BibTex RIS Cite

Use of Bayesian Approach in Chemistry

Year 2011, Volume: 39 Issue: 1, 19 - 22, 01.01.2011

Abstract

Bayesian approach is a popular topic today in many fields of study in which statistics is used. The availability of stochastic simulation technique such as Markov Chain Monte Carlo makes exact Bayesian solution possible even in very complex and high dimensional models. The purpose of this short review paper is to emphasize the basic principles and to show the use of Markov Chain Monte Carlo technique for Chemistry data.

References

  • A. Gelman, J.B. Carlin, S.H. Stern, D.B. Rubin, Bayesian data analysis, Chapman and Hall, 2004.
  • D.B. Hibbert, N. Armstrong, An introduction to Bayesian methods for analyzing chemistry data: Part II: A review of applications of Bayesian methods in Chemistry, Chemometrics and intelligent laboratory systems, 97(2) (2009) 211.
  • A. O’Hagan, Bayesian statistics: principles and benefits, Wageningen UR frontis series, Bayesian statistics and quality modeling in agro-food production chain, 3 (2004) 31.
  • A. O’Hagan, Eliciting expert beliefs in substantial practical applications, The statistician, 47 (1998) 21.
  • J.M. Bernardo, A.F.M. Smith, Bayesian theory, Wiley, 1994.
  • G. Wright, P. Ayton, (eds.), Subjective probability, Wiley, 1994.
  • The opportunities and advantages of using Bayesian statistics in clinical trials, http://www.tesella.com.
  • D. Gamerman, Markov Chain Monte Carlo: Stochastic simulation for Bayesian inference, Chapman and Hall, 1997.
  • B.P. Carlin, T.A. Louis, Bayesian methods for data analysis, CRC Press, 2008.
  • A. Gelman, D.B. Rubin, Inference from iterative simulation using multiple sequences (with discussion), Statistical Science, 7 (1992) 457.
  • S. Brooks, P. Giudici, MCMC convergence assessment via two way ANOVA, J. Computational and Graphical Statistics, 9 (2000) 266.

Bayesci Yaklaşımın Kimyada Kullanımı

Year 2011, Volume: 39 Issue: 1, 19 - 22, 01.01.2011

Abstract

Günümüzde Bayesci yaklaşım istatistiğin kullanıldığı birçok alanda revaçta olan bir yaklaşımdır. Stokastik simülasyon tekniği olan Markov Zinciri Monte Carlo yönteminin varlığı, karmaşık ve yüksek boyutlu modellerde bile Bayesci çözümlemelerin elde edilmesine olanak sağlar. Bu kısa derlemenin amacı, Bayesci yaklaşımın temel ilkeleri üzerinde durmak ve Markov Zinciri Monte Carlo yönteminin kimya verileri için nasıl kullanılabileceğini göstermektir

References

  • A. Gelman, J.B. Carlin, S.H. Stern, D.B. Rubin, Bayesian data analysis, Chapman and Hall, 2004.
  • D.B. Hibbert, N. Armstrong, An introduction to Bayesian methods for analyzing chemistry data: Part II: A review of applications of Bayesian methods in Chemistry, Chemometrics and intelligent laboratory systems, 97(2) (2009) 211.
  • A. O’Hagan, Bayesian statistics: principles and benefits, Wageningen UR frontis series, Bayesian statistics and quality modeling in agro-food production chain, 3 (2004) 31.
  • A. O’Hagan, Eliciting expert beliefs in substantial practical applications, The statistician, 47 (1998) 21.
  • J.M. Bernardo, A.F.M. Smith, Bayesian theory, Wiley, 1994.
  • G. Wright, P. Ayton, (eds.), Subjective probability, Wiley, 1994.
  • The opportunities and advantages of using Bayesian statistics in clinical trials, http://www.tesella.com.
  • D. Gamerman, Markov Chain Monte Carlo: Stochastic simulation for Bayesian inference, Chapman and Hall, 1997.
  • B.P. Carlin, T.A. Louis, Bayesian methods for data analysis, CRC Press, 2008.
  • A. Gelman, D.B. Rubin, Inference from iterative simulation using multiple sequences (with discussion), Statistical Science, 7 (1992) 457.
  • S. Brooks, P. Giudici, MCMC convergence assessment via two way ANOVA, J. Computational and Graphical Statistics, 9 (2000) 266.
There are 11 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Turhan Menteş This is me

Publication Date January 1, 2011
Published in Issue Year 2011 Volume: 39 Issue: 1

Cite

APA Menteş, T. (2011). Use of Bayesian Approach in Chemistry. Hacettepe Journal of Biology and Chemistry, 39(1), 19-22.
AMA Menteş T. Use of Bayesian Approach in Chemistry. HJBC. January 2011;39(1):19-22.
Chicago Menteş, Turhan. “Use of Bayesian Approach in Chemistry”. Hacettepe Journal of Biology and Chemistry 39, no. 1 (January 2011): 19-22.
EndNote Menteş T (January 1, 2011) Use of Bayesian Approach in Chemistry. Hacettepe Journal of Biology and Chemistry 39 1 19–22.
IEEE T. Menteş, “Use of Bayesian Approach in Chemistry”, HJBC, vol. 39, no. 1, pp. 19–22, 2011.
ISNAD Menteş, Turhan. “Use of Bayesian Approach in Chemistry”. Hacettepe Journal of Biology and Chemistry 39/1 (January 2011), 19-22.
JAMA Menteş T. Use of Bayesian Approach in Chemistry. HJBC. 2011;39:19–22.
MLA Menteş, Turhan. “Use of Bayesian Approach in Chemistry”. Hacettepe Journal of Biology and Chemistry, vol. 39, no. 1, 2011, pp. 19-22.
Vancouver Menteş T. Use of Bayesian Approach in Chemistry. HJBC. 2011;39(1):19-22.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc