BibTex RIS Cite

Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction with Cancer Cells

Year 2011, Volume: 39 Issue: 2, 111 - 132, 01.04.2011

Abstract

Novel bioengineering functional organoboron homo- and copolymer of maleic anhydride MA were synthe- sized by 1 amidolysis of anhydride-containing macromolecules [poly MA-alt-methyl vinyl ether MVE as a bioengineering polymer] with 2-aminoethyldiphenylborinate 2-AEPB , 2 esterification with α-hydroxy-ω-methoxy-poly ethylene oxide PEO as a compatibilizer and 3 conjugation of organoboron PEO branches with folic acid as a targetting agent. Structure and composition of the synthesized oligomers were characterized by FTIR-ATR and 1H 13C NMR spectroscopy. Antitumor activity of the organoboron functional co polymers were investigated by a combination of various physical and biochemical methods such as cytotoxicity, statistical, apoptotic and necrotic cell indexes, double staining and caspase-3 immunostaining, light and fluorescence inverted microscope analyses. It was found that cytotoxicity and apoptotic/necrotic effects of organoboron macromolecules significantly depend on the structure and composition of studied co polymers. Some synthesized co polymers at 400 μg.mL-1 concentration as a therapeutic drug exhibits minimal toxicity toward the normal cells, but influential for cancer cells.

References

  • [1] P.A. Albertsson, Partition of Cell Particles and Macromolecules. (1986). New York, Wiley.
  • [2] D.A. Herold, K. Keil, D.E. Bruns, Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol., 38 (1989) 73.
  • [3] V.R. Sinha, A. Aggarwal, A. Trehan, Biodegradable PEGylated microspheres and nanospheres. Am. J. Drug Deliv., 2 (2004) 157.
  • [4] V. Köşeli, Z.M.O. Rzaev, E. Pişkin, Bioengineering functional copolymers. III. Synthesis of biocompatible poly(NIPA-co-MA)-g-PEO/PEI macrocomplexes and their thermostabilization effect on the activity of the enzyme penicillin G acylase, J. Polym. Sci. Part A: Polym. Chem., 41 (2003) 1580.
  • [5] H. Mazi, G. Kibarer, E. Emregül, Z.M.O. Rzaev, Bioengineering functional copolymers. IX. Poly[(maleic anhydride-co-hexene-1)-g-poly(ethylene oxide)], Macromol. Biosci., 6 (2006) 311.
  • [6] H. Mazi, E. Emregül, Z.M.O. Rzaev, G. Kibarer, Preparation and properties of invertase immobilized on a poly(maleic anhydride-hexen-1) membrane, J. Biomater. Sci. Polym. Ed., 17 (2006) 821.
  • [7] Z.M.O. Rzaev, S. Dinçer, E. Pişkin, Functional copolymers of N-isopropyl-acrylamide for bioengineering applications, Prog. Polym. Sci., 32 (2007) 534.
  • [8] G.B. Butler, Cyclopolymerization and cyclocopolymerization. (1992). New York, Marcel Dekker.
  • [9] L. Veron, M.C.D. Bignicount, T. Delair, C. Pichot, B. Mandrand, Syntheses of poly[N-(2,2-dimethoxyethyl)- N-methyl acrylamide] for the immobilization of oligo- nucleotides, J. Appl. Polym. Sci., 60 (1996) 235.
  • [10] C. Ladaviere, T. Delair, A. Domard, C. Pichot, B. Mandrand, Covalent immobilization of biological molecules to maleic anhydride and methyl vinyl ether copolymers - A physico-chemical approach, J. Appl. Polym. Sci., 71 (1999) 927.
  • [11] C. Chaix, C. Minard-Basquin, T. Delair, C. Pichot, B. Mandrand, Oligonucleotide synthesis maleic anhydride copolymers covalently bound to silica spherical support and characterization of the on obtained conjugates, J. Appl. Polym. Sci., 70 (1998) 2487.
  • [12] F. Volkova, M.Y. Gorshkova, P.E. Ivanov, L.L. Stotskaya, New scope for synthesis of divinyl ether and maleic anhydride copolymer with narrow molecular mass distribution,Polym. Adv. Technol., 13 (2002) 1067.
  • [13] V.A. Izumrudov, M.Y. Gorshkova, F. Volkova, Controlled phase separations in solution of soluble polyelectrolyte complex of DIVEMA (copolymer of divinyl ether and maleic anhydride, Eur. Polym. J., 41 (2005) 1251.
  • [14] C. Ladaviere, T. Delair, A. Domard, C. Pichot, B. Mandrand, Covalent immobilization of bovine serum albumin onto (maleic anhydride-alt-methyl vinyl ether) copolymers, J. Appl. Polym. Sci., 72 (1999) 1565.
  • [15] T. Delair, B. Badey, A. Domard, C. Pichot, B. Mandrand, Polym. Adv. Technol., 8 (1997) 297.
  • [16] H. Patel, D.A. Raval, D. Madamwar, T.J.M. Sinha, Polymeric prodrugs. Synthesis, release study and antimicrobial properties of polymer-bound acriflavine, Angew. Makromol. Chem., 245 (1997) 1.
  • [17] H. Patel, D.A. Raval, D. Madamwar, S.R. Patel, Polymeric prodrug: Synthesis, release study and antimicrobial property of poly(styrene-co-maleic anhydride)-bound acriflavine, Angew. Makromol. Chem., 263 (1998) 25.
  • [18] T. Hirano, T. Todorski, S. Kato, H. Yamamoto, P. Caliceti, Synthesis of the conjugate of superoxide dismutase with the copolymer of divinyl ether and maleic anhydride retaining enzymatic activity, J. Control Release, 28 (1994) 203.
  • [19] T. Hirano, T. Todorski, R. Morita, S. Kato, Y. Ito, K. Kim, G. Shukla, F. Veronese, H. Maeda, S. Ohashi, Antiinflammatory effect of the conjugate of superoxide dismutase with the copolymer of divinyl ether and maleic anhydride against rat re-expansion pulmonary edema, Jç Control Release, 48 (1997) 131.
  • [20] H. Maeda, SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy, Adv. Drug Delivery Rev., 6 (1991) 181.
  • [21] G.T. Gam, J.G. Jeong, N.J. Lee, W. Lee, C.S. Ha, W.J. Cho, Synthesis and biological activities of copolymers of N-glycinyl maleimide with methacrylic acid and vinyl acetate. J Appl Polym Sci, 57(1995), 219.
  • [22] J. Xia, P.L. Dublin, E. Kokufuta, Dynamic and electrophoretic light scattering of a water-soluble complex formed between pepsin and polyethylene glycol, Macromolecules, 26 (1993) 6688.
  • [23] E.L. Fumess, A. Ross, T.P. Davis, G.C. King, A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers, Biomaterials, 19 (1998) 1361.
  • [24] S. Azegami, A. Tsuboy, A. Izumi, M. Hirata, P.L. Dublin, B. Wang, E. Kokufuta, Formation of an intrapolymer complex from human serum albumin and poly(ethylene glycol), Langmuir, 15 (1999) 940.
  • [25] I.N. Topchieva, E.M. Sorikina, N.V. Efermova, A.L. Ksenofontov, B.I. Kurganov, Noncovlent adducts of poly(ethylene glycols) with protein, Bioconjugate Chem., 11 (2000) 22.
  • [26] V. Castelletto, M.J. Krysmann, A. Kelarakis, P. Jauregi, Complex formation of bovine serum albumin with a poly(ethylene glycol) lipid conjugate, Biomacromolecules, 8 (2007) 2244.
  • [27] A. Kelarakis, V. Castelletto, M.J. Krysmann, V. Havredaki, K. Viras, I.W. Hamley, Interactions of bovine serum albumin with ethylene oxide/ butylene oxide copolymers in aqueous solutions, Biomacromolecules, 9 (2008) 1366.
  • [28] M. Nichifor, X.X. Zhu, Copolymer of N-alkylacrylamides and styrene as new thermosensitive materials, Polymer, 44 (2003) 3053.
  • [29] B. Wittgren, K.G. Wahlund, H. Derand, B. Wesslen, Aggregation behavior of an amphiphilic graft copolymer in aqueous medium studied by asymmetrical flow field-flow fractionation, Macromolecules, 29 (1996) 268.
  • [30] A.R. Eckert, S.E. Webber, Naphthalene-tagged copolymer micelles based on polystyrene-alt maleic anhydride-graft-poly(ethylene oxide), Macromolecules, 29 (1996) 560.
  • [31] G.C. Chitanu, M. Rinaudo, J. Desbrieres, M. Milas,A. Carpov, Behavior of nonalternating maleic acid copolymers in aqueous solution, Langmuir, 15 (1999) 4150.
  • [32] G. Garnier, M.D. Smrckova, R. Vuhnalkova, T.G.M. Ven, J.F. Revol, Association in solution and adsorption at an air-water interface of alternating copolymers of maleic anhydride and styrene, Langmuir, 16 (2000) 3757.
  • [33] S. Maiti, K.N. Jayachandran, P.R. Chatterji, Probing the association behavior of poly(ethylene glycol) based amphiphilic comb-like polymer, Polymer, 42 (2001) 7801.
  • [34] D. Braun, R. Sauerwein, G.P. Hellmann, Polymeric surfactants from styrene-co-maleic-anhydride copolymer, Macromol. Symp., 163 (2001) 59.
  • [35] J. Claracq, S. Santos, J. Duhamel, C. Dumousseaux, J.M. Corpart, Rigid interior of styrene-maleic anhydride copolymer aggregates probes by fluorescence spectroscopy, Langmuir, 18 (2002) 3829.
  • [36] T.D. James, S. Sandanayake, S. Shinkay, Saccharide sensing with molecular receptors based on boronic acid, Angew. Chem. Inter. Ed. Eng., 35 (1996) 1910.
  • [37] R.F. Barth, W. Yang, J.H. Rotaru, M.L. Moeschberger, C.P. Boesel, A.H. Soloway, D.D. Joel, M.M. Nawrocky, K. Ono, J.H. Goodman, Boron neutron cupture therapy of brain tumors: enchanced survival and cure following blood-brain barrier disruption and ıntracarotid injection of sodium borocaptate and boronophenyl aniline, Int. J. Radiat. Oncol. Biol. Phys., 47 (2000) 209.
  • [38] W. Siebert (Ed.): Advances in Boron Chemistry (1887). Cambridge, Royal Society Chemistry.
  • [39] Y. Mishima (Ed.): Cancer Neutron Capture Therapy (1996). New York, Plenum Press.
  • [40] C.A. Kettner, A.B. Shenvi, Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids, J. Biol. Chem., 259 (1984) 15106.
  • [41] H. Miyazaki, A. Kikuchi, S. Kitano, Y. Koyama, T. Okano, Y. Sakurai, K. Kataoka, Boronate-containing polymer as novel mitogen for lymphocytes, Biochem. Biophys. Res. Commun., 195 (1993) 829.
  • [42] T. Aoki, Y. Nagao, E. Terada, K. Sanui, N. Ogata, N. Yamada, Y. Sakurai, K. Kataoka, T. Okano, Endothelial cell differentiation into capillary structures by copolymer surfaces with phenylboronic acid group, J. Biomater. Sci. Polym. Ed., 7 (1995) 539.
  • [43] H. Otsuka, E. Uchimura, H. Koshino, T. Okano, K. Kataoka, Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH, J. Am. Chem. Soc., 125 (2003) 3493.
  • [44] E. Uchimura, H. Otsuka, T. Okano, S. Sakurai, K. Kataoka, Totally synthetic polymer with lectin-like function: Induction of killer cells by the copolymer of 3-acryl-amidophenylboronic acid with N,N-dimethylacrylamide, Biotech. Bioeng., 72 (2001) 307.
  • [45] H. Otsuka, T. Ikeya, T. Okano, K. Kataoka, Activation of lymphocyte proliferation by boronate-containing polymer immobilised on substrate: The effect of boron content on lymphocyte proliferation, Eur. Cells Mater., 12 (2006) 36.
  • [46] K. Kataoka, N. Miyazaki, T. Okano, Y. Sakurai, Sensitive glucose-induced change of the lower critical solution temperature of poly [N,N-dimethylacrylamide-co3-(acrylamido) phenylboronic acid] in physiological saline, Macromolecules, 27 (1994) 1061.
  • [47] E. Uguzdoğan, E.B. Denkbaş, A. Tuncel, RNA-sensitive N-isopropylacrylamide/vinylphenyl boronic acid random copolymer, Macromol. Biosci., 2 (2002) 214.
  • [48] E. Uguzdoğan, H. Kayi, E.B. Denkbaş, S. Patir, A. Tuncel, Stimuli-responsive properties of aminophenylboronic acid carrying thermosensitive copolymers, Polym. Int., 52 (2003) 649.
  • [49] K. Shiomori, A.E. Ivanov, I.Y. Galaev,Y. Kawano, B. Mattiasson, Thermo-responsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid, Macromol. Chem. Phys., 205 (2004) 27.
  • [50] Z.M.O. Rzayev, O. Beşkardeş, Boron-containing functional copolymers for bioengineering applications, Collect Czech. Chem. Commun., 72 (2007) 1591.
  • [51] G. Kahraman, O. Beşkardeş, Z.M.O. Rzayev, E. Pişkin, Bioengineering functional copolymers. VII. Synthesis and characterization of boron-containing selfassembled supramolecular architectures, Polymer, 45 (2004) 5813.
  • [52] E.K. Çimen, Z.M.O. Rzayev, E. Pişkin, Bioengineering functional copolymers. V. Synthesis LCST, and thermal behavior of poly(N-isopropylacrylamide-cop-vinyl-phenylboronic acid), J. Appl. Polym. Sci., 95 (2005) 573.
  • [53] Z.M.O. Rzayev, D. Erdoğan, M. Türk, E. Pişkin, Bioengineering functional copolymers. VIII. Stimuliresponsive boron-containing graft copolymers and their poly(ethylene imine) macrocomplexes and DNA conjugates, Hacettepe J. Biol. Chem., 36 (2008) 83.
  • [54] M. Türk, S. Dincer, I.G. Yulug, E. Piskin, In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers, J. Control Release, 96 (2004) 325.
  • [55] S.J. Choi, J.M. Oh, J.H. Choy, Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells, J. Inorg. Biochem., 103 (2009) 463.
  • [56] E. Ulukaya, A. Kurt, E.J. Wood, 4-(N-hydroxyphenyl) retinamide can selectively induce apoptosis in human epidermoid carcinoma cells but not in normal dermal fibroblasts, Cancer Invest., 19 (2001) 145.
  • [57] J.L. McPartland, M.A. Guzail, C.H. Kendall, J.H. Pringle, Apoptosis in chronic viral hepatitis parallels histological activity: an immunohistochemical investigation using antiactivated caspase-3 and M30 cytodeath antibody, Int. J. Exp. Pathol., 86 (2005) 19.

Biyomühendislik Fonksiyonel Kopolimerler. XIX. Anhidrit- Organobor Fonksiyonlu Kopolimerlerin Sentezi ve Kanser Hücreleriyle Etkileşimleri

Year 2011, Volume: 39 Issue: 2, 111 - 132, 01.04.2011

Abstract

Maleik anhidritin homo- ve kopolimerlerinin yeni biyomühendislik fonksiyonel türevlerinin senthezi, 1 anhidrit-içeren makromoleküllerin [poli MA-alt-methyl vinil eter MVE biyomühendislik polimeri] 2-aminoetildifenillborinat 2-AEPB ile amidolizi, 2 alfa-hidroksi-omega-metoksi-polietilen oksit PEO uyumluluk ajanı ile esterleşmesi ve 3 organaoboron PEO içeren kopolimerlerin folik asit gibi hedefleyici ajanla konjugasyonu gibi yöntemlerle gerçekleştirilmiştir. Sentezlenmiş oligomerlerin yapısı ve kompozisyonu FTIRATR ve 1H 13C NMR spectroskopisi ile karakterize edilmiştir. Organobor fonksiyonal kopolimerlerin antitümör aktivitesi sitotoksisite, istatistiksel, ikili boyama ve immün boyama ile apoptotik ve nekrotik hücre indeksi, ışık ve floresan inverted mikroskop analizi gibi çeşitli fiziksel ve biyokimyasal kombine yöntemler ile araştırılmıştır. Organoboron makromoleküllerinin sitotoksik ve apoptotik/nekrotik etkisi önemli ölçüde kopolimerlerin yapısına ve kompozisyonuna bağlı olduğu bulunmuştur. Sentezlenmiş bazı kopolimerlerin 400 g.mL-1 derişim değerinde normal hücrelere düşük toksik, kanser hücrelerine ise etkili terapötik ilaç etksi göstermiştir

References

  • [1] P.A. Albertsson, Partition of Cell Particles and Macromolecules. (1986). New York, Wiley.
  • [2] D.A. Herold, K. Keil, D.E. Bruns, Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol., 38 (1989) 73.
  • [3] V.R. Sinha, A. Aggarwal, A. Trehan, Biodegradable PEGylated microspheres and nanospheres. Am. J. Drug Deliv., 2 (2004) 157.
  • [4] V. Köşeli, Z.M.O. Rzaev, E. Pişkin, Bioengineering functional copolymers. III. Synthesis of biocompatible poly(NIPA-co-MA)-g-PEO/PEI macrocomplexes and their thermostabilization effect on the activity of the enzyme penicillin G acylase, J. Polym. Sci. Part A: Polym. Chem., 41 (2003) 1580.
  • [5] H. Mazi, G. Kibarer, E. Emregül, Z.M.O. Rzaev, Bioengineering functional copolymers. IX. Poly[(maleic anhydride-co-hexene-1)-g-poly(ethylene oxide)], Macromol. Biosci., 6 (2006) 311.
  • [6] H. Mazi, E. Emregül, Z.M.O. Rzaev, G. Kibarer, Preparation and properties of invertase immobilized on a poly(maleic anhydride-hexen-1) membrane, J. Biomater. Sci. Polym. Ed., 17 (2006) 821.
  • [7] Z.M.O. Rzaev, S. Dinçer, E. Pişkin, Functional copolymers of N-isopropyl-acrylamide for bioengineering applications, Prog. Polym. Sci., 32 (2007) 534.
  • [8] G.B. Butler, Cyclopolymerization and cyclocopolymerization. (1992). New York, Marcel Dekker.
  • [9] L. Veron, M.C.D. Bignicount, T. Delair, C. Pichot, B. Mandrand, Syntheses of poly[N-(2,2-dimethoxyethyl)- N-methyl acrylamide] for the immobilization of oligo- nucleotides, J. Appl. Polym. Sci., 60 (1996) 235.
  • [10] C. Ladaviere, T. Delair, A. Domard, C. Pichot, B. Mandrand, Covalent immobilization of biological molecules to maleic anhydride and methyl vinyl ether copolymers - A physico-chemical approach, J. Appl. Polym. Sci., 71 (1999) 927.
  • [11] C. Chaix, C. Minard-Basquin, T. Delair, C. Pichot, B. Mandrand, Oligonucleotide synthesis maleic anhydride copolymers covalently bound to silica spherical support and characterization of the on obtained conjugates, J. Appl. Polym. Sci., 70 (1998) 2487.
  • [12] F. Volkova, M.Y. Gorshkova, P.E. Ivanov, L.L. Stotskaya, New scope for synthesis of divinyl ether and maleic anhydride copolymer with narrow molecular mass distribution,Polym. Adv. Technol., 13 (2002) 1067.
  • [13] V.A. Izumrudov, M.Y. Gorshkova, F. Volkova, Controlled phase separations in solution of soluble polyelectrolyte complex of DIVEMA (copolymer of divinyl ether and maleic anhydride, Eur. Polym. J., 41 (2005) 1251.
  • [14] C. Ladaviere, T. Delair, A. Domard, C. Pichot, B. Mandrand, Covalent immobilization of bovine serum albumin onto (maleic anhydride-alt-methyl vinyl ether) copolymers, J. Appl. Polym. Sci., 72 (1999) 1565.
  • [15] T. Delair, B. Badey, A. Domard, C. Pichot, B. Mandrand, Polym. Adv. Technol., 8 (1997) 297.
  • [16] H. Patel, D.A. Raval, D. Madamwar, T.J.M. Sinha, Polymeric prodrugs. Synthesis, release study and antimicrobial properties of polymer-bound acriflavine, Angew. Makromol. Chem., 245 (1997) 1.
  • [17] H. Patel, D.A. Raval, D. Madamwar, S.R. Patel, Polymeric prodrug: Synthesis, release study and antimicrobial property of poly(styrene-co-maleic anhydride)-bound acriflavine, Angew. Makromol. Chem., 263 (1998) 25.
  • [18] T. Hirano, T. Todorski, S. Kato, H. Yamamoto, P. Caliceti, Synthesis of the conjugate of superoxide dismutase with the copolymer of divinyl ether and maleic anhydride retaining enzymatic activity, J. Control Release, 28 (1994) 203.
  • [19] T. Hirano, T. Todorski, R. Morita, S. Kato, Y. Ito, K. Kim, G. Shukla, F. Veronese, H. Maeda, S. Ohashi, Antiinflammatory effect of the conjugate of superoxide dismutase with the copolymer of divinyl ether and maleic anhydride against rat re-expansion pulmonary edema, Jç Control Release, 48 (1997) 131.
  • [20] H. Maeda, SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy, Adv. Drug Delivery Rev., 6 (1991) 181.
  • [21] G.T. Gam, J.G. Jeong, N.J. Lee, W. Lee, C.S. Ha, W.J. Cho, Synthesis and biological activities of copolymers of N-glycinyl maleimide with methacrylic acid and vinyl acetate. J Appl Polym Sci, 57(1995), 219.
  • [22] J. Xia, P.L. Dublin, E. Kokufuta, Dynamic and electrophoretic light scattering of a water-soluble complex formed between pepsin and polyethylene glycol, Macromolecules, 26 (1993) 6688.
  • [23] E.L. Fumess, A. Ross, T.P. Davis, G.C. King, A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers, Biomaterials, 19 (1998) 1361.
  • [24] S. Azegami, A. Tsuboy, A. Izumi, M. Hirata, P.L. Dublin, B. Wang, E. Kokufuta, Formation of an intrapolymer complex from human serum albumin and poly(ethylene glycol), Langmuir, 15 (1999) 940.
  • [25] I.N. Topchieva, E.M. Sorikina, N.V. Efermova, A.L. Ksenofontov, B.I. Kurganov, Noncovlent adducts of poly(ethylene glycols) with protein, Bioconjugate Chem., 11 (2000) 22.
  • [26] V. Castelletto, M.J. Krysmann, A. Kelarakis, P. Jauregi, Complex formation of bovine serum albumin with a poly(ethylene glycol) lipid conjugate, Biomacromolecules, 8 (2007) 2244.
  • [27] A. Kelarakis, V. Castelletto, M.J. Krysmann, V. Havredaki, K. Viras, I.W. Hamley, Interactions of bovine serum albumin with ethylene oxide/ butylene oxide copolymers in aqueous solutions, Biomacromolecules, 9 (2008) 1366.
  • [28] M. Nichifor, X.X. Zhu, Copolymer of N-alkylacrylamides and styrene as new thermosensitive materials, Polymer, 44 (2003) 3053.
  • [29] B. Wittgren, K.G. Wahlund, H. Derand, B. Wesslen, Aggregation behavior of an amphiphilic graft copolymer in aqueous medium studied by asymmetrical flow field-flow fractionation, Macromolecules, 29 (1996) 268.
  • [30] A.R. Eckert, S.E. Webber, Naphthalene-tagged copolymer micelles based on polystyrene-alt maleic anhydride-graft-poly(ethylene oxide), Macromolecules, 29 (1996) 560.
  • [31] G.C. Chitanu, M. Rinaudo, J. Desbrieres, M. Milas,A. Carpov, Behavior of nonalternating maleic acid copolymers in aqueous solution, Langmuir, 15 (1999) 4150.
  • [32] G. Garnier, M.D. Smrckova, R. Vuhnalkova, T.G.M. Ven, J.F. Revol, Association in solution and adsorption at an air-water interface of alternating copolymers of maleic anhydride and styrene, Langmuir, 16 (2000) 3757.
  • [33] S. Maiti, K.N. Jayachandran, P.R. Chatterji, Probing the association behavior of poly(ethylene glycol) based amphiphilic comb-like polymer, Polymer, 42 (2001) 7801.
  • [34] D. Braun, R. Sauerwein, G.P. Hellmann, Polymeric surfactants from styrene-co-maleic-anhydride copolymer, Macromol. Symp., 163 (2001) 59.
  • [35] J. Claracq, S. Santos, J. Duhamel, C. Dumousseaux, J.M. Corpart, Rigid interior of styrene-maleic anhydride copolymer aggregates probes by fluorescence spectroscopy, Langmuir, 18 (2002) 3829.
  • [36] T.D. James, S. Sandanayake, S. Shinkay, Saccharide sensing with molecular receptors based on boronic acid, Angew. Chem. Inter. Ed. Eng., 35 (1996) 1910.
  • [37] R.F. Barth, W. Yang, J.H. Rotaru, M.L. Moeschberger, C.P. Boesel, A.H. Soloway, D.D. Joel, M.M. Nawrocky, K. Ono, J.H. Goodman, Boron neutron cupture therapy of brain tumors: enchanced survival and cure following blood-brain barrier disruption and ıntracarotid injection of sodium borocaptate and boronophenyl aniline, Int. J. Radiat. Oncol. Biol. Phys., 47 (2000) 209.
  • [38] W. Siebert (Ed.): Advances in Boron Chemistry (1887). Cambridge, Royal Society Chemistry.
  • [39] Y. Mishima (Ed.): Cancer Neutron Capture Therapy (1996). New York, Plenum Press.
  • [40] C.A. Kettner, A.B. Shenvi, Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids, J. Biol. Chem., 259 (1984) 15106.
  • [41] H. Miyazaki, A. Kikuchi, S. Kitano, Y. Koyama, T. Okano, Y. Sakurai, K. Kataoka, Boronate-containing polymer as novel mitogen for lymphocytes, Biochem. Biophys. Res. Commun., 195 (1993) 829.
  • [42] T. Aoki, Y. Nagao, E. Terada, K. Sanui, N. Ogata, N. Yamada, Y. Sakurai, K. Kataoka, T. Okano, Endothelial cell differentiation into capillary structures by copolymer surfaces with phenylboronic acid group, J. Biomater. Sci. Polym. Ed., 7 (1995) 539.
  • [43] H. Otsuka, E. Uchimura, H. Koshino, T. Okano, K. Kataoka, Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH, J. Am. Chem. Soc., 125 (2003) 3493.
  • [44] E. Uchimura, H. Otsuka, T. Okano, S. Sakurai, K. Kataoka, Totally synthetic polymer with lectin-like function: Induction of killer cells by the copolymer of 3-acryl-amidophenylboronic acid with N,N-dimethylacrylamide, Biotech. Bioeng., 72 (2001) 307.
  • [45] H. Otsuka, T. Ikeya, T. Okano, K. Kataoka, Activation of lymphocyte proliferation by boronate-containing polymer immobilised on substrate: The effect of boron content on lymphocyte proliferation, Eur. Cells Mater., 12 (2006) 36.
  • [46] K. Kataoka, N. Miyazaki, T. Okano, Y. Sakurai, Sensitive glucose-induced change of the lower critical solution temperature of poly [N,N-dimethylacrylamide-co3-(acrylamido) phenylboronic acid] in physiological saline, Macromolecules, 27 (1994) 1061.
  • [47] E. Uguzdoğan, E.B. Denkbaş, A. Tuncel, RNA-sensitive N-isopropylacrylamide/vinylphenyl boronic acid random copolymer, Macromol. Biosci., 2 (2002) 214.
  • [48] E. Uguzdoğan, H. Kayi, E.B. Denkbaş, S. Patir, A. Tuncel, Stimuli-responsive properties of aminophenylboronic acid carrying thermosensitive copolymers, Polym. Int., 52 (2003) 649.
  • [49] K. Shiomori, A.E. Ivanov, I.Y. Galaev,Y. Kawano, B. Mattiasson, Thermo-responsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid, Macromol. Chem. Phys., 205 (2004) 27.
  • [50] Z.M.O. Rzayev, O. Beşkardeş, Boron-containing functional copolymers for bioengineering applications, Collect Czech. Chem. Commun., 72 (2007) 1591.
  • [51] G. Kahraman, O. Beşkardeş, Z.M.O. Rzayev, E. Pişkin, Bioengineering functional copolymers. VII. Synthesis and characterization of boron-containing selfassembled supramolecular architectures, Polymer, 45 (2004) 5813.
  • [52] E.K. Çimen, Z.M.O. Rzayev, E. Pişkin, Bioengineering functional copolymers. V. Synthesis LCST, and thermal behavior of poly(N-isopropylacrylamide-cop-vinyl-phenylboronic acid), J. Appl. Polym. Sci., 95 (2005) 573.
  • [53] Z.M.O. Rzayev, D. Erdoğan, M. Türk, E. Pişkin, Bioengineering functional copolymers. VIII. Stimuliresponsive boron-containing graft copolymers and their poly(ethylene imine) macrocomplexes and DNA conjugates, Hacettepe J. Biol. Chem., 36 (2008) 83.
  • [54] M. Türk, S. Dincer, I.G. Yulug, E. Piskin, In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers, J. Control Release, 96 (2004) 325.
  • [55] S.J. Choi, J.M. Oh, J.H. Choy, Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells, J. Inorg. Biochem., 103 (2009) 463.
  • [56] E. Ulukaya, A. Kurt, E.J. Wood, 4-(N-hydroxyphenyl) retinamide can selectively induce apoptosis in human epidermoid carcinoma cells but not in normal dermal fibroblasts, Cancer Invest., 19 (2001) 145.
  • [57] J.L. McPartland, M.A. Guzail, C.H. Kendall, J.H. Pringle, Apoptosis in chronic viral hepatitis parallels histological activity: an immunohistochemical investigation using antiactivated caspase-3 and M30 cytodeath antibody, Int. J. Exp. Pathol., 86 (2005) 19.
There are 57 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Zakir M.o. Rzayev This is me

Mustafa Türk This is me

Gülten Kahraman This is me

Erhan Pişkin This is me

Publication Date April 1, 2011
Published in Issue Year 2011 Volume: 39 Issue: 2

Cite

APA Rzayev, Z. M., Türk, M., Kahraman, G., Pişkin, E. (2011). Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction with Cancer Cells. Hacettepe Journal of Biology and Chemistry, 39(2), 111-132.
AMA Rzayev ZM, Türk M, Kahraman G, Pişkin E. Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction with Cancer Cells. HJBC. April 2011;39(2):111-132.
Chicago Rzayev, Zakir M.o., Mustafa Türk, Gülten Kahraman, and Erhan Pişkin. “Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction With Cancer Cells”. Hacettepe Journal of Biology and Chemistry 39, no. 2 (April 2011): 111-32.
EndNote Rzayev ZM, Türk M, Kahraman G, Pişkin E (April 1, 2011) Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction with Cancer Cells. Hacettepe Journal of Biology and Chemistry 39 2 111–132.
IEEE Z. M. Rzayev, M. Türk, G. Kahraman, and E. Pişkin, “Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction with Cancer Cells”, HJBC, vol. 39, no. 2, pp. 111–132, 2011.
ISNAD Rzayev, Zakir M.o. et al. “Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction With Cancer Cells”. Hacettepe Journal of Biology and Chemistry 39/2 (April 2011), 111-132.
JAMA Rzayev ZM, Türk M, Kahraman G, Pişkin E. Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction with Cancer Cells. HJBC. 2011;39:111–132.
MLA Rzayev, Zakir M.o. et al. “Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction With Cancer Cells”. Hacettepe Journal of Biology and Chemistry, vol. 39, no. 2, 2011, pp. 111-32.
Vancouver Rzayev ZM, Türk M, Kahraman G, Pişkin E. Bioengineering Functional Copolymers. XIX. Synthesis of Anhydride-Organoboron Functionalized Copolymers and Their Interaction with Cancer Cells. HJBC. 2011;39(2):111-32.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc