02922a.
  • [9] E. Elibol, Effects of different counter electrodes on performance of CdSeTe alloy QDSSC, Sol. Energy. 197 (2020) 519–526. doi:10.1016/j.solener.2020.01.035.
  • [10] R. Li, J. Che, H. Zhang, J. He, A. Bahi, F. Ko, Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot, J. Nanoparticle Res. (2014). doi:10.1007/s11051-014-2581-1.
  • [11] A.M. Smith, S. Nie, Next-generation quantum dots., Nat. Biotechnol. 27 (2009) 732–3. doi:10.1038/nbt0809-732.
  • [12] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519. doi:10.1063/1.1736034.
  • [13] E. Elibol, N. Tutkun, Improving CdTe QDSSC’s performance by Cannula synthesis method of CdTe QD, Mater. Sci. Semicond. Process. (2019). doi:10.1016/j.mssp.2019.01.014.
  • [14] C.H. Wang, T. Te Chen, Y.F. Chen, M.L. Ho, C.W. Lai, P.T. Chou, Recombination dynamics in CdTe/CdSe type-II quantum dots, Nanotechnology. (2008). doi:10.1088/0957-4484/19/11/115702.
  • [15] Y.F. Liu, J.S. Yu, In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility, J. Colloid Interface Sci. 351 (2010) 1–9. doi:10.1016/j.jcis.2010.07.047.
  • [16] T. Toyoda, J. Sato, Q. Shen, Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes, Rev. Sci. Instrum. 74 (2003) 297–299. doi:10.1063/1.1515898.
  • [17] Y.S. Lee, C.V.V.M. Gopi, M. Venkata-Haritha, H.J. Kim, Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure, Dalt. Trans. (2016). doi:10.1039/c6dt02531e.
  • [18] J. Chen, W. Lei, W.Q. Deng, Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot, Nanoscale. (2011). doi:10.1039/c0nr00591f.
  • [19] Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe, Adv. Funct. Mater. (2009). doi:10.1002/adfm.200800940.
  • [20] X.Y. Yu, B.X. Lei, D. Bin Kuang, C.Y. Su, High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells, J. Mater. Chem. (2012). doi:10.1039/c2jm16738g.
  • [21] J. Liu, J. Liu, C. Wang, Z. Ge, D. Wang, L. Xia, L. Guo, N. Du, X. Hao, H. Xiao, A novel ZnS/SiO2 double passivation layers for the CdS/CdSe quantum dots co-sensitized solar cells based on zinc titanium mixed metal oxides, Sol. Energy Mater. Sol. Cells. (2020). doi:10.1016/j.solmat.2019.110380.
  • [22] T. Wang, A.M. Navarrete-López, S. Li, D.A. Dixon, J.L. Gole, Hydrolysis of TiCl 4 : Initial Steps in the Production of TiO 2, J. Phys. Chem. A. 114 (2010) 7561–7570. doi:10.1021/jp102020h.
  • [23] H.J. Lee, J. Bang, J. Park, S. Kim, S.M. Park, Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: All prepared by successive ionic layer adsorption and reaction processes, Chem. Mater. (2010). doi:10.1021/cm102024s.
  • [24] X. Chen, J.L. Hutchison, P.J. Dobson, G. Wakefield, Highly luminescent monodisperse CdSe nanoparticles synthesized in aqueous solution, J. Mater. Sci. (2009). doi:10.1007/s10853-008-3055-6.
  • [25] D. Esparza, T. Lopez-Luke, J. Oliva, A. Cerdán-Pasarán, A. Martínez-Benítez, I. Mora-Seró, E.D. la Rosa, Enhancement of Efficiency in Quantum Dot Sensitized Solar Cells Based on CdS/CdSe/CdSeTe Heterostructure by Improving the Light Absorption in the VIS-NIR Region, Electrochim. Acta. (2017). doi:10.1016/j.electacta.2017.07.060.
  • [26] S.A. Pawar, D.S. Patil, H.R. Jung, J.Y. Park, S.S. Mali, C.K. Hong, J.C. Shin, P.S. Patil, J.H. Kim, Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure, Electrochim. Acta. (2016). doi:10.1016/j.electacta.2016.04.029.
  • [27] J. Newman, K.E. Thomas-Alyea, Electrochemical Systems, 2004. doi:10.1086/421629.
  • [28] W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater. 15 (2003) 2854–2860. doi:10.1021/cm034081k.
  • [29] S. Mussa Farkhani, A. Valizadeh, Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots., IET Nanobiotechnol. 8 (2014) 59–76. doi:10.1049/iet-nbt.2012.0028.
  • [30] M.A. Malik, P. O’Brien, N. Revaprasadu, A simple route to the synthesis of core/shell nanoparticles of chalcogenides, Chem. Mater. 14 (2002) 2004–2010. doi:10.1021/cm011154w.
  • [31] E. Elibol, Effects of different counter electrodes on performance of CdSeTe alloy QDSSC, Sol. Energy. 197 (2020) 519–526. doi:10.1016/j.solener.2020.01.035.
  • [32] J. Yang, X. Zhong, CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media, J. Mater. Chem. A. 4 (2016) 16553–16561. doi:10.1039/C6TA07399A.
  • [33] C. Liu, L. Mu, J. Jia, X. Zhou, Y. Lin, Boosting the cell efficiency of CdSe quantum dot sensitized solar cellvia a modified ZnS post-treatment, Electrochim. Acta. (2013). doi:10.1016/j.electacta.2013.07.220.
  • [34] K. Zhao, Z. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control, J. Am. Chem. Soc. (2015). doi:10.1021/jacs.5b01946.

Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design

Year 2021, Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress, 175 - 187, 08.02.2021
https://doi.org/10.15671/hjbc.795908

Abstract

The interest in quantum dot sensitized solar cells (QDSSC), which has theoretically proved to have up to 44% energy conversion efficiency in recent years, is growing rapidly. Although it has theoretically high efficiency value, PCE obtained in studies with QDSSCs is far from these values. This situation shows that there are many difficulties to be solved in QDSSC technology. One of the main challenges in QDSSC technology is irradiated load recombination occurring in QDSSC. For this reason, in this study, it is about using CdSeS QDs as an alternative to the most used CdS QDs in the literature in order to suppress the load recombination between TiO2 surface and electrolyte and QD surfaces. In the study, while CdS and CdSeS QDs were coated on the TiO2 surface with SILAR method, the previously synthesized CdSe QD was coated with chemical deep deposition method. Surfaces were last treated with ZnS QDs. An optimization study was carried out to determine the ideal number of CdSeS coatings for QDSSCs. As a result, the Jsc and Voc values for TiO2/CdSeS4/CdSe/ZnS QDSSCs were 8.799 mA/cm2 and 0.795 V, respectively, while the PCE value increased to 4.452%.

References

  • [1] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B. (1992). doi:10.1103/PhysRevB.46.15578.
  • [2] G. Nootz, L.A. Padilha, L. Levina, V. Sukhovatkin, S. Webster, L. Brzozowski, E.H. Sargent, D.J. Hagan, E.W. Van Stryland, Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots, Phys. Rev. B - Condens. Matter Mater. Phys. (2011). doi:10.1103/PhysRevB.83.155302.
  • [3] M.C. Beard, Multiple exciton generation in semiconductor quantum dots, J. Phys. Chem. Lett. 2 (2011) 1282–1288. doi:10.1021/jz200166y.
  • [4] M.C. Beard, A.G. Midgett, M.C. Hanna, J.M. Luther, B.K. Hughes, A.J. Nozik, Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: Implications for enhancement of solar energy conversion, Nano Lett. 10 (2010) 3019–3027. doi:10.1021/nl101490z.
  • [5] P. Ramasamy, N. Kim, Y.S. Kang, O. Ramirez, J.S. Lee, Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots, Chem. Mater. (2017). doi:10.1021/acs.chemmater.7b02204.
  • [6] M. Greben, A. Fucikova, J. Valenta, Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions, J. Appl. Phys. (2015). doi:10.1063/1.4917388.
  • [7] V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, M. Ishikawa, Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues, Biotechnol. Adv. (2010). doi:10.1016/j.biotechadv.2009.11.007.
  • [8] F. Zhang, S. Wang, L. Wang, Q. Lin, H. Shen, W. Cao, C. Yang, H. Wang, L. Yu, Z. Du, J. Xue, L.S. Li, Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets, Nanoscale. (2016). doi:10.1039/c6nr02922a.
  • [9] E. Elibol, Effects of different counter electrodes on performance of CdSeTe alloy QDSSC, Sol. Energy. 197 (2020) 519–526. doi:10.1016/j.solener.2020.01.035.
  • [10] R. Li, J. Che, H. Zhang, J. He, A. Bahi, F. Ko, Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot, J. Nanoparticle Res. (2014). doi:10.1007/s11051-014-2581-1.
  • [11] A.M. Smith, S. Nie, Next-generation quantum dots., Nat. Biotechnol. 27 (2009) 732–3. doi:10.1038/nbt0809-732.
  • [12] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519. doi:10.1063/1.1736034.
  • [13] E. Elibol, N. Tutkun, Improving CdTe QDSSC’s performance by Cannula synthesis method of CdTe QD, Mater. Sci. Semicond. Process. (2019). doi:10.1016/j.mssp.2019.01.014.
  • [14] C.H. Wang, T. Te Chen, Y.F. Chen, M.L. Ho, C.W. Lai, P.T. Chou, Recombination dynamics in CdTe/CdSe type-II quantum dots, Nanotechnology. (2008). doi:10.1088/0957-4484/19/11/115702.
  • [15] Y.F. Liu, J.S. Yu, In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility, J. Colloid Interface Sci. 351 (2010) 1–9. doi:10.1016/j.jcis.2010.07.047.
  • [16] T. Toyoda, J. Sato, Q. Shen, Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes, Rev. Sci. Instrum. 74 (2003) 297–299. doi:10.1063/1.1515898.
  • [17] Y.S. Lee, C.V.V.M. Gopi, M. Venkata-Haritha, H.J. Kim, Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure, Dalt. Trans. (2016). doi:10.1039/c6dt02531e.
  • [18] J. Chen, W. Lei, W.Q. Deng, Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot, Nanoscale. (2011). doi:10.1039/c0nr00591f.
  • [19] Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe, Adv. Funct. Mater. (2009). doi:10.1002/adfm.200800940.
  • [20] X.Y. Yu, B.X. Lei, D. Bin Kuang, C.Y. Su, High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells, J. Mater. Chem. (2012). doi:10.1039/c2jm16738g.
  • [21] J. Liu, J. Liu, C. Wang, Z. Ge, D. Wang, L. Xia, L. Guo, N. Du, X. Hao, H. Xiao, A novel ZnS/SiO2 double passivation layers for the CdS/CdSe quantum dots co-sensitized solar cells based on zinc titanium mixed metal oxides, Sol. Energy Mater. Sol. Cells. (2020). doi:10.1016/j.solmat.2019.110380.
  • [22] T. Wang, A.M. Navarrete-López, S. Li, D.A. Dixon, J.L. Gole, Hydrolysis of TiCl 4 : Initial Steps in the Production of TiO 2, J. Phys. Chem. A. 114 (2010) 7561–7570. doi:10.1021/jp102020h.
  • [23] H.J. Lee, J. Bang, J. Park, S. Kim, S.M. Park, Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: All prepared by successive ionic layer adsorption and reaction processes, Chem. Mater. (2010). doi:10.1021/cm102024s.
  • [24] X. Chen, J.L. Hutchison, P.J. Dobson, G. Wakefield, Highly luminescent monodisperse CdSe nanoparticles synthesized in aqueous solution, J. Mater. Sci. (2009). doi:10.1007/s10853-008-3055-6.
  • [25] D. Esparza, T. Lopez-Luke, J. Oliva, A. Cerdán-Pasarán, A. Martínez-Benítez, I. Mora-Seró, E.D. la Rosa, Enhancement of Efficiency in Quantum Dot Sensitized Solar Cells Based on CdS/CdSe/CdSeTe Heterostructure by Improving the Light Absorption in the VIS-NIR Region, Electrochim. Acta. (2017). doi:10.1016/j.electacta.2017.07.060.
  • [26] S.A. Pawar, D.S. Patil, H.R. Jung, J.Y. Park, S.S. Mali, C.K. Hong, J.C. Shin, P.S. Patil, J.H. Kim, Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure, Electrochim. Acta. (2016). doi:10.1016/j.electacta.2016.04.029.
  • [27] J. Newman, K.E. Thomas-Alyea, Electrochemical Systems, 2004. doi:10.1086/421629.
  • [28] W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater. 15 (2003) 2854–2860. doi:10.1021/cm034081k.
  • [29] S. Mussa Farkhani, A. Valizadeh, Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots., IET Nanobiotechnol. 8 (2014) 59–76. doi:10.1049/iet-nbt.2012.0028.
  • [30] M.A. Malik, P. O’Brien, N. Revaprasadu, A simple route to the synthesis of core/shell nanoparticles of chalcogenides, Chem. Mater. 14 (2002) 2004–2010. doi:10.1021/cm011154w.
  • [31] E. Elibol, Effects of different counter electrodes on performance of CdSeTe alloy QDSSC, Sol. Energy. 197 (2020) 519–526. doi:10.1016/j.solener.2020.01.035.
  • [32] J. Yang, X. Zhong, CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media, J. Mater. Chem. A. 4 (2016) 16553–16561. doi:10.1039/C6TA07399A.
  • [33] C. Liu, L. Mu, J. Jia, X. Zhou, Y. Lin, Boosting the cell efficiency of CdSe quantum dot sensitized solar cellvia a modified ZnS post-treatment, Electrochim. Acta. (2013). doi:10.1016/j.electacta.2013.07.220.
  • [34] K. Zhao, Z. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control, J. Am. Chem. Soc. (2015). doi:10.1021/jacs.5b01946.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erdem Elibol 0000-0003-0328-5534

Publication Date February 8, 2021
Acceptance Date February 7, 2021
Published in Issue Year 2021 Issue: 2 - Special Issue for 2nd International Environmental Chemistry Congress

Cite

APA Elibol, E. (2021). Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design. Hacettepe Journal of Biology and Chemistry, 49(2), 175-187. https://doi.org/10.15671/hjbc.795908
AMA Elibol E. Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design. HJBC. February 2021;49(2):175-187. doi:10.15671/hjbc.795908
Chicago Elibol, Erdem. “Charge Recombination Suppressed CdSeS/CdSe/ZnS QDSSC Design”. Hacettepe Journal of Biology and Chemistry 49, no. 2 (February 2021): 175-87. https://doi.org/10.15671/hjbc.795908.
EndNote Elibol E (February 1, 2021) Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design. Hacettepe Journal of Biology and Chemistry 49 2 175–187.
IEEE E. Elibol, “Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design”, HJBC, vol. 49, no. 2, pp. 175–187, 2021, doi: 10.15671/hjbc.795908.
ISNAD Elibol, Erdem. “Charge Recombination Suppressed CdSeS/CdSe/ZnS QDSSC Design”. Hacettepe Journal of Biology and Chemistry 49/2 (February 2021), 175-187. https://doi.org/10.15671/hjbc.795908.
JAMA Elibol E. Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design. HJBC. 2021;49:175–187.
MLA Elibol, Erdem. “Charge Recombination Suppressed CdSeS/CdSe/ZnS QDSSC Design”. Hacettepe Journal of Biology and Chemistry, vol. 49, no. 2, 2021, pp. 175-87, doi:10.15671/hjbc.795908.
Vancouver Elibol E. Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design. HJBC. 2021;49(2):175-87.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc